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Abstract 50 
 51 
Understanding biological function requires the identification and characterisation of 52 
complex patterns of molecules. Single-Molecule Localisation Microscopy (SMLM) can 53 
quantitatively measure molecular components and interactions at resolutions far 54 
beyond the diffraction limit, but this information is only useful if these patterns can be 55 
quantified and interpreted. We provide a new approach for the analysis of SMLM data 56 
that develops the concept of structures and super-structures formed by inter-57 
connected elements, such as smaller protein clusters. Using a formal framework and 58 
a parameter-free algorithm, (super-)structures formed from smaller components are 59 
found to be abundant in classes of nuclear proteins, such as heterogeneous 60 
ribonucleoprotein particles (hnRNPs), but are absent from ceramides located in the 61 
plasma membrane. We suggest that mesoscopic structures formed by interconnected 62 
protein clusters are common within the nucleus and have an important role in the 63 
organisation and function of the genome. Our algorithm, “SuperStructure”, can be 64 
used to analyse and explore complex SMLM data and extract functionally relevant 65 
information. 66 
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Introduction 100 
 101 
Single-molecule localisation microscopy (also known as SMLM) (van de Linde et al., 102 
2011; Schermelleh et al., 2010; Henriques et al., 2011; Sauer and Heilemann, 2017) 103 
is now commonly employed for quantitative analysis of molecular structures and 104 
interactions both in cell-based (Cisse et al., 2013; Kapanidis et al., 2018; Chong et al., 105 
2018) and in vitro experiments (Revyakin et al., 2006; Deniz et al., 2008). Unlike other 106 
light microscopy techniques, SMLM achieves resolutions far beyond the diffraction 107 
limit and its typical output is a list of 3D coordinates (or localisation events) that are 108 
naturally analysed using efficient clustering algorithms borrowed from quantitative big-109 
data analysis and even astronomy (Owen et al., 2010; Sengupta et al., 2011; Garcia-110 
Parajo et al., 2014; Baumgart et al., 2016; Spahn et al., 2016; Griffié et al., 2016). 111 
However, traditional clustering algorithms rely on user-defined parameters that are 112 
intrinsically intertwined with the notion of similarity that is necessary to define a cluster. 113 
These parameters can be either hypothesised by physical intuition or inferred via pre-114 
emptive analysis (Burgert et al., 2017; Williamson et al., 2020; Malkusch and 115 
Heilemann, 2016), yet their choice has a significant impact on the results, in turn 116 
hindering the portability of clustering algorithms and the comparison between different 117 
datasets. 118 
 At the same time, recent evidence suggest that assemblies of proteins 119 
(Brangwynne et al., 2015; Larson et al., 2017; Strom et al., 2017; Sabari et al., 2018; 120 
Cho et al., 2018; Maharana et al., 2018; Chong et al., 2018) and chromatin (Bintu et 121 
al., 2018; Boettiger et al., 2016; Frank and Rippe, 2020) form functional complex 122 
structures that are not fully captured by standard clustering algorithms. For example, 123 
the hnRNP protein SAF-A is suggested to form a dynamic and functional mesh-like 124 
structure while interacting with RNA to maintain transcriptionally active genomic loci 125 
in a decompacted configuration (Nozawa et al., 2017; Michieletto and Gilbert, 2019). 126 
Other examples include SC35, a nuclear protein involved in RNA splicing and 127 
chromatin elongation (Lin et al., 2008) and that displays localised nuclear speckles 128 
(Xie et al., 2006; Jackson et al., 2000), or actin and microtubules which form elongated 129 
and inter-connected networks involved in cell motility and division, as well as in the 130 
synaptic plasticity of dendritic spines (Resch et al., 2002; Rogers et al., 2003; Izeddin 131 
et al., 2011). Additionally, recent super-resolution studies indicate that chromatin is 132 
also functionally organised in connected nano-scale compartments (Prakash et al., 133 
2015; Szabo et al., 2018; Nir et al., 2018; Maiser et al., 2020). Rapidly evolving 134 
methods of chromatin tracing (Boettiger et al., 2016; Wang et al., 2016; Beliveau et 135 
al., 2015; Nir et al., 2018; Bintu et al., 2018) and super-resolved imaging of the 136 
accessible genome (Xie et al., 2020) require sophisticated algorithms to analyse the 137 
topology of the generated paths (Goundaroulis et al., 2019). In order to understand 138 
the relationship between these complex structures and the underlying biological 139 
mechanism and functions of the genome (Bronshtein et al., 2015; Khanna et al., 2019; 140 
Leidescher et al., 2020 Preprint; Smeets et al., 2014) a more sophisticated and 141 
standardised analysis of SMLM data is urgently required. 142 
 It is clear that quantification of complex structures is a ubiquitous problem in 143 
molecular and cell biology and it is intimately connected to cellular function. Motivated 144 
by this problem, here we introduce a new algorithm termed "SuperStructure", which 145 
extends in a novel and original way the popular density-based clustering algorithm 146 
DBSCAN. SuperStructure allows (i) a parameter-free detection and quantification of 147 
complex structures made of connected clusters in SMLM data and (ii) a parameter-148 
free quantification of the density of molecules within clusters.  149 



 Here, we demonstrate the capabilities of SuperStructure on simulated datasets 150 
and then use it to analyse two groups of experimental datasets: (i) nuclear proteins 151 
involved in RNA processing, namely SAF-A, hnRNP-C and SC35 and (ii) ceramides 152 
lipids involved in cellular trafficking at the membrane. We find that interconnections 153 
between clusters are abundant in classes of proteins in the hnRNP family and that 154 
they are surprisingly absent from ceramides, suggesting this feature is relevant for the 155 
biological function of SAF-A and hnRNP-C. Therefore, SuperStructure enables us to 156 
discover new facets of protein organisation in human cells and provides a better 157 
understanding of the molecular mechanisms underlying the organisation of sub-158 
cellular (super-)structures. 159 
 Finally, since SuperStructure is parameter-free, it provides the community with a 160 
standardised tool for the discovery and quantification of complex patterns in SMLM 161 
data. Furthermore, beyond helping our understanding of complex biological structures, 162 
it might be used to assess the fluorophore blinking quality and thus offers versatility in 163 
assessing also technical imaging properties (van de Linde and Sauer, 2014; Hennig 164 
et al., 2015; Siegberg and Herten, 2011). 165 
 166 
 167 
Results 168 
 169 
 170 
Super Structure Algorithm 171 
 172 
SuperStructure is best explained in relation to the well-known DBSCAN algorithm. 173 
DBSCAN detects clusters by grouping together high-density localisations and 174 
classifies as outliers low-density ones (Ester et al., 1996). In practice, DBSCAN 175 
determines that a localisation is part of a cluster if more than 𝑁"#$	other localisations 176 
are found within a neighbourhood distance 𝜀 (or if it is part of the neighbourhood of 177 
another localisation with this property). Conversely, SuperStructure extracts 178 
connectivity information from the rate at which the number of detected clusters 𝑁' 179 
changes with the neighbourhood radius 𝜀 for a fixed 𝑁"#$ (see Fig.1). Indeed, the 180 
curves 𝑁'(𝜀) contain important overlooked information about the structure of 181 
connections. To simplify the analysis, and without loss of generality, we set 𝑁"#$ = 0, 182 
which means that we do not require a minimum number of localisations within the 183 
neighbourhood to define a cluster. As a consequence, 𝑁'(𝜀) is necessarily a 184 
monotonically decreasing function as for 𝜀 = 0 every localisation is detected as a 185 
single cluster and increasing 𝜀 yields fewer but larger clusters. Following on, the rate 186 
at which 𝑁' decays with 𝜀 is an indicator of how quickly localisations, and then clusters 187 
of localisations, coalesce, thus indicating how much localisations and clusters are 188 
connected. 189 
 The 𝑁'(𝜀) curves provided by SuperStructure identify different clustering regimes 190 
(Fig.1): the first (small 𝜀) regime describes the merging of localisations within clusters 191 
(intra-cluster regime); the second (intermediate 𝜀) regime captures the growth of 192 
clusters into super-structures (first super-cluster regime) and finally the third (large 𝜀) 193 
regime describes the merging of super-clusters into higher-order super-structures 194 
(second/third super-cluster regimes). The 𝑁'(𝜀) curve in the first regime typically 195 
follows a Poissonian function (Eq.1) and its decay rate is related to the density of 196 
emitters 𝜌-"	within the clusters (see Methods and Figs.1 and S1). The width of the 197 
Poisson function also sets the critical value of 𝜀 at which this first regime is expected 198 
to end (Eq.2). On the other hand, the decay in the second and third regimes follows 199 



