
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using prototyping to choose a bioinformatics workflow
management system

Citation for published version:
Jackson, M, Kavoussanakis, K & Wallace, EWJ 2021, 'Using prototyping to choose a bioinformatics
workflow management system', PLoS Computational Biology, vol. 17, no. 2, e1008622.
https://doi.org/10.1101/2020.08.04.236208, https://doi.org/10.1371/journal.pcbi.1008622

Digital Object Identifier (DOI):
10.1101/2020.08.04.236208
10.1371/journal.pcbi.1008622

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
PLoS Computational Biology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 17. Aug. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/391332756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1101/2020.08.04.236208
https://doi.org/10.1371/journal.pcbi.1008622
https://doi.org/10.1101/2020.08.04.236208
https://doi.org/10.1371/journal.pcbi.1008622
https://www.research.ed.ac.uk/en/publications/3c708223-659d-418a-8363-9480a60801a5


EDUCATION

Using prototyping to choose a bioinformatics

workflow management system

Michael JacksonID
1*, Kostas KavoussanakisID

1, Edward W. J. WallaceID
2*

1 EPCC, The University of Edinburgh, Edinburgh, United Kingdom, 2 Institute for Cell Biology and SynthSys,

School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom

* m.jackson@epcc.ed.ac.uk (MJ); Edward.Wallace@ed.ac.uk (EWJW)

Abstract

Workflow management systems represent, manage, and execute multistep computational

analyses and offer many benefits to bioinformaticians. They provide a common language for

describing analysis workflows, contributing to reproducibility and to building libraries of reus-

able components. They can support both incremental build and re-entrancy—the ability to

selectively re-execute parts of a workflow in the presence of additional inputs or changes in

configuration and to resume execution from where a workflow previously stopped. Many

workflow management systems enhance portability by supporting the use of containers,

high-performance computing (HPC) systems, and clouds. Most importantly, workflow man-

agement systems allow bioinformaticians to delegate how their workflows are run to the

workflow management system and its developers. This frees the bioinformaticians to focus

on what these workflows should do, on their data analyses, and on their science.

RiboViz is a package to extract biological insight from ribosome profiling data to help

advance understanding of protein synthesis. At the heart of RiboViz is an analysis workflow,

implemented in a Python script. To conform to best practices for scientific computing which

recommend the use of build tools to automate workflows and to reuse code instead of rewrit-

ing it, the authors reimplemented this workflow within a workflow management system. To

select a workflow management system, a rapid survey of available systems was under-

taken, and candidates were shortlisted: Snakemake, cwltool, Toil, and Nextflow. Each can-

didate was evaluated by quickly prototyping a subset of the RiboViz workflow, and Nextflow

was chosen. The selection process took 10 person-days, a small cost for the assurance that

Nextflow satisfied the authors’ requirements. The use of prototyping can offer a low-cost

way of making a more informed selection of software to use within projects, rather than rely-

ing solely upon reviews and recommendations by others.

Author summary

Data analysis involves many steps, as data are wrangled, processed, and analysed using a

succession of unrelated software packages. Running the right steps, in the right order, and

putting the right outputs in the right places, is a major source of frustration. Workflow

management systems require that each data analysis step be “wrapped” in a structured
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way, describing its inputs, parameters, and outputs. By writing these wrappers, the scien-

tist can focus on the meaning of each step, and how they fit together, which is the interest-

ing part. The system uses these wrappers to decide what steps to run and how to run these

and takes charge of running the steps, including reporting on errors. This makes it much

easier to repeatedly run the analysis and to run it transparently upon different computers.

To select a workflow management system, we surveyed available tools and chose 4 in

which we developed prototype implementations to evaluate their suitability for our proj-

ect. We conclude that many similar multistep data analysis workflows can be rewritten in

a workflow management system, and we advocate prototyping as a low-cost (both time

and effort) way of making an informed selection of software for use within a research

project.

