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profiles dominated by antibiotic-resistant Enterobacteriaceae, and Staphylococcus and 

Streptococcus species.  
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The lower respiratory tract (LRT) harbours distinct, dynamic low-density microbial 

communities, established through micro-aspiration from the upper respiratory tract 

(URT) [1–3]. However, during intubation and mechanical ventilation, the endotracheal 

tube temporarily alters the anatomical continuity between URT and LRT, and may 

provide a bridge for airborne microbes and a barrier for micro-aspiration. Shortly after 

intubation for a severe LRT infection (LRTI) in children, the microbiota of the 

nasopharynx and LRT were shown to be very similar [4]. However, it remains 

unknown how the respiratory microbial community develops while the child recovers 

from the infection under treatment with mechanical ventilation and antibiotics. We 

therefore analysed respiratory microbiota changes in children participating in our 

study on acute LRTIs and who were admitted to the paediatric intensive care unit 

(PICU) for mechanical ventilation [4].   

The subset of 29 infants with community-acquired LRTI who required 

intubation and ventilation, was recruited between September 2013 and September 

2016. The mean age of the cohort was 3.4 months (range 1.0-12.8) with 48% being 

female. All children were diagnosed with bronchiolitis. Conventional microbiological 

findings were available for 21 of the children. Antibiotics were administered to 28/29 

children (25 co-amoxiclav, 2 cephalosporins, 1 azithromycin), 5 of whom were 

already started on treatment shortly before PICU admission. We obtained 

nasopharyngeal (NP) swabs, saliva and endotracheal aspirates (ETA) upon 

intubation (29 NP, 27 saliva, 25 ETA) and shortly before extubation (16 NP, 15 

saliva, 14 ETA), which was on average 5.9 days (SD 2.6) after intubation. Saliva was 

collected by placing an absorbent sponge in the cheek pouches and under the 

tongue until it became saturated with saliva, which was immediately transferred into 

glycerol DEPC medium using a sterile syringe. ETA was collected during routine 

suctioning of the endotracheal tube without instilling saline. We also obtained 20 NP 

swabs and 19 saliva samples during a follow-up visit, on average 51.9 days (SD 

13.5) after PICU discharge. 

Microbiota profiles were generated by sequencing of the 16S rRNA gene V4 

hypervariable region. Sequence data was deposited in the NCBI Sequence Read 

Archive database (BioProject ID PRJNA669463). Methodological details were 

previously published [4]. Overall, 29 NP, 27 saliva, and 24 ETA samples at 

intubation, 12 NP, 14 saliva, and 11 ETA samples at extubation, and 20 NP and 19 



 

saliva samples at follow-up passed quality control (94.5% of available samples) and 

were eligible for further analysis. Infants with missing extubation samples were not 

significantly different from those with available samples in terms of baseline 

microbiota composition, age or sex (data not shown). Bacterial load was estimated 

by quantitative (q)PCR targeting the 16S rRNA gene [5, 6]. Pneumococcal presence 

and abundance was tested by lytA qPCR. 

 Alpha diversity was assessed using the Chao1 and Shannon indices for 

richness and diversity, respectively. Bacterial load and alpha diversity are 

summarised as median [IQR], and differences by timepoint were evaluated using 

linear mixed-effect models including subject as a random effect. Differences in 

overall microbial composition were evaluated by permutational multivariate analysis 

of variance on the Bray-Curtis dissimilarity matrix with permutations constrained 

within subject. Microbiota clusters were assigned to each sample using unsupervised 

hierarchical clustering.  Biomarker species of each cluster were identified using 

random forest classifier analysis as previously described [7]. Associations between 

clusters and timepoints were tested with fisher’s exact tests. To assess microbiota 

concordance between niches, we calculated within-subject Bray-Curtis similarity (1–

Bray-Curtis dissimilarity), and Spearman’s correlations between individual 

operational taxonomic unit (OTU) abundances.  

Our results show that bacterial load dropped dramatically between intubation 

and extubation in all niches, though for saliva this difference was not significant (NP: 

from 92.2 pg/µl [43.9-309.6] to 4.0 pg/µl [1.6-24.0], p=0.024; saliva: from 270.3 pg/µl 

[80.5-771.8] to 113.0 [20.1-290.6], p=0.158; ETA: from 126.8 pg/µl [31.6-708.2] to 3.9 

pg/µl [2.8-13.4], p=0.039). After recovery, the bacterial load had increased only 

moderately in the NP (to 39.6 pg/µl [13.9-144.6], p=0.459), and more strongly in 

saliva (to 364.8 pg/µl [200.5-775.5], p=0.014). At the same time, richness and 

diversity remained comparable in the NP between intubation and extubation (Chao1: 

from 47.5 [34.6-62.3] to 46.8 [34.3-54.2], p=0.840; Shannon: from 1.17 [0.81-1.87] to 