an exponential decay with characteristic length-scale 𝜆 and are highly dependent on 200 
the connectivity between (super-)clusters, as well as on the density of (super-)clusters 201 
(Eq.4). 202 
 The number of super-cluster regimes depends on the homogeneity of both 203 
cluster distribution and connections. In the two extreme cases of a completely 204 
connected or unconnected homogeneous distribution of clusters, we expect a single 205 
super-cluster regime. However, while in the former case this regime is exponential 206 
(because the clusters are connected), in the latter it assumes a Poissonian functional 207 
form (see respectively Eqs.4 and 3). This is not surprising, as free (unconnected) 208 
clusters that are randomly distributed behave (on a larger scale) as single emitters 209 
inside clusters (see Methods and Fig.S1). Also, in the case of clusters embedded in a 210 
random distribution of other localisations (such as noise), we obtain a Poissonian 211 
decay. Importantly, a random distribution of localisations (also at high density) is 212 
different from “connected” clusters, where nearby localisations are mostly distributed 213 
in between clusters. As a result, the curves generated by SuperStructure allow us to 214 
identify the presence/absence of connectivity by investigating the functional form of 215 
the curves, as well as to extract their decay rates. 216 
 In heterogeneous systems that display a mix of randomly dispersed 217 
localisations/clusters and connected ones over similar length-scales, we strongly 218 
recommend restricting the analysis with ROIs over sub-regions that display 219 
qualitatively similar phenotypes. A good example of heterogeneous system is given 220 
by the nuclear protein SC35, which we analyse below. Restricting the analysis to ROIs 221 
is also recommended when quantifying nuclear or cellular sub-structures that display 222 
boundaries. Masking localisations falling outside these boundaries allows 223 
SuperStructure to generate cleaner curves that are easier to interpret. 224 
 In order to quantify the intra-cluster density and (super-)cluster connectivities, 225 
one needs to define boundaries between regimes and to fit every regime with the 226 
corresponding function (see Eqs.1, 3 and 4).  Regime boundaries and fitting ranges 227 
can be either selected manually (where curves change their decay properties) or by 228 
rigorously running a pre-emptive goodness-of-fit test. For instance, once the rough 229 
regime range has been identified and fitted, one can modify the fit window to identify 230 
the boundaries of the regime outside which the fit is no longer acceptable. Arguably, 231 
the optimum regime is found by identifying the best goodness-of-fit window (e.g. the 232 
range with the minimum chi squared). It is also possible to define a single function 233 
fitting the entire curve by (a) defining a piecewise function where every "piece" is the 234 
fit of the corresponding regime or by (b) adding together the contribution of the different 235 
regimes (appropriately weighted). 236 
 The work-flow for the application of SuperStructure is shown in Fig.1 and is 237 
described in detail in Methods. Additionally, the codes and scripts are open source 238 
and available at git repository (see below). 239 
 240 
 241 
Characterising SuperStructure Feature Extraction from Simulated SMLM data 242 
 243 
To evaluate the performance of SuperStructure, we analysed artificial datasets 244 
consisting of inter-connected clusters of localisations on a 2D plane (see Fig.2A). 245 
Clusters are homogeneously and randomly positioned on the plane with a cluster 246 
density 𝜌'/ 	= 	8.2	𝜇𝑚56 that is comparable to that of some nuclear proteins (see 247 
below). Every cluster has average radius 𝑅'/ ∼ 	40	𝑛𝑚 and an overall internal 248 
localisation density 𝜌-" = 𝑁-"/𝜋𝑅'/6 = 16000	𝜇𝑚56, where 𝑁-" is the number of 249 



localisations per cluster. Pairs of clusters are connected with probability 𝑝@ by a sparse 250 
points distribution and only if the distance between the clusters is less than 𝑏 = 1	𝜇𝑚. 251 
These choices allow us to readily tune the degree of “connectivity” in the system by 252 
varying a single parameter 𝑝@. A second parameter 𝑝@BCDD  is introduced to control the 253 
density of localisations within the connections 𝜌'E$$ (see Methods for details). 254 
 The length-scales associated to density of emitters inside clusters 𝜌-" and to the 255 
connections 𝜌'E$$ define the boundaries between the three regimes of 𝑁'(𝜀) (Fig.2B): 256 
(i) for 𝜀 ≲ 12	𝑛𝑚 the intra-cluster regime follows a Poissonian decay (Eq.1) with 257 
density parameter 𝜌-" = 16000𝜇𝑚56 (as expected since it was set by construction); 258 
(ii) for intermediate values of 𝜀 the exponential super-cluster regime dominates (Eq.4) 259 
and the fusion of connected clusters takes place (see inset of Fig.2B); (iii) for 𝜀 ≳260 
60	𝑛𝑚 we expect to observe the coalescence of super- and non-connected clusters in 261 
a second super-cluster regime; this is captured by a second exponential for 𝑝@ ≠ 0 262 
(Eq.4). Conversely, for 𝑝@ = 0, we observe a single super-cluster regime that is well 263 
fitted by a Poissonian function with lower density (Eq.3), as it corresponds to the 264 
density of clusters rather than emitters within clusters (see dark-green curve in Fig.2B). 265 
 Examination of Fig.2B (inset) highlights the exponential behaviour of the super-266 
cluster regime (ii) for different values of connectivity 𝑝@. Importantly, a larger 𝑝@ results 267 
in an effectively shorter decay length -- or larger spatial rate of merging -- for the 268 
regime in which clusters merge into super-clusters. This strongly suggests that the 269 
effective decay length (or rate) mirrors the connectedness of the underlying super-270 
structures (Fig.2C). In fact, these simulations reveal that the decay length represents 271 
the combined contribution of clusters density 𝜌'/	and connectivity 𝑝@. A larger density 272 
of clusters can impact the decay length as much as a larger connectivity, as shown by 273 
simulations at fixed 𝑝@ and different 𝜌'/ (Figs.2D, S2A and S2B). In particular, we find 274 
that the functional form of the decay length is 𝜆 ∼ 𝜌'/

5I/6	𝑝@5J.K (Figs.2D and E). The 275 
cluster density contribution is ∼ 𝜌'/

5I/6 as it depends on the typical distance between 276 
clusters and is relevant when comparing datasets with different cluster density. By 277 
combining SuperStructure with a cluster analysis, one can estimate 𝜌'/ and normalise 278 
𝜆 to obtain the pure connectivity contribution in the decay length: 𝜆∗ = 𝜆/𝜌'/