Introduction

Bioinformatics data analysis takes many steps, and a crucial but frustrating part of bioinfor-

matics work is to run the right processing steps, in the right order, on the right data, reliably

[1]. Usually these steps will involve disparate pieces of software from different sources, all run

from the command line. For example, high-throughput sequencing data analysis may involve

demultiplexing, trimming, cleaning, alignment, deduplication, base quality score recalibration,

and quantification. Phylogenetic analysis may involve selecting sequences, multiple sequence

alignment, alignment trimming, and tree inference. Image analysis can also involve many

steps applied to large numbers of images. Success in these multistep data analyses generally

requires writing a script to automate the steps. However, traditional shell scripts and even

Makefiles have limited error reporting, are hard to debug, can be hard to restart after they go

wrong, and can be challenging to move from one computer architecture to another. For exam-

ple, bash scripts do not support re-entrancy or incremental build unless these functionalities

are explicitly implemented by their authors, which can be a nontrivial development activity.

Workflow management systems—systems to represent, manage, and execute analyses—

address these problems [2–4]. They can provide a common language for describing analysis

workflows, contributing to reproducibility and the building of libraries of reusable compo-

nents. They can support both incremental build and re-entrancy, providing the ability to selec-

tively re-execute parts of a workflow in the presence of additional inputs or changes in

configuration and the ability to resume execution from where a workflow previously stopped.

Many workflow management systems provide support to exploit software containers and

package managers, high-performance computing systems (HPC), and clouds. Most impor-

tantly, the declarative aspect of most workflow management systems allows bioinformaticians

to concentrate on specifying what they want the workflow management system to do—for

example, what inputs to read, steps to execute, or outputs to produce. The bioinformatician

then delegates how these steps are executed, and how their workflows are run, to the workflow

management system.

In this article, we describe the process that we used for selecting a workflow management

system for our ribosome profiling software, RiboViz [5]. While Leipzig [4] offers advice on

choosing a workflow management system based on the qualities of classes of workflow man-

agement system, we used an approach to selection focused on both the popularity of the candi-

date systems within the bioinformatics community and on the specific merits of the candidate

systems in the context of our project’s specific requirements.
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To select a workflow management system, a rapid survey of available workflow manage-

ment systems was undertaken to shortlist candidates for a more in-depth, hands-on, evalua-

tion. Four candidates were shortlisted: Snakemake (https://github.com/snakemake/

snakemake) [6]; cwltool (https://github.com/common-workflow-language/cwltool), a refer-

ence implementation of the Common Workflow Language (CWL) [7], a language for describ-

ing workflows; Toil (https://github.com/DataBiosphere/toil) [8], a production implementation

of CWL; and Nextflow (https://github.com/nextflow-io/nextflow) [9].

We quickly implemented a subset of the steps of our workflow in each workflow manage-

ment system. Development of these prototype implementations allowed us to evaluate each

candidate more thoroughly than relying solely upon reviews and recommendations from oth-

ers. From our evaluation, via development of these prototypes, Nextflow was chosen.

Using prototyping in this way offers a low-cost (both time and effort) approach for a more

informed selection of myriad software applications, frameworks, packages, and libraries for

use within projects. This article is intended to serve as a demonstration of this approach, the

key activities of which are summarised in Table 1.

The intent of this article is not to make a recommendation as to the use of a specific work-

flow management system for all bioinformatics projects. Nor is this article intended to claim

that using prototyping is suitable for the selection of all software or for all projects. Rather, it is

to demonstrate how we found prototyping to be a useful approach to selecting a workflow

management system that met the specific requirements of our project, and to discuss our expe-

riences with the workflow management systems that we considered.

The RiboViz “workflows” repository (https://github.com/riboviz/workflows) [10] contains

notes made during the selection and the Snakemake, Nextflow, and CWL workflows that were

prototyped.

RiboViz and the requirement for a workflow management system

RiboViz is a high-throughput sequencing analysis pipeline specialised for ribosome profiling

data. RiboViz takes raw data from sequencing machines; estimates how much each part of

RNA is translated into protein and how the amount of translation is controlled by the code of

that RNA; and produces analysis data, tables, and graphs.

RiboViz is under active development by The Wallace Lab and EPCC at the University of

Edinburgh, The Shah Lab at Rutgers University, and The Lareau Lab at University of Califor-

nia, Berkeley. The source code is available on GitHub (https://github.com/riboviz/riboviz),

under an Apache 2.0 open-source licence.

Table 1. Prototyping to select software for a project.

Step Effort (person-

days)

Tasks

Survey available software to

shortlist candidates

3 Discover what software is available which may suit your

requirements, which is in common use and is well regarded within

the community.