1.53 [0.81-1.75], p=0.945). In saliva, richness and diversity decreased between 

intubation and extubation, though the difference was only significant for diversity 

(Chao1: from 55.0 [43.1-62.6] to 46.8 [39.4-50.9], p=0.443; Shannon: from 2.1 [1.8-

2.6] to 1.5 [0.9-1.8], p<0.001), which had also significantly increased again after 

recovery (to 2.3 [1.8-2.6], p<0.001). In ETA, we observed a modest non-significant 



 

increase in richness and diversity between intubation and extubation, which seemed 

mostly driven by an increase in evenness rather than species richness (Shannon: 

from 0.14 [0.07-0.76] to 0.99 [0.45-1.63], p=0.112, Chao1: from 32.8 [29.4-42.8] to 

51.0 [40.5-62.3], p=0.065). Furthermore, the overall microbial community composition 

changed significantly between intubation and extubation in both NP (R2=5.8%, 

p<0.001) and saliva (R2=7.6%, p<0.001) and even more in ETA samples (R2=11.2%, 

p=0.002; Figure 1A-C). Consequently, when compared to recovery samples, the NP 

and saliva microbiota composition were even more different from the pre-extubation 

(NP: R2=12.8%, p=0.020; saliva: R2=10.2%, p=0.012) than from the intubation 

timepoint (NP: R2=7.0%, p=0.001; saliva: R2=3.5%, p=0.038), implying marked 

ecological impact and deviation from healthy microbiota as a consequence of 

antibiotic treatment and/or mechanical ventilation within a narrow timeframe. 

We then performed clustering of NP, saliva and ETA microbiota profiles and 

distinguished 7 clusters, characterized by either Streptococcus (1) (STREP 1), 

Moraxella catarrhalis/nonliquefaciens (MOR), Haemophilus influenzae/haemolyticus 

(HAEMO), Corynebacterium propinquum/pseudodiphtheriticum with Dolosigranulum 

pigrum (COR/DOL),  Streptococcus salivarius (7) (STREP 2),  

Enterobacter/Klebsiella (ENTERO), or Staphylococcus aureus/epidermidis (STAPH) 

(Figure 1D-F). In NP and ETA, the MOR- and HAEMO-clusters predominated at 

intubation, and diminished following ventilation and antibiotic treatment. The 

COR/DOL-profile was exclusively found in NP samples and mostly observed after 

recovery (p<0.05). At extubation, the MOR-cluster was only observed in the single 

infant who did not receive antibiotic treatment. By contrast, in saliva, both STREP 1 

and STREP 2-clusters predominated at intubation, with the STREP 2-cluster 

diminishing at extubation, and being completely absent after recovery (not 

significant).  

Overall, at extubation, the STREP 1-, STAPH- and ENTERO-clusters were 

most prevalent, in line with expected changes following antibiotic exposure. Within 

the STREP 1-cluster, a shift from pneumococcal dominance at intubation to non-

pneumococcal streptococci pre-extubation was observed (Spearman’s correlation 

lytA Ct-values with Streptococcus (1) abundance at intubation: ρ=-0.68, p<0.001; at 

extubation: ρ=-0.08, p=0.883). Interestingly, the STAPH-profile was only present in 2 

NP samples at intubation, but predominated in ETA at extubation (p=0.006). The 



 

ENTERO-cluster was uniquely found at extubation (p<0.05). Enterobacter/Klebsiella 

became the most predominant OTU in 4 children following (2-8 days of) intubation 

and ventilation (mean abundance NP: 50.8%, range 0.03-99.4%; saliva: 11.9%, 

range 0.0-45.1%; ETA: 64.5%, range 30.0-99.7%), even though this OTU was mostly 

absent at intubation, except for one child with a very low abundance in the NP of 

0.008%. To identify this OTU at the species level, we attempted to re-culture the 

corresponding samples, and identified in 3 of those gram-negative strains that were 

identified as Enterobacter cloacae by MALDI-TOF mass spectrometry. Together, 

these findings imply that the typically hospital-acquired and antibiotic-resistant 

pathobiont E. cloacae colonized and/or became dominant in the respiratory tract of 

these children during PICU stay. Similarly, we observed dominance of a 

Stenotrophomonas species (77.7% of ETA microbiota) in 1 case pre-extubation, 

despite it being nearly absent at intubation (0.002%), again suggesting selection or 

outgrowth during ventilation. In general, conventional culture performed at admission 

confirmed the predominant pathogens observed in the NP and/or ETA profile of 

12/21 children. Culture results were negative in 5/21 children, and confirmation of 

non-predominant gram positives but lack of detection of the predominant (gram 

negative) pathogen was observed in 4 children. These findings underline that culture 

results, especially in children treated with antibiotics, often lack to provide insight in 

presence and/or predominance of respiratory pathogens.  