5I/6. 279 
 Finally, in order to characterise the contribution to the 𝑁'(𝜀) curves coming from 280 
the density of localisations within the connections, we further simulated SMLM 281 
datasets with a fixed, large connectivity 𝑝@ and varied the density of points in the 282 
connections by tuning 𝑝@'E$$ (see simulated datasets in Fig.2A and Fig.S2F). As 283 
expected, we observe a single super-cluster regime and the denser the connections 284 
the shorter the decay length. This indicates that our algorithm is not only able to 285 
describe how well clusters are connected, i.e. the number of connections per cluster, 286 
but also how strongly they are connected, i.e. how dense the connections are. These 287 
features are likely to be highly relevant for nuclear proteins. 288 
 Before applying this methodology to experimental data, we also tested the effect 289 
of random noise in the system, i.e. unconnected isolated localisations from biological 290 
or technical sources. We observed that in presence of random noise the decay of 291 
SuperStructure curves becomes Poissonian for large 𝜀 (see Fig.S2C) with an effective 292 
density 𝜌 larger than the cluster density (see Fig.S2D). Decay lengths in the first super-293 
cluster regime (yellow regime) are still distinguishable even in presence of noise at 294 
reasonable density (albeit smaller than the connection density), but their absolute 295 
values are altered with weakly connected systems more severely affected (see 296 
Fig.S2E). These observations suggest that, as in most analysis algorithms, large noise 297 
might obscure exponential decays of connected systems. In case a single Poissonian 298 



behaviour, or a combination of exponential and Poissonian decay, are found in the 299 
SMLM dataset, it is therefore important to combine SuperStructure with an 300 
independent cluster analysis at different lengthscales (for instance at 3 or 4 selected 301 
values of 𝜀) and a direct observation of the dataset, in order to exclude the presence 302 
of hidden connectivity. 303 
 304 
 305 
Quantification of Super-Structures in Nuclear Proteins 306 
 307 
We now examine biological data and apply SuperStructure to dSTORM data acquired 308 
for three different nuclear proteins (Fig.3A and B): the serine/arginine-rich splicing 309 
factor SC35, the heterogeneous nuclear RiboNuclear Protein hnRNP-C and hnRNP-310 
U (also known as Scaffold Attachment Factor A, SAF-A). These proteins are 311 
abundantly expressed in the nucleus of human cells and are involved with RNA 312 
processing at different stages. SC35 is necessary for RNA splicing while hnRNPs are 313 
implicated in regulation and maturation of mRNA but also in chromatin structure 314 
(Nozawa et al., 2017; Xiao et al., 2012; Caudron-Herger et al., 2011). In particular, 315 
SAF-A is thought to form a dynamic homogeneous mesh that regulates large-scale 316 
chromatin organisation by keeping gene-rich loci in a decompacted state (Nozawa et 317 
al., 2017; Michieletto and Gilbert, 2019). Hence, capturing the organisation of this 318 
protein beyond the traditional single-cluster analysis is an important step towards 319 
understanding how it regulates chromatin structure in different cell stages and 320 
conditions.  321 
 Curves obtained from SuperStructure analysis after masking signal in the nuclear 322 
region are shown in Fig.3C, where we highlighted the super-cluster regimes discussed 323 
above. Global nuclear analysis is represented by filled curves, while analysis on 324 
localised ROIs by dashed ones (hnRNP-C nuclear mesh and SC35 speckles). Both 325 
hnRNPs display a first super-cluster regime for which the curves decay as 326 
exponentials, suggesting that within this range distinct clusters are in reality 327 
connected. Interestingly, while SAF-A displays a unique long super-cluster regime, 328 
hnRNP-C seems to also show a second exponential regime (filled curve). However, 329 
this regime appears at very large values of 𝜀 and is due to sparse clusters of 330 
localisations in the nucleolus. Running SuperStructure on ROIs masking out the 331 
nucleolus (dashed line) indeed generates a single exponential function, confirming 332 
that hnRNP-C clusters are fully connected.  We can therefore conclude that both 333 
hnRNPs exhibit a single exponential regime, typical of fully connected meshes. On the 334 
other hand, SC35 displays exponentials with different characteristic decay rates in two 335 
distinct and significant super-cluster regimes (filled curve): one for intermediate 𝜀 ∈336 
	[10,20]	𝑛𝑚, when clusters inside speckles merge (first super-cluster regime), and 337 
another one for large 𝜀 ∈ 	 [40,150]	𝑛𝑚 indicating that speckles merge together and 338 
with isolated clusters (second super-cluster regime). The SC35 connectivity is further 339 
confirmed by running SuperStructure on ROIs masking the speckles, as we observed 340 
a clear single exponential decay (dashed line). These regimes are further confirmed 341 
by directly looking at the arrangement of identified clusters for certain values of 𝜀 (see 342 
Fig.3A inset and 3B).  343 
 From the SuperStructure curves, we first obtained the density of intra-cluster 344 
emitters by fitting the intra-cluster regime with the Poisson function (Eq.1). 345 
Interestingly, both SAF-A and SC-35 form clusters with similar densities, while hnRNP-346 
C clusters are less dense (see Fig.3D and E). Then, in order to have a quantitative 347 
description of the clusters/speckles connectivities, we fitted the curves in the 348 



exponential regimes (Eq.4) to extract the decay length 𝜆. However, a direct 349 
comparison is possible only by normalising decay lengths by the cluster/speckle 350 
density (see Methods for details and Fig.S3A and B). Fig.3F highlights that while 351 
hnRNP-C has a short normalised decay length 𝜆∗ due to the highly connected clusters, 352 
SAF-A displays a weaker decay (larger 𝜆∗) due to sparser connections.  Finally, SC35 353 
displays one (intra-speckle) very connected, even more than that of hnRNPs (small 354 
𝜆∗) followed by a regime (inter-speckle) that is much slower and so more weakly 355 
connected than that of hnRNPs.  356 
 In summary, our analysis revealed that while different nuclear proteins may have 357 
similar cluster sizes or densities of emitters within clusters (e.g., SAF-A and SC35) 358 
they have distinct super-cluster arrangements and connectivities. For instance, we find 359 
that the super-structures inside nuclear speckles are more connected than those 360 
formed by hnRNPs and also denser (see Figs.3E, 3F and Table SI). We stress that 361 
these features, which we further verified not emerging from technical artefacts (see 362 
Fig.S3C), cannot be quantified using standard clustering algorithms or pair-correlation 363 
functions. Additionally, the analysis in Fig.3E and F shows that our method is sensitive 364 
enough to distinguish connectivity features of two closely related wild-type hnRNPs in 365 
cell-based experiments.  366 
 The results presented in Fig.3 not only give us confidence that SuperStructure 367 
can be applied to a variety of nuclear wild type or mutated proteins in different cells, 368 
cell stages and conditions but that it also has the capability to extract unique features 369 
that may yield new mechanistic insights into the functioning of such proteins. For 370 
instance, the analysis of SC35 reveal that speckles are themselves made of clusters 371 
that are as heavily inter-connected as the clusters formed by hnRNP proteins. Given 372 
the fact that all these proteins interact with RNA, our findings suggest that RNA-binding 373 
may facilitate the formation of connections between clusters of proteins; in turn, this 374 
also points to a suspected structural role of non-coding RNAs in structuring the 375 
organisation of the nuclear interior (Hall and Lawrence, 2016). Studying the effect of 376 
RNA depletion on the super-cluster connectivity is therefore a natural next step to 377 
perform in the future.  378 
 In general, while certain mutations or conditions may not alter the size of protein 379 
cluster itself, they may affect the connectivity between clusters. In these cases, the 380 
analysis provided by SuperStructure would be invaluable and indeed essential to 381 
reveal the underlying mechanisms that guide the formation of such protein 382 
assemblies. 383 
 384 
 385 
Ceramides clusters at the plasma membrane are not connected 386 
 387 
To test our algorithm on a different class of molecules, we applied SuperStructure on 388 
published dSTORM datasets (Burgert et al., 2017) taken on ceramides  -- membrane 389 
lipids involved in cellular trafficking (Fig.4A). The authors (Burgert et al., 2017) found 390 
that bSMase treatment increases the size of ceramides clusters and the overall 391 
localisation density. By applying SuperStructure analysis (Fig.4B), we confirmed these 392 
results and further detected that the difference in localisation density persists inside 393 
clusters (see Figs.4C, 4D, S4C and S4D). Furthermore, we detected the absence of 394 
connectivity between clusters, as the large 𝜀 regime is well-captured by a Poisson 395 
function (Eq.3), and not by an exponential (see Fig.4B and E).  In other words, clusters 396 
of ceramides behave as unconnected, uniformly and randomly distributed emitters. 397 
The possibility of local connectivities at intermediate 𝜀 has been also ruled out as no 398 