Draw up a shortlist of candidates based on their popularity,

whether they have an acceptable software licence, and whether

they are well established, stable, and with evidence of a future.

Evaluate candidates via

prototyping

2–3 (per

candidate)

Quickly prototype a subset of functionality required by the project

and assess each candidate’s suitability against objective project-

specific criteria (required and useful functionality, supported

platforms, etc.) and general subjective criteria (ease of installation,

ease of implementation, quality of supporting documentation,

etc.).

https://doi.org/10.1371/journal.pcbi.1008622.t001
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At the heart of RiboViz is an analysis workflow to process ribosome profiling data across

several samples, whose information along with all parameters for processing is described in a

single input YAML file. Sample-specific read data can be provided as separate (fastq) input

files or within a multiplexed input file. This workflow invokes a series of steps per sample (for

example, adapter trimming, contaminant ribosomal RNA (rRNA) and open reading frame

(ORF) alignment, and trimming 50 mismatches). In addition, there are some initial, sample-

independent, steps (for example, creating rRNA and ORF indices). When all samples have

been processed, results from the sample-specific analyses are aggregated and summarised.

Some steps (for example, Unique Molecular Identifier/UMI extraction and deduplication) are

conditional upon the nature of the samples and configuration parameters set by the user. The

workflow does not include any loops. S1 and S2 Figs show the steps of the RiboViz workflow

that are invoked when processing demultiplexed samples and when processing multiplexed

samples, respectively.

Each discrete step in a sequencing analysis workflow corresponds to the invocation, via

bash, of a command-line tool. Some of these tools are open-source packages in widespread use

within the bioinformatics community and include HISAT2 [11], Cutadapt [12], Samtools [13],

Bedtools [14], and UMI-tools [15]. Other tools, implemented in Python and R (for demulti-

plexing multiplexed files, trimming reads, and generating analysis data, tables, and graphs),

have been developed by the RiboViz team.

The RiboViz analysis workflow was implemented in a Python script. Each time a com-

mand-line tool is invoked, a log file is created for each invocation, in which standard output

and error is captured. A log file for the execution of the Python script itself is also created. Sam-

ple-specific data and log files are written to sample-specific directories. The Python script also

logs all the commands executed via bash to a script which can be run standalone and which

allows a specific analysis to be rerun outwith the Python script. The RiboViz Python script can

be configured to run in a “dry run” mode, whereby it will validate its configuration, check that

input files exist, and output this complete bash script without executing the steps.

The design of the RiboViz Python script follows the majority of van Vliet’s 7 quick tips for

analysis scripts [16], tips which are generally applicable beyond neuroimaging. The develop-

ment of RiboViz has also been strongly guided by Wilson and colleagues’ best practices for sci-

entific computing [17]. We use version control, unit test libraries, and, to help manage

collaboration, an issue tracker. We turn bugs into test cases and endeavour to write programs

for people. Their recommendation to “Write code in the highest-level language possible” moti-

vated our migration to Python from a previous implementation of the analysis as a bash script.

However, as our Python script evolved, we were aware that we were adding more features

related to managing the invocation of the analysis steps, rather than the nature of these steps

themselves—we were implementing a custom workflow management system for RiboViz.

This was problematic for several reasons. Our code was becoming more difficult to maintain

as it evolved to accommodate additional requirements which were not envisaged when its

implementation began in 2016. Our code did not support re-entrancy or incremental build,

both of which we viewed as essential for implementing workflows to process large datasets.

Nor did our code support parallel execution of the workflow which would be necessary to sup-

port the future execution of RiboViz on large-scale datasets. Implementing these would have

incurred significant development effort, effort which would be better spent implementing the

steps within the workflow, that is, the science itself.

It was time for us to adopt 2 more of the Wilson and colleagues best practices, to “Use a

build tool to automate workflows” and to “Re-use code instead of rewriting it,” that is, to use

an off-the-shelf workflow management system, the adoption of which, we estimated, would

PLOS COMPUTATIONAL BIOLOGY
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incur significantly less effort than implementing re-entrancy, incremental build, and support

for parallel processing ourselves.