We previously demonstrated highly concordant NP and ETA microbiota at 

intubation in this cohort, suggesting the NP is the source community of the LRTI in 

young children [4]. However, interestingly, NP-ETA concordance at intubation (within-

subject median Bray-Curtis similarity 0.66 [IQR 0.44-0.81]), had dropped pre-

extubation (0.53 [IQR 0.31-0.63]), although this difference was not significant 

(Wilcoxon rank-sum test, p=0.188). Also, only 36 OTUs (combined relative 

abundance 36.6%) were still significantly correlated between NP and ETA samples 

pre-extubation, compared to 74 OTUs (combined relative abundance 84.2%) at 

intubation, suggesting non-NP microbes may have settled in the LRT community. We 

therefore investigated whether micro-aspiration could explain these findings, and 

studied the concordance between saliva and ETA samples both at intubation and 

pre-extubation. We observed that the concordance in microbial community 

composition between saliva and ETA was low at both intubation (within-subject 



 

median Bray-Curtis similarity 0.13 [IQR 0.03-0.33]), and pre-extubation (0.17 [IQR 

0.04-0.61]). Moreover, the number of OTUs that correlated between both niches 

dropped from 70 OTUs at intubation (combined relative abundance 57.0%), to 52 

OTUs at extubation (combined relative abundance 14.7%). Collectively, our data 

suggest that the NP is a more important source community for the LRT compared to 

the oral microbiota in children, and that NP, saliva and ETA microbiota evolve 

relatively independently during mechanical ventilation, which resulted in increased 

segregation between the URT and LRT microbial communities.  

In summary, we observed that during intubation and ventilation, combined with 

antibiotic treatment in critically ill children suffering from a community-acquired LRTI, 

the respiratory microbiota composition clearly changed, even deviating further from 

‘healthy’ profiles. The bacterial load dropped and the relative abundance of 

predominant pathogens decreased, simultaneously allowing antibiotic-resistant 

bacteria including Staphylococcus species, non-pneumococcal streptococci, and 

Enterobacter/Klebsiella species, to colonize and/or overgrow the respective niches. 

Furthermore, our data suggest differential effects of intubation/ventilation and/or 

antibiotic use on microbial communities in the respective niches. Our findings are in 

line with previous results in adults [8]. However, unlike findings in adults, the LRT 

microbiota of young children with a severe LRTI reflected the NP more than the oral 

microbiota before intubation, which did not change during ventilation. The main 

limitation of this study is its small sample size. Future, larger studies are required to 

disentangle independent effects of (different) antibiotic therapies and intubation for 

mechanical ventilation on respiratory microbiota dynamics. Further study is especially 

important because the respiratory microbiota composition during intubation has 

recently been related to clinical outcomes in adults. For instance, Dickson and 

colleagues reported that detection of species of the Enterobacteriaceae family in the 

lungs of critically ill adults was associated with acute respiratory distress syndrome 

and prolonged duration of mechanical ventilation [9]. Similarly, in a large cohort of 

mechanically ventilated patients, worse clinical outcomes were related to low alpha 

diversity combined with pathogen overgrowth in the LRT, in contrast to high alpha 

diversity with dominance of typically oral taxa [10]. In line with these findings, Woo 

and colleagues observed that increased abundance of oral taxa including 

Streptococcus during intubation and ventilation were related to successful extubation 



 

[11]. Findings presented here thus warrant similar studies of respiratory microbiota 

changes during intubation and ventilation in relation to recovery in critically ill 

paediatric patients, and exploration of methods to prevent rapid in-hospital 

acquisition and/or enrichment of antibiotic-resistant pathobionts in this already 

vulnerable patient population.    
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FIGURE 1 LEGEND 

A-C. Nonmetric multidimensional scaling (NMDS) biplots based on the Bray-Curtis dissimilarity 

matrix visualizing the overall microbiota composition in the nasopharynx (NP, panel A), saliva 

(panel B) and endotracheal aspirate (ETA, panel C) at time of intubation, extubation and after 2 

months recovery time, along with 8 biomarker operational taxonomic units (OTUs). Ellipses 

represent the standard deviation of the data points per subgroup. D-F. Alluvial plots of cluster 

transitions in the NP (panel D), saliva (panel E) and ETA (panel F) between time of intubation, 

extubation and after 2 months recovery time. Hierarchical clustering of all samples based on the 

Bray-Curtis dissimilarity matrix identified 7 distinct clusters, characterized by either 

Streptococcus (1) (STREP 1), Moraxella catarrhalis/nonliquefaciens (MOR), Haemophilus 

influenzae/haemolyticus (HAEMO), Corynebacterium propinquum/pseudodiphtheriticum with 

Dolosigranulum pigrum (COR/DOL),  Streptococcus salivarius (7) (STREP 2),  

Enterobacter/Klebsiella (ENTERO), or Staphylococcus aureus/epidermidis (STAPH). Stacked 

bars represent the number of samples in each cluster per timepoint, and connections between 

bars represent transitions of participants with 2 consecutive samples available between 

timepoints. 



 

 