merging of clusters was observed (see Fig.S4A and B). The crossing of the curves 399 
at	𝜀 ≃ 25	𝑛𝑚 is a consequence of the overall difference in localisation density (which 400 
in turn causes a horizontal shift between the curves, see Fig.4B inset and 4C), rather 401 
than a difference in local connectivities. The notable absence of connections between 402 
clusters of ceramides further supports that the ones detected in hnRNP-U/C and SC35 403 
are significant. 404 
 405 
 406 
Limitations and potential interpretation pitfalls 407 
 408 
While we have provided evidence that SuperStructure can detect connected clusters 409 
and distinguish them from noise (at low density) or unconnected but dense clusters, 410 
in this section we discuss potential pitfalls and interpretation issues. 411 
 First, as mentioned earlier, datasets should always be segmented in order to 412 
identify the main region of interest (ROI). Spurious localisations outside the ROI (for 413 
instance outside of the nucleus, if we are interested in nuclear proteins) may affect the 414 
curves generated by SuperStructure and render their interpretation difficult. An 415 
analogous issue may arise if the localisations are embedded within heterogeneous 416 
structures, as in the case of SC35 proteins which form strongly connected structures 417 
within nuclear speckles and weakly connected outside (see Fig.3). Due to this mixed 418 
behavior over similar length-scales it is recommended to restrict the analysis to 419 
regions that display similar structural phenotypes. Even better, and to be preferred 420 
when possible, is to label the region or structure of interest with orthogonal markers. 421 
 The key difference between connected and unconnected (albeit possibly more 422 
clustered) structures is the functional form of the SuperStructure curves. However, in 423 
some cases Poisson curves may be difficult to distinguish from exponentials 424 
(especially over short intervals). In this case the best way to identify connected clusters 425 
(and distinguish them from noisier or more clustered sub-regions) is to restrict the 426 
analysis over smaller ROIs to clear potential contaminations and to additionally 427 
perform goodness-of-fit tests on the curves. Additionally, in these complex cases we 428 
also suggest to perform an independent cluster analysis over different length-scales 429 
and to directly observe datasets distributions. 430 
 As with all computational algorithms, the danger of incorrect interpretation can 431 
be addressed with quality control. In the case of SuperStructure this means directly 432 
monitoring the formation of connected clusters/structures while increasing 𝜀. 433 
Nonetheless, thanks to its parameter-free execution, SuperStructure may offer one of 434 
the safest ways to currently analyse SMLM data. 435 
 436 
 437 
Discussion 438 
 439 
In this work we have introduced a novel algorithm that extends the traditional idea of 440 
cluster analysis of SMLM data and that can quantify both the connections between 441 
clusters and the density of emitters within clusters. SuperStructure introduces for the 442 
first time the concept of “connectivity” between clusters, which is different from a 443 
random distribution of points at high density. In this concept, connection points are 444 
preferentially found in between clusters and this feature manifests itself in 445 
SuperStructure curves behaving as single exponentials rather than Poissonian. 446 
Because SuperStructure is parameter-free, it does not require any prior knowledge of 447 



the sample and it thus takes a crucial step towards a more standardised, portable and 448 
democratic quantification of complex patterns and super-structures in SMLM data.  449 
 Here, we have tested the capabilities of SuperStructure first on simulated 450 
datasets, where we observed that it could capture not only the degree of connectivity 451 
between clusters, but also the strength of the connections, and then on biological 452 
dSTORM data from nuclear proteins and membrane lipids. SuperStructure allowed us 453 
to discover that the speckles formed by the splicing factor SC35 are made of 454 
connected clusters. Further, that the density of emitters in those clusters is high and 455 
the connectivity between clusters even higher than that of hnRNP proteins. We argue 456 
that this may reflect the RNA-binding feature that characterises both hnRNPs and 457 
SC35 and that may be driving the formation of inter-connected nuclear super-458 
structures. We highlight that this discovery could not be made simply by looking at 459 
clustering with traditional algorithms, as both proteins display clusters of similar size 460 
at small/intermediate 𝜀. 461 
 We further stress that SuperStructure is perfectly suited to compare different 462 
datasets without a priori assumptions (albeit, as discussed before, segmentation to 463 
ROIs is recommended for strongly heterogeneous structures). The datasets of nuclear 464 
proteins we chose to analyse are an example of this. SAF-A, hnRNP-C and SC-35 are 465 
three nuclear proteins involved in the metabolism of RNA at different stages and they 466 
display three different connectivity phenotypes, which point to three different nuclear 467 
functions. In particular, SAF-A, which also plays a major role in maintaining the 468 
chromatin active loci in a decompacted state, is detected as a fully connected mesh. 469 
This finding is in agreement with a previous study that hypothesised the formation of 470 
a dynamic and RNA-interacting nuclear mesh made by SAF-A (Nozawa et al., 2017). 471 
We thus argue that SuperStructure is a useful tool for studying the structural and 472 
functional properties of this nuclear mesh. For instance, we expect that in absence of 473 
RNA, the SAF-A mesh would be disrupted and its connectivity strongly weakened (not 474 
necessarily affecting the protein clusters, which may be formed via an RNA-475 
independent mechanism, such as phase separation by weak unspecific interactions 476 
of SAFA’s intrinsically disordered domain). In turn, the application of SuperStructure 477 
would in this case be indispensable for understanding the link between the spatial 478 
arrangement, mechanics and function of this nuclear protein. A similar example is 479 
given by the V(D)J locus, whereby interacting segments appear to be trapped by a 480 
protein or chromatin network whose (super-)structure is still poorly understood 481 
(Khanna et al., 2019). We argue that SuperStructure can shed light also on this 482 
problem. 483 
 In addition to all this, super-resolved chromatin tracing (Boettiger et al., 2016; 484 
Bintu et al., 2018) and ATAC-PALM (Xie et al., 2020) generate complex datasets that 485 
will benefit from “beyond-traditional-clustering” algorithms.  Connections between 486 
nano-domains and chromatin paths, do not resemble the structure of isolated clusters, 487 
but rather that of a mesh of clusters, which would be perfectly suited for quantification 488 
via the SuperStructure algorithm.   489 
 The use of SuperStructure is not limited to biological applications, and we 490 
propose it can be used as a standardised and parameter-free tool for assessing 491 
imaging technical aspects (van de Linde and Sauer, 2014; Hennig et al., 2015). One 492 
of the main issues in SMLM data, especially in dSTORM, is the evaluation of 493 
fluorophore blinking quality, as it strongly affects the localisation accuracy in the 494 
analysis process. For example, an elevated blinking frequency would result in a high 495 
emitters density (per frame) and therefore in a high localisation inaccuracy due to 496 
overlapping emissions. A similar detrimental effect could also be due to a poor blinking 497 