A survey of available workflow management systems to shortlist candidates

We first conducted a rapid survey of available workflow management systems to shortlist can-

didates for prototyping. The criteria we used to select candidates for shortlisting are summa-

rised in Table 2.

We conducted web searches to find out what systems, and existing surveys of systems, were

available using combinations of the terms “workflow management system” and “bioinformat-

ics,” “survey,” and “list.” In keeping with our pragmatic, low-cost, approach, a systematic liter-

ature review was not undertaken as our goal was not to produce a comprehensive survey of

every workflow management system available, but to, in a rapid way, identify which systems

are in common use, and are well regarded, within the bioinformatics community.

Our searches found resources including introductory articles and blog posts [2–3], objec-

tive surveys of the types of workflow management systems available [4], lists and catalogues of

workflow management systems [18–19], case studies [20] and discussion threads [21], and ad

hoc polls [22] capturing the subjective opinions of researchers.

To avoid being rendered indecisive through over-choice, and, as we did not have time to

review every popular option, even for shortlisting, we decided to choose only 2 systems: Snake-

make and Nextflow. These systems had been most frequently, and positively, mentioned

within the foregoing resources and had been specifically recommended by our team’s bioinfor-

maticians and their colleagues. Furthermore, these systems are free and open source, and also

support the command-line, text editor–based development environment that we prefer. CWL

had also been frequently and positively mentioned so we chose both its reference implementa-

tion, cwltool, and one of its production implementations, Toil. This necessarily meant that

other, popular, workflow management systems, including Cromwell [23], Galaxy [24], Luigi

(https://github.com/spotify/luigi), Pegasus [25], and Taverna [26], were not considered.

It was also important that we adopt a workflow management system that was well estab-

lished, stable, and with a future [27]. We did not want to migrate to a system only for develop-

ment around that system to stop. To assess the stability of and development activity around

each tool, we reviewed statistics from their open-source repositories and the number of web

search results for them (Table 3).

“Last updated” and “Number of contributors” were documented on 28 February 2020.

“Search results” are the number of search results for the search term “<workflow management

system> bioinformatics” on Google on 28 February 2020, although we note that changing the

search term order yielded different numbers of results.

Table 2. Shortlisting criteria.

Criteria Description

Popularity The system seems to be in common use and is well regarded within the

bioinformatics community. The system is likely to be practically usable.

Free and open-source licence The system is free and has an open-source licence, as RiboViz itself is free and

open-source software, and we seek to use open-source software where possible.

Well established, stable, and with a

future

The system has been around for at least a year, has regular releases, and there is

evidence that it is actively maintained, developed, and supported.

Development of the system is unlikely to stop after we migrate to it.

Text-based workflow development

environment

The system uses a command-line, text editor–based workflow development

environment. As the RiboViz workflow is under ongoing development, this is

the development environment that we prefer.

https://doi.org/10.1371/journal.pcbi.1008622.t002
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The shortlisted systems have free open-source licenses, have been in existence for several

years, have many contributors, and are regularly updated. Overall, this survey gave us confi-

dence that the candidate systems were being widely and actively used, developed, and sup-

ported and will continue to be so for the foreseeable future.

Evaluation of candidates via prototyping

Once a shortlist had been drawn up, we evaluated each candidate system. Our evaluation

focused on quickly prototyping a subset of the RiboViz workflow into each system. There were

3 reasons for this. Firstly, using each system, and their documentation, would provide more

insight into whether they met our requirements, their ease of use, their capabilities, and the

quality of their supporting documentation than could be ascertained by solely reading their

documentation. Secondly, focusing on implementing our workflow would give us more

insight into these qualities than solely working through tutorial examples specifically designed

by the developers of the systems to demonstrate their software. And, thirdly, whatever system

we adopted, we would have the corresponding prototype to build upon.

A total of 2 to 3 person-days were allotted to each system. If nothing productive could be

implemented within that period, then the system would be left and the next considered.

Our evaluation criteria are shown in Table 4.

It will be noted that the first 3 criteria are subjective, and necessarily so [28]. Ease of use,

readability of documentation, and ease of implementation are very much dependent upon the

skills, knowledge, and experience of those who will use a system and its supporting resources.

For RiboViz, users are expected to be familiar with bash command-line tools and developers

familiar with development of bash, Python, and R scripts under Linux. We sought a system

that would enable us, and our user community, to execute, implement, maintain, and extend

our workflow in a way that is easier than at present.