signal (few emitted photons per blinking event). As a consequence, lower localisation 498 
precision of emitters may create pseudo-clusters, as well as pseudo-connections. We 499 
envisage that SuperStructure would be well suited to evaluate the blinking quality of 500 
fluorophores, for instance by measuring the emerging pseudo-connectivity in a 501 
controlled setup, such as fluorophores attached to a grid.  502 
 As discussed above, SuperStructure has been developed with the aim of going 503 
beyond “simple clustering” and in particular to measure connectivity between clusters. 504 
However, our method might be used in combination with other pair-wise distance and 505 
clustering methods. For instance, one can compute Ripley’s (pair-wise distance) 506 
functions to preliminarily detect if localisations are uniform or clustered and, in case, 507 
what is the average cluster radius. Yet, Ripley’s functions cannot identify single 508 
clusters or complex structures. Thus, one could use SuperStructure to determine 509 
whether the system under investigation displays connected or isolated clusters. At the 510 
same time, by computing SuperStructure curves, one can have a firm ground to decide 511 
the value of 𝜀 that can be used as input in DBSCAN for cluster analysis. This second 512 
approach can be used, for example, to measure the size or shape of local super-513 
structures. Indeed, one can fix 𝜀 at the value that identifies super-structures, perform 514 
a cluster analysis and calculate the gyration tensor of the identified clusters.  515 
 We tested the segmentation capabilities of the latter approach by estimating the 516 
radius and circularity of SC35 speckles; we observed that it yields similar results as 517 
the well-known SR-Tesseler software (Levet et al., 2015) (see Fig.S5). Albeit 518 
SuperStructure lacks a Graphical User Interface, it has several advantages. Firstly, 519 
the analysis is OS-independent and can be easily automatised to run on a large 520 
number of cells. Secondly, since based on DBSCAN, the algorithm scales as 𝑛S𝑁6 in 521 
its simplest implementation (where 𝑛S is the number of 𝜀 values used in the analysis 522 
and 𝑁 the total number of localisations). Yet, calculations on different 𝜀 are 523 
independent and so SuperStructure scales extremely well with the number of CPUs 524 
available. For instance, the analysis of 𝑛S = 100 values and 10T localisations can be 525 
done on a 6-core CPUs machine in about 19 minutes. Thirdly, since our algorithm is 526 
aimed at extracting “beyond-simple-clustering” information, it is flexible and intended 527 
to be used in combination with other pair-correlation or segmentation methods that are 528 
extensively employed for single-clustering analysis. 529 
 We conclude highlighting that SuperStructure provides an unbiased and 530 
parameter-free estimation of (i) density of localisations within single clusters and (ii) 531 
formation of super-structures made of connected clusters. Here we tested 532 
SuperStructure both on in simulated and cell-based SMLM datasets. Importantly, we 533 
revealed previously undocumented system-spanning structures made of connected 534 
clusters of nuclear proteins that we argue may have a functional role in shaping 535 
genome organisation. The use of SuperStructure on cells under different conditions or 536 
with protein mutations is thus an exciting direction to uncover the biological 537 
significance of these newly discovered nuclear structures. 538 
 539 
 540 
 541 
 542 
 543 
 544 
 545 



Material and Methods 546 
 547 
SuperStructure algorithm 548 
 549 
SuperStructure is an algorithm that detects and quantifies super-structures formed by 550 
inter-connected clusters on SMLM datasets. Additionally, it can also evaluate the 551 
density of emitters inside clusters.  552 
 SuperStructure is mainly based on DBSCAN, a density-based algorithm to detect 553 
clusters of points in arbitrary dimensional space. The key concept underlying DBSCAN 554 
scheme is that it groups together points at high density, while it marks as outliers points 555 
in low density regions. After defining a neighbourhood size 𝜀, a point 𝑥 can be part of 556 
a cluster if the number of points 𝑁(𝜀, 𝑥) within a circular region Ω(𝜀, 𝑥) of size 𝜀 centred 557 
in 𝑥, exceeds some threshold 𝑁"#$	(or is within the region Ω(𝜀, 𝑦) of another point 𝑦 558 
satisfying this condition).  559 
 The concept of clusters is subject to the choice of 𝜀 and 𝑁"#$ and therefore to 560 
some sort of likeness or proximity. Furthermore, the change in number of clusters 561 
detected by DBSCAN when varying 𝜀 contains some information of the underlying 562 
distribution of points that has been overlooked.  563 
 SuperStructure progressively runs DBSCAN to detect the number of clusters 𝑁' 564 
within a broad range of the neighbourhood parameter 𝜀, while 𝑁"#$ is kept fixed. The 565 
resulting 𝑁'(𝜀) curves, and in particular the change 𝑑𝑁'(𝜀, 𝑁"#$) due to a small change 566 
in neighbourhood parameter 𝑑𝜀, contain fundamental information about the formation 567 
and organisation of super-structures and connected clusters.  568 
 As we aim for a parameter free algorithm, without losing generality, we fix 𝑁"#$ =569 
0, which means no minimum number of other emitters necessary in the neighbourhood 570 
to define a localisation as part of a cluster.  For 𝜀 = 0, any point is found to be a cluster 571 
by itself. Then, points merge upon increasing 𝜀 → 		𝜀	 + 	𝑑𝜀, resulting in 𝑑𝑁'/𝑑𝜀 ≤572 
	0	∀	𝜀.  Additionally, the larger |𝑑𝑁'/𝑑𝜀|, the more identified clusters are coalescing 573 
together for a certain 𝜀.  574 
 At	𝜀 smaller than the typical (true, rather than the one detected by DBSCAN) 575 
cluster size, the decay of 𝑑𝑁'/𝑑𝜀 is determined by the intra-cluster density of points 576 
𝜌-" (intra-cluster regime), as they are the points at the highest density. The decay of 577 
this regime is gaussian and it is described by the Poisson Function:    578 
  579 
 580 
 

𝑁'(𝜀) = ^𝑐`
(𝜋𝜌-"𝜀6)`

𝑘! 	𝑒5defgSh
"

`iJ

 (1) 

       581 
In order to understand the origin of this functional form, let's imagine to apply 582 
SuperStructure algorithm by setting 𝑁"#$ = 0 and by increasing the radius 𝜀. For 583 
sufficiently small 𝜀, every point is considered as a single cluster itself, as no other 584 
points are detected in its neighbourhood. However, by increasing 𝜀, the probability of 585 
finding another point in the neighbourhood increases, implying that points start to 586 
merge in bigger clusters for small 𝜀. It is then legitimate to argue that the number of 587 
detected clusters 𝑁' decreases (with 𝜀) as the probability of not finding any other 588 
emitter in the neighbourhood. This is the so-called Poisson Avoidance Function 589 
𝑁'(𝜀) = 𝑃(𝑛(𝜀) = 0) = 𝑒5defgSh and it is a good approximation for very small 𝜀, where 590 
the contribution of clusters formed by 2 emitters dominates over clusters formed by 3 591 



or more points. For larger 𝜀, this function underestimates the number of detected 592 
clusters. The number of detected clusters can therefore be described by the probability 593 
of not finding more than 𝑚 particles in the circle of radius 𝜀. The function we are 594 
seeking is the linear combination of the probabilities of not finding any other point in 595 
the neighbourhood and finding one or more other points (up to 𝑚 − 1). Being the 596 

probability of finding 𝑘 particles 𝑃(𝑛(𝜀) = 𝑘) = ld	efg	Shm
n

`!
𝑒5defgSh, it is then 597 

straightforward to get the functional form of Eq.1.  598 
Note that 𝑐` = 1/(𝑘 + 1) in Eq.1 is to avoid overcounting clusters. In fact, if we 599 
consider two points within distance 𝜀 from each other (and hence in the same cluster), 600 
both points will count towards 𝑃(𝑛(𝜀) = 1) so this contribution must be divided by 2, 601 
etc. Importantly, Eq.1 displays a natural length-scale 𝜅J = (𝜋	𝜌-")5I/6 that is 602 
intrinsically determined by the internal density of emitters 𝜌-".Therefore, 𝜌-" is a 603 
parameter that can be quantified by fitting the 𝑁'(𝜀) curve and it can also be used to 604 
quantify the approximate upper limit of this regime (with 99% confidence level): 605 
 606 
 𝜀∗ ≃ 	3𝜅J 	= 	3/q𝜋	𝜌-" = 	3𝑅'//q𝑁-"	 (2) 

 607 
where 𝑅'/ is the average cluster radius and 𝑁-" is the average number of localisations 608 
within a single cluster. We successfully tested that SuperStructure curves are well-609 
fitted by Eq.1 up to 𝑚 = 2 using a system where we simulated localisation of points 610 
inside a single cluster (see Fig.S1). 611 
 At 𝜀 of the order than the typical (true) cluster size, the decay is determined by 612 
the rate at which distinct clusters merge upon 𝜀 → 𝜀	 + 	𝑑𝜀 (first super-cluster regime). 613 
This merging can be either due to (i) distinct clusters starting to overlap as their 614 
distance is smaller than 𝜀 or (ii) the presence of points -- which we call “connections” 615 
-- bridging two clusters. In case of total absence of connectivity and a homogeneous 616 
clusters distribution, the merging is only due to the random positioning of clusters and 617 
therefore it also follows a Poisson Function: 618 
 619 
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 620 
where 𝑓 is a normalisation factor and 𝜌'/ the density of clusters. We observed that 621 
SuperStructure curves of simulated systems are well-fitted by using 𝑚 = 1. This 622 
equation holds also in presence of noise, but in that case 𝜌'/ → 𝜌'/ + 𝜌$E#t- (see 623 
Fig.S2). The decay is different in presence of connections between clusters: 624 
connected clusters will merge at smaller 𝜀 than unconnected ones (assuming same 625 
distance between the centres of clusters). In particular, the larger the number of 626 
connections or of the local density of connection points 𝜌'E$$ (i.e. thicker connections), 627 
the faster the merging of bridged clusters as a function of 𝜀 and thus the larger 628 
|𝑑𝑁'/𝑑𝜀|. The functional form of this second regime is exponential in presence of 629 
connections: 630 
 631 
 𝑁'(𝜀) = 𝑔 ⋅ 𝑒5S/w	 (4) 

 632 
where 𝑔 is a normalisation factor and 𝜆 the decay length quantifying the rate of decay, 633 
and therefore the connectivity. This decay length can be used to discern systems that 634 
exhibit either different grades of connectivity or homogeneous meshes at different 635 



densities. Note 𝜆 purely quantifies the connectivity only when the cluster density 𝜌'/ is 636 
small and homogeneous, as we could have underlying highly dense clusters 637 
overlapping and therefore merging. We showed that 𝜆 ∼ 𝜌'/

5I/6 and therefore the pure 638 
connectivity decay length can be further evaluated if the density of clusters is known: 639 
𝜆∗ ∼ 𝜆/𝜌'/

5I/6. 640 
We need to stress that by choosing 𝑁"#$ = 0 connections will also be considered as 641 
points to be merged. However, it is important that we identify “connection” points as 642 
having a lower local density 𝜌'E$$ than the groups of points that are bridged by them 643 
(clusters). In this way, they will merge in this second regime to form super-structures. 644 
The limiting case in which the local density of connection points is the same as the 645 
one in the clusters at the two ends of the connections is indistinguishable from the 646 
case of one elongated cluster. A special case is that in which both clusters and 647 
connections have the same density of points, but the connections are slightly detached 648 
from the clusters, thus forming three independent clusters at intermediate 𝜀 which may 649 
then merge (we assume this to be a rare event). The above reasoning can be 650 
extended to multiply connected clusters via the analysis of pair-wise connections. 651 
 At larger 𝜀, we could have additional super-clusters regimes if the system is 652 
heterogeneous. Most common cases showing two (or more) super-cluster regimes are 653 
the following: (1) inhomogeneous system displaying different connectivities at different 654 
lengthscales, (2) connected clusters embedded in a noisy environment (in this case 655 
we observe an exponential followed by a poissonian decay) and (3) unconnected 656 
clusters within a random noise and/or unconnected clusters at different densities (in 657 
this case we observe two or more poissonian decays). 658 
 659 
 660 
SuperStructure Pipeline 661 
 662 
In order to apply SuperStructure, we adopt the following steps: 663 
 664 
1. Generation of SuperStructure curves. We run SuperStructure on a SMLM dataset 665 
by first masking our data in the region of interest (ROI), such as the nucleus for nuclear 666 
proteins as mentioned in the section below. Then, we choose a 𝜀-range to analyse. 667 
For example, in SMLM datasets of nuclear proteins a typical choice is 𝜀 ∈ [0: 200]	𝑛𝑚 668 
with 𝑑𝜀 = 2	𝑛𝑚. One should notice that lower 𝑑𝜀 may be necessary for fitting the intra-669 
cluster regime. SuperStructure curves are generated by progressively running 670 
DBSCAN clustering algorithm on the SMLM dataset in the chosen 𝜀-range (and 671 
𝑁"#$ = 0). The DBSCAN software we use is from https://github.com/gyaikhom/dbscan 672 
and the progressive run is performed with bash scripts available in the repository. 673 
SuperStructure output curves are saved in a three-columns file (𝜀,𝑁'/, 𝑁'//𝑁/E'), where 674 
𝑁'/ is the number of detected clusters for the corresponding 𝜀 and 𝑁/E' the number of 675 
total localisations. Additionally, the classification of localisations in clusters is saved 676 
on a separate file for every 𝜀. 677 
 678 
2. Evaluation of SuperStructure regimes. As a second step, we evaluate regimes by 679 
plotting and investigating SuperStructure curves (we adopt a log-scale in the y-axis). 680 
This step includes a preliminary check for the number of regimes and their decay 681 
behaviour (exponential vs. poissonian). In the case we observe a single Poissonian 682 
behaviour, we can state that the dataset does not show any, or very limited, 683 
connectivity, and therefore we are in presence of homogeneous isolated clusters (and 684 