These, then, were our project-specific selection criteria. Table 5 summarises how each tool

met our objective evaluation criteria (rows 4 to 6 on Table 4).

Snakemake

Snakemake was easy to download and install, via the conda (https://docs.conda.io/en/latest/)

package manager, and had a comprehensive tutorial. Snakemake adopts the same model of

operation as the GNU Make automated build tool (https://www.gnu.org/software/make/)—

users specify the output files they want to build, Snakemake looks for rules to create these out-

put files and runs the commands (in Snakemake, bash commands or Python scripts) specified

in these rules to create the output files. Rules can specify dependencies—files used by the com-

mands to create the output files. If these files do not exist, then Snakemake looks for rules to

create these, and so on.

Snakemake is implemented in Python. Python code can also be embedded within a Snake-

file, for example, to create file paths or validate configuration parameters.

Table 3. Statistics on the shortlisted workflow management systems.

Workflow management system Software licence Project start date Last updated Number of contributors Search results

Snakemake MIT 2013 28 February 2020 122 23,000

Nextflow Apache 2.0 2013 28 February 2020 230 23,800

cwltool Apache 2.0 2014 28 February 2020 72 2,440

Toil Apache 2.0 2011 28 February 2020 81 20,700

https://doi.org/10.1371/journal.pcbi.1008622.t003
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Implementing the steps from the RiboViz workflow was very straightforward, greatly helped

by the authors’ prior experience with GNU Make from other projects. This, coupled with there

being no requirement to implement any additional code beyond the Snakemake workflow itself,

meant that a functional version of the complete RiboViz workflow of 14 steps (everything bar

steps specifically to handle multiplexed files) was implemented in less than a person-day. This

ease of implementation accounts for the discrepancy in the Number of RiboViz processing

steps implemented, as compared to cwltool, Toil, and Nextflow, shown in Table 5.

Snakemake provided all the required and useful functionality listed in our evaluation crite-

ria. Snakemake provides a “keep going” configuration parameter which can be used to con-

tinue processing other samples if processing of 1 sample fails. Like Make, Snakemake supports

incremental build and re-entrancy. Conditional behaviour can be executed via the use of

Python conditions. Step-specific log files can be implemented, but Snakemake does not auto-

matically capture these—the bash commands executed by each step explicitly need to redirect

standard output and standard error streams into log files. Like Make, Snakemake supports a

“dry run” option that can check that input files exist and that displays the commands that

would be run, without running these. As for Make, the ability to specify exactly the files to

build can be useful for debugging.

While Snakemake does not output a bash script that can be run standalone, it can output a

summary file with the commands submitted to bash for execution. This file could be parsed,

and the commands extracted and constructed into a bash script.

Snakemake has support for running its jobs within containers, HPC systems, and clouds.

Table 4. Evaluation criteria.

Criteria Description

Ease of initial use Ease of download, install, and initial use of each system.

Quality of supporting documentation Readability and utility of documentation and tutorials.

Ease of implementation of initial steps of

the RiboViz workflow

Ease of implementation of the initial 5 steps of the RiboViz workflow,

which includes both sample-independent steps—build rRNA and ORF

indices using HISAT2—and sample-specific steps—cut out sequencing

library adapters using Cutadapt, remove rRNA or other contaminating

reads by alignment to rRNA index files using HISAT2, and align to

ORFs by alignment to ORF index files using HISAT2.

Required functionality Functionality required by the RiboViz workflow. This includes iteration

over multiple samples; error recovery strategies (so other samples can

be processed even if processing of 1 sample fails); aggregation of

sample-specific results; and conditional invocation of steps depending

on configuration parameters set by a user.

Useful functionality Functionality that is not required to execute the RiboViz workflow but

that is useful to us for both porting and further developing the

workflow. This includes producing step-specific log files to aid

debugging; parsing YAML configuration files, so that our current

configuration files could continue to be used and to ease migration of

users onto the selected workflow management system; a “dry run”

option to validate configuration and check that input files exist and

display the commands that would be run, without actually running

these, which can be a useful way of checking time-consuming or

complex workflows before running them; and outputting a bash script

that can be rerun standalone which can be used when debugging to

help understand why a workflow failed and to rerun specific steps in the

workflow.

Execution within containers, HPC

systems, or cloud

This is desirable to support the future execution on RiboViz on large-

scale datasets.

HPC, high-performance computing; ORF, open reading frame; rRNA, ribosomal RNA.

https://doi.org/10.1371/journal.pcbi.1008622.t004
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Common workflow language, cwltool, and toil

Both cwltool and Toil were easy to install, via the Python pip package manager (https://pip.pypa.

io/). It was easy to run a CWL “hello world!” example via both cwltool and Toil. A comprehensive,

step-by-step tutorial to the language is available at https://www.commonwl.org/user_guide [29].

CWL tool wrappers, which describe the inputs and outputs of command-line tools, and job

configuration files, which describe workflows, are written as YAML or JSON documents. Java-

Script can be embedded for any additional computation that is required, for example, to create

file paths or validate configuration parameters.

Implementing 3 steps of the RiboViz workflow took a person-day. It was not necessary to

implement any additional code beyond the CWL tool wrappers and job description files them-

selves. The “edit-run-debug” development cycle felt slow and painful, due to the richness of

CWL and the occasionally cryptic error messages that arose during execution.

Conditional behaviour is not yet supported within CWL—a “Collecting use cases for work-

flow level conditionals” issue [30] was added in February 2020 to their 1.2 milestone, but, at

the time of writing (August 2020), this has no due date. The lack of conditional invocation

means that CWL is not currently suitable for RiboViz, or for other projects that require input-

dependent control of workflow structure. (A colleague had evaluated CWL about a year and a

half ago and, while they felt that simple workflows showed promise, the lack of conditionals

meant that they could not adopt CWL for their project. Similarly, we felt that CWL would not

be suitable for RiboViz at this time.) This limitation could have been identified at the shortlist-

ing stage, but we had to achieve a balance between how many criteria to consider during short-

listing and how many during our prototyping. We (incorrectly as it turned out) assumed that

support for conditional execution would be a fundamental feature of any workflow manage-

ment system or languages, such as CWL, executed by them.

Table 5. Summary of workflow management systems and objective evaluation criteria.

Criteria Snakemake cwltool Toil Nextflow

Installation method used conda Python pip Python

pip

conda

Number of RiboViz processing steps implemented 14 3 3 5

Time (person-days) to implement steps 1 1 11 2

Iteration over multiple samples Yes See note2 See note2 Yes

Error recovery strategies Yes (“keep going” parameter) See note2 See note2 Yes (step-specific error strategies)

Aggregation of sample-specific results Yes See note2 See note2 Yes

Conditional execution of steps Yes (step-specific Python

conditions)

No No3 Yes (step-specific “when” clauses)

Step-specific log files Yes (must be captured explicitly by

each step)

See note2 See note2 Yes (automatically captured)

YAML configuration files Yes See note2 See note2 Yes

“dry run” option Yes See note2 See note2 No (but configuration validation can be

implemented)

Output a rerunnable bash script to see the commands

that were actually executed

No (outputs a summary file with

bash commands)

See note2 See note2 No (outputs step-specific bash scripts)

Execution within containers, HPC systems, and cloud Yes Containers

only

Yes Yes

1The time taken relates to writing CWL workflows, not Toil-specific workflows.
2These criteria were not explored as the decision had been made to not consider CWL further considering its lack of support for conditional execution of steps.
3The lack of support for conditional execution is a restriction of CWL, not Toil.

HPC, high-performance computing.

https://doi.org/10.1371/journal.pcbi.1008622.t005
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Nextflow

Nextflow was easy to download and install, via the conda package manager, and had a simple

tutorial.

A Nextflow workflow has a structure analogous to a Makefile or Snakefile—it consists of a

set of processes which define inputs, outputs, and commands describing how to create the out-

puts from the inputs. However, Nextflow adopts a dataflow programming model whereby the

processes are connected via their outputs and inputs to other processes, and processes run as

soon as they receive an input. Unlike Snakemake, a user does not specify the files they want to

create, rather, they declare their input files and related configuration, and Nextflow continues

to invoke processes until no process has any outstanding inputs.

Nextflow is implemented in Java. Code written in Groovy, which runs under Java, can be

embedded within a Nextflow workflow. This code can be used to, for example, create file paths

or validate configuration parameters.