eventually noise). Limited connectivity needs to be checked with a cluster analysis and 685 
direct dataset observation in case noise has obscured an exponential decay. On the 686 
other hand, if we observe a single exponential regime (a straight line in a log-linear 687 
plot) we conclude that the system is made of fully connected clusters. If 688 
SuperStructure curves show multiple super-cluster regimes, it is likely that the system 689 
is heterogeneous. Indeed, multiple exponential regimes may reflect 690 
heterogeneous/multi-scale connectivities combined with heterogeneous distributions 691 
of clusters. Alternatively, we may find also a combination of exponential and 692 
poissonian regimes and in this case the system may be made of connected clusters 693 
embedded in a noisy region. Other more complex combinations may be possible; 694 
however, one should notice that in heterogeneous systems it might be difficult to 695 
recognise and fit super-cluster regimes. To clarify these contributions, it is useful to 696 
combine the analysis of SuperStructure curves with a direct observation of the dataset 697 
and identified structures and to run SuperStructure on smaller ROIs to analyse 698 
different regions of the sample with similar structural phenotypes. Nonetheless, 699 
SuperStructure will be able to unambiguously detect differences in connectivity and 700 
behaviours in, e.g., samples that have been subjected to different conditions or 701 
expressing mutated proteins.   702 
 703 
3. Fit of SuperStructure regimes. Once regimes have been identified, one needs to 704 
define the boundaries where regimes crossover from one to another. This can be 705 
either done manually or by using a pre-emptive goodness-of-fit test (this procedure 706 
would also define fitting ranges). The intra-cluster regime is typically fitted with a 707 
Poisson Equation (Eq.1) to evaluate the density of emitters inside clusters as well as 708 
to obtain an estimation of the upper limit of the intra-cluster regime (using Eq.2). For 709 
super-cluster regimes, we use Eq.3 if they show a Poissonian decay (curved on a log-710 
linear plot) or Eq.4 if they otherwise appear straight on a log-linear plot; from the latter, 711 
we quantify the connectivity parameter 𝜆. We can then additionally calculate the 712 
cluster density 𝜌'/ to extract the pure connectivity part 𝜆∗ = 𝜆/𝜌5I/6. The cluster 713 
density 𝜌'/ can be computed by performing a cluster analysis with DBSCAN on local 714 
circular regions representative of that decay regime and by fixing 𝜀 at the start of that 715 
regime. For instance, by counting the number of clusters one obtains by fixing 𝜀 at the 716 
beginning of the yellow area in Fig.3.  In the section below and in Fig.S3, we describe 717 
in detail the procedure for 𝜆 normalisation for the nuclear proteins’ datasets. Finally, 718 
and optionally, it is also possible to define a single function fitting the entire curve by 719 
either (a) defining a piecewise function where every “piece” is the fit of the 720 
corresponding regime or (b) adding together the contribution of the different regimes 721 
(appropriately weighted). We performed fits with a combination of bash and gnuplot 722 
scripts available in the repository. 723 
 724 
 725 
Simulated datasets generation and SuperStructure analysis 726 
 727 
The simulated dataset consists of spatially homogeneous and interconnected clusters 728 
randomly distributed on a plane. We set to work with clusters made by taking random 729 
clusters centres on the plane and by sampling 𝑁-" = 80 emitters within a Gaussian of 730 
standard deviation 𝜎-" = 	20	𝑛𝑚, thereby setting the cluster radius to 𝑅'/ = 2	𝜎-" =731 
	40	𝑛𝑚 with a 95% confidence and the intra-clusters emitters density at 𝜌-" =732 
16000	𝜇𝑚56. The clusters are positioned in a 𝐿 = 3.5	𝜇𝑚 large area and their number 733 
𝑁'/ is varied in order to consider different clusters densities. In the example shown in 734 



the main text, we fixed 𝑁'/ = 100 thus fixing a cluster density to about 𝜌'/ 	= 8.2	𝜇𝑚56 735 
roughly similar to the values found in experiments for some nuclear proteins. Pairs of 736 
clusters are connected with probability 𝑝@ if they are positioned closer than a distance 737 
𝑏 = 1	𝜇𝑚. The value of 𝑝@ is calculated as the ratio between the actual drawn 738 
connections and 𝑁'/(𝑁'/ − 1)/2, which is the maximum possible connections (i.e. 739 
when every cluster is connected with every other cluster). In order to generate a single 740 
connection, we considered the vector joining the centres of two clusters and sampled 741 
one emitter with probability 𝑝@'E$$ every 10	𝑛𝑚. Emitters are sampled from a 2D 742 
gaussian centred on the vector connecting the two clusters centres and with a width 743 
𝜎'E$$ = 10	𝑛𝑚. In the main text we fixed 𝑝@'E$$ = 0.5. Note that 𝑝@ controls the number 744 
of connections, while 𝑝@'E$$ their density 𝜌'E$$. We generated at least 20 independent 745 
replicas for each simulated dataset using a combination of bash and python scripts, 746 
then we run SuperStructure analysis in the range 𝜀 ∈ [0: 400]	𝑛𝑚 with a change 𝑑𝜀 =747 
2	𝑛𝑚. If not differently specified, the first super-cluster regime was fitted with Eq.4 for 748 
𝜀 ∈ [15: 60], while the second super-cluster regime either with Eq.3 (unconnected 749 
systems) or Eq.4 (connected systems) for 𝜀 ∈ [70:300]. 750 
 751 
 752 
Experimental details for generating experimental dSTORM dataset for SAF-A, 753 
hnRNP-C and SC-35 754 
 755 
Cells Preparation for dSTORM imaging. hTERT-RPE1 cells (ATCC, cat# ATCC-CRL-756 
4000) were grown overnight in an 8-well Lab-Tek II Chambered Coverglass -- 1.5 757 
borosilicate glass (Thermofisher scientific) at 37 degrees at initial concentration of 758 
10T	𝑐𝑒𝑙𝑙𝑠/𝑚𝑙	in 400	𝜇𝑙 (∼ 40% confluency). We fixed the cells with 4% PFA (Sigma-759 
Aldrich) for 10 minutes, followed by wash in PBS, permeabilisation with	0.2% Triton X-760 
100 (Sigma-Aldrich) for 10 minutes, washed in PBS again and blocked with 1% BSA 761 
(Sigma-Aldrich) for 10 minutes. 762 
Immuno-fluorescence labelling was done by exposing the cells for 2 hours to (i) 763 
hnRNP-U polyclonal rabbit antibody (A300-690A, Bethyl Laboratories) at 10	𝜇𝑔/𝑚𝑙 or 764 
(ii) hnRNP-C1/C2 (4F4) mouse monoclonal antibody (sc-32308, Santa Cruz 765 
Biotechnology) at 0.2	𝜇𝑔/𝑚𝑙 or (iii) SC-35 mouse monoclonal antibody (ab11826, 766 
abcam) at 2	𝜇𝑔/𝑚𝑙 and then washed. Then, cells were exposed for 1 hour to 767 
secondary antibody. The secondary antibody was made by AffiniPure 𝐹(𝑎𝑏′)6 768 
Fragment Donkey Anti-Rabbit or Donkey Anti-Mouse IgG (H+L) (711-006-152 and 769 
715-007-003, Jackson ImmunoResearch Europe Ltd) conjugated to the organic 770 
fluorophore CF647 (92238A-IVL, Sigma-Aldrich) at a stechiometric ratio of about 1. 771 
Oxygen scavenger imaging buffer for dSTORM was prepared fresh on the day and 772 
the recipe employed was similar to that of (McSwiggen et al., 2019). We mixed (i) 773 
5.3	𝑚𝑙 of 200	𝑚𝑀 Tris and 50	𝑚𝑀 NaCl solution with (ii) 2	𝑚𝑙 of 40% glucose solution, 774 
(iii) 200	𝜇𝑙 of GLOX, (iv) 1.32	𝑚𝑙 of 1𝑀 2-mercaptoethanol (Sigma-Aldrich)  and (v) 775 
100	𝜇𝑙 of 50	𝜇𝑔/𝑚𝑙 DAPI solution (Sigma-Aldrich). The GLOX solution was made by 776 
mixing 160	𝜇𝑙 of 200	𝑚𝑀 Tris and 50𝑚𝑀 NaCl with 40	𝜇𝑙 of catalase from bovine liver 777 
(Sigma-Aldrich) and 18	𝑚𝑔 of glucose oxidase (Sigma-Aldrich).  778 
The 8.9	𝑚𝑙 final solution was enough to fill the chambers of the 8-well dish; a 779 
coverglass was sealed at the top of the dish to prevent inflow of oxygen. 780 
 781 
 782 