Implementing steps from the RiboViz workflow was straightforward. It was not necessary

to implement any additional code beyond the Nextflow workflow itself. A functional version

of the subset of the RiboViz workflow was implemented in 2 person-days. Nextflow’s docu-

mentation was comprehensive, but additional concrete examples of how to implement com-

mon use cases, and an expanded tutorial how to implement a complex multistep workflow,

would have been helpful. Although we overlooked it during prototyping, the Nextflow web site

does have a repository of common implementation patterns [31]. Similarly, we later found a

Nextflow 2017 workshop tutorial [32], but our understanding of Nextflow had, at that point,

passed beyond its content. Despite this, writing a Nextflow workflow was easier than writing a

CWL workflow.

Nextflow provided all the required and most of the useful functionality listed in our evalua-

tion criteria. Each step can have an “error strategy” which indicates what to do if an error is

encountered. This can be used to ensure that other samples are processed if processing of 1

sample fails, or to adjust process resource parameters if a reported error arises from a lack of

memory or a time limit that is too low. Nextflow, like Snakemake, supports both incremental

build and re-entrancy, via a “resume” option. Conditional execution of steps is supported via a

“when” declaration. Unlike Snakemake, it is not possible to specify the exact files to build,

which can make debugging more challenging. However, every invocation of a step takes place

in its own isolated subdirectory which includes a bash script with the command that was

invoked, symbolic links to input files, output files, and files with the contents of the standard

output and error streams. The step-specific bash scripts can be run within their step-specific

directories which is useful for debugging the implementation of individual steps. These direc-

tories have auto-generated names, but Nextflow allows the contents of these directories to be

written into known locations with more readable names.

A “dry run,” analogous to that supported by Snakemake and Make, has been suggested in a

Nextflow issue [33], but has not progressed due to challenges in implementing such a feature

within a dataflow model. The Nextflow authors instead recommend using small datasets to val-

idate scripts. It should be noted that it may be challenging to identify a small dataset that

would allow adequate replication of the workflow’s behaviour in the presence of a full dataset.

Nextflow has support for running its jobs within containers, HPC systems, and cloud.

Selecting a workflow management system

We decided to adopt Nextflow for the following reasons. The execution of each step within iso-

lated subdirectories, within which individual steps can be re-executed, is useful for debugging.

While writing Nextflow workflows does require knowledge of Groovy, the authors, familiar
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with Python and R, did not find learning Groovy challenging. The fact that Nextflow was

based on Java incurs no additional installation overhead for either users or developers com-

pared to Snakemake—each can be installed using the conda package manager using a single

command. Based on our impressions of their documentation, Nextflow’s built-in support for,

and documentation around, containers, HPC systems, and cloud, seemed more thorough than

that of Snakemake (although we appreciate that this may change as both tools evolve). It was

our subjective impression that Nextflow felt far richer than Snakemake both in terms of fea-

tures and expressivity, and it was felt that these outweighed its lack of a dry run feature. Finally,

we had to pick one, and we just liked Nextflow better.

Completing the RiboViz workflow implementation in Nextflow

It took approximately 5 person-days to complete an implementation of the RiboViz workflow

(including support for multiplexed files) within Nextflow. Our existing regression test frame-

work for our Python script was used to validate the implementation of our Nextflow script.

The Nextflow implementation has been tested by the RiboViz development team on their

own development platforms and also on EDDIE, The University of Edinburgh’s HPC cluster

(https://www.ed.ac.uk/information-services/research-support/research-computing/ecdf/high-

performance-computing).

Release 2.0 of RiboViz [34] includes the Nextflow implementation of the RiboViz workflow.

The Python implementation of the RiboViz workflow will be deprecated in a future release.

Nextflow has the nf-core collection of bioinformatics pipelines, a resource of open-source,

reviewed, and validated Nextflow scripts implementing common data analyses [35]. The asso-

ciated nf-core developer community (136 members as of 8 July 2020; https://nf-co.re/

community) has some overlap with the Nextflow developers, but is primarily composed of

bioinformaticians. Again, these provide strong evidence for a well-established system with a

future, and we will consider contributing RiboViz to nf-core in the future.

However, no choice of software should, or can, be permanently binding. Our positive expe-

riences with Snakemake, and the small effort that would be required to complete the imple-

mentation of RiboViz into Snakemake, give us confidence that if we need to migrate from

Nextflow to Snakemake in future, then this would be a relatively straightforward migration to

undertake.

Conclusions

In this article, we described the process that we devised for selecting a workflow management

system for our ribosome profiling software, RiboViz. The use of prototyping for evaluating our

options gave us a working prototype, from which we developed an implementation in our cho-

sen workflow management system. Our approach took approximately 10 person-days for

background reading, our survey and shortlisting and prototyping. In our view, this is a small

cost for the assurance that our selected workflow management system meets our requirements,

is well established, widely, and actively used, developed and supported, and will continue to be

so for the foreseeable future. The use of Nextflow provides us with an implementation of Ribo-

Viz that is more maintainable, more portable, and which will allow us to exploit the power of

distributed computing resources in the analysis of large-scale datasets. We would agree that

workflow management systems are a technology that “bioinformaticians need to be using

right now” [3] and that they can implement right now using well-engineered open-source

tools.

Reiter and colleagues [36] also recommend prototyping, in this case for migrating to a cho-

sen workflow management system. In particular they recommend that “When building a
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workflow for the first time, creating an initial workflow based on a subset of your sample data

can help verify that the workflow, tools, and command line syntax function at a basic level.

This functioning example code then provides a reliable workflow framework free of syntax

errors which you can customize for your data without the overhead of generating correct

workflow syntax from scratch.” This was our experience. Our prototype of the RiboViz work-

flow in Nextflow, created as part of our comparative evaluation of our shortlisted systems, pro-

vided a sound basis for completing our implementation once we had decided upon Nextflow

as our chosen workflow management system.

Reflecting upon our process, we are satisfied with our selection and evaluation criteria.

However, if repeating this exercise, we would have applied some of our evaluation criteria

(Table 4) during our surveying and shortlisting. Considering those criteria that could have

been identified within user documentation prior to prototyping—required functionality; use-

ful functionality; execution within containers, HPC systems, or cloud—we could have elimi-

nated CWL prior to prototyping due to its lack of support for the conditional execution of

steps.

It should also be noted that there are many other criteria that could be considered when

selecting a workflow management system. These include the ability to specify the compute and

memory resources required for each step in the workflow (for example, some steps may be

computationally intensive, others memory intensive); their integration with job schedulers (if

running the workflow within clusters or HPC environments); and support for the execution of

specific steps, or collections of specific steps, within isolated software environments (for exam-

ple, conda packages or Docker containers (https://www.docker.com/))).

We had a well-understood workflow and already had a working implementation in Python.

Our goal was to port this to a workflow management system. Other researchers may be in a sit-

uation of both having to develop a new workflow, the steps within which and requirements of

which are far less well defined or understood, and to select, and familiarise themselves with, a

workflow management system. Our adopted process—survey and shortlist, then evaluate via

prototyping—would still be applicable but with a recognition that, as the workflow evolves and

its requirements become more understood, it may be that the workflow management system

chosen initially is no longer adequate. This would necessitate a return to the surveying and

shortlisting to identify other candidates that would meet the current requirements, to evaluate

these and to select one to migrate to.

However, this is a scenario that applies even to well-understood workflows like RiboViz.

Nextflow, like all the workflow management systems described in this article, is under active

development and is constantly evolving, as is the RiboViz workflow. What Nextflow offers

today may be deprecated, or nonexistent, 6 months or a year from now. Similarly, the nature

of the RiboViz workflow may evolve so that what it requires from Nextflow is no longer being

provided, and we need to migrate to another workflow management system. If that situation

arises, then we would need to revisit and rerun the process we have described.

The use of prototyping may not be suitable for the selection for all software or for all proj-

ects. For example, it would not be suitable for selecting software for large-scale IT projects or

critical infrastructure. However, the use of prototyping does offer a low-cost way of making a

more informed selection of software to use within projects, rather than relying solely upon

reviews and recommendations by others.

Supporting information

S1 Fig. RiboViz workflow steps invoked when processing demultiplexed sample files.

(TIF)
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S2 Fig. RiboViz workflow steps invoked when processing multiplexed sample files.

(TIF)
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