dSTORM Acquisition. We performed 3D-STORM acquisitions using a Nikon N-783 
STORM system with Eclipse Ti-E inverted microscope with laser TIRFilluminator 784 
(Nikon UK Ltd, Kingston Upon Thames, UK). We equipped the microscope with a CFI 785 
SR HP Apo TIRF 100x objective lens (N.A. 1.49) and applied a 1.5X additional optical 786 
zoom. We also used a cylindrical astigmatic lens to obtain elliptical shapes for emitters 787 
that reflect their z-position (Huang et al., 2008). Laser light was provided via a Nikon 788 
LU-NV laser bed with 405, 488, 561, 640	𝑛𝑚 laser lines. In particular, CF647 789 
fluorophores were stochastically excited using the 640	𝑛𝑚 laser beam with an 790 
additional 405 weak pulse. Images were acquired with an Andor iXon 897 EMCCD 791 
camera (Andor technologies, Belfast UK). The Z position was stabilised during the 792 
entire acquisition by the integrated perfect focus system (PFS). Acquisition were 793 
performed at room temperature.  794 
For every nucleus, we acquired a stack of 20000	𝑓𝑟𝑎𝑚𝑒𝑠 at 19	𝑚𝑠 exposure time by 795 
using the Nikon NIS-Element software. Acquired images have a 256	𝑥	256 pixel 796 
resolution with pixel size equal to 106	𝑛𝑚. For every condition (SAF-A, hnRNP-C, 797 
SC35) we acquired 6 nuclei, i.e. 6 independent datasets. 798 
 799 
 800 
Raw images and post-processing analysis. The raw stack of frames was initially 801 
segmented based on a DAPI marker to carefully mask out the extra-nuclear signal. 802 
Then, frames were analysed using FIJI (Schindelin et al., 2012) and in particular the 803 
Thunderstorm plugin (Ovesný et al., 2014). Firstly, we filtered them by using Wavelet 804 
functions to separate signal from noise. The B-Spline order was set to 3 and the B-805 
Spline scale to 2.0	as suggested in (Ovesný et al., 2014) for localisations of around 806 
5	𝑝𝑖𝑥𝑒𝑙𝑠 size. In order to localise the emitters centroids, we thresholded filtered images 807 
(threshold value was set 1.2 times the standard deviation of the 1st Wavelet function) 808 
and calculated the local maximum relative to the 8 nearest neighbours. Finally, we 809 
fitted the emitters signal distribution with elliptical gaussians (ellipses are necessary 810 
for z-position reconstruction) using the weighted least square method and by setting 811 
3	𝑝𝑖𝑥𝑒𝑙𝑠 as initial fitting radius and 1.6	𝑝𝑖𝑥𝑒𝑙𝑠 as initial sigma. 812 
Localised data was then post-processed using the same plugin. (i) We corrected the 813 
XY drift using a pair correlation analysis, (ii) filtered data with a position uncertainty <814 
	40	𝑛𝑚,	(iii) restricted the z-position to the interval [−100: 100]	𝑛𝑚 and projected the 815 
data in a 2-dimensional plane, as the z-axis precision is around 100	𝑛𝑚. 816 
Reconstructed images shown in the main text were created by using the average 817 
shifted histograms method of the same plugin with a 10𝑋	magnification (10.6	𝑛𝑚/818 
𝑝𝑖𝑥𝑒𝑙). 819 
 820 
 821 
SuperStructure analysis of nuclear protein data 822 
 823 
SuperStructure analysis was run on the entire nuclear region by setting 𝑁"#$ = 0 and 824 
by increasing 𝜀 in the range [0:200]	𝑛𝑚 and “all-nucleus” curves were generated for 825 
6 independent nuclei. We set change rate 𝑑𝜀 = 0.25	𝑛𝑚 for 𝜀 ∈ [0: 10]	𝑛𝑚 and 𝑑𝜀 =826 
10	𝑛𝑚 for 𝜀 ∈ [10: 200]	𝑛𝑚. This choice was due to the higher resolution necessary to 827 
extract intra-cluster information at small 𝜀. As shown in Fig.3, SuperStructure “all-828 
nucleus” curves show that SAF-A has a single exponential super-cluster regime, while 829 
hnRNP-C and SC35 have two regimes. In the hnRNP-C case, the second regime is 830 
due to weakly connected and sparse clusters in nucleoli, while in SC35 to the 831 
cluster/connectivity heterogeneity in the system (i.e. speckles). Therefore, we 832 



additionally run SuperStructure analysis on local regions of interest (ROIs) for hnRNP-833 
C and SC35 to obtain the isolated contribution for the first super-cluster regime. In 834 
particular for hnRNP-C we considered 5 independent circular ROIs per nucleus with 835 
radius 𝑟 = 1.5	𝜇𝑚 within the nuclear mesh; for SC35, we considered 5 independent 836 
circular ROIs per nucleus with radius 𝑟 = 0.5	𝜇𝑚 within speckles. We run the analysis 837 
on these ROIs and generated SuperStructure “local” curves (5 for each nucleus). 838 
The values of the intra-cluster density 𝜌-" were extracted by fitting with Eq.1 the intra-839 
cluster regime in the “all-nucleus” curves in the range 𝜀 ∈ [0,3]	𝑛𝑚. Resulting average 840 
values are: 𝜌-"�$���5� = 7973± 1732	𝜇𝑚56, 𝜌-"���5� = 16998± 	2444	𝜇𝑚56 and 841 
𝜌-"��KT = 18680 ± 1520	𝜇𝑚56. 842 
Then, we identified the super-cluster regimes of interest: the first super-cluster 843 
regimes of SAF-A and hnRNP-C, and both super-cluster regimes of SC35 (SC35-1 844 
and SC35-2). For SAF-A and SC35-2, the decay length 𝜆 was obtained by fitting “all-845 
nucleus” curves with Eq.4. For hnRNP-C and SC35-1 instead, we fitted the “local” 846 
curves (5 curves per nucleus) and then we averaged 𝜆 values obtained from different 847 
“local” curves in the same nucleus. Fit ranges are 𝜀 ∈ [16,100]	𝑛𝑚 for SAF-A, 𝜀 ∈848 
[14,70]	𝑛𝑚 for hnRNP-C, 𝜀 ∈ [8,20]	𝑛𝑚 for SC35-1 and 𝜀 ∈ [40,150]	𝑛𝑚 for SC35-2. 849 
Finally, the values of 𝜆 for SAF-A, hnRNP-C, SC35-1 and SC35-2 were normalised by 850 
the cluster density: 𝜆∗ = 𝜆	/𝜌'/

5I/6. In the case of SAF-A and SC35-2, the normalisation 851 
was performed for 𝜆 for every nucleus by using the average cluster density 𝜌'/	 of that 852 
nucleus. In particular, 𝜌'/	 was calculated as the average of the cluster density in 5 853 
independent circular regions of radius 𝑟 in the same nucleus as shown in the example 854 
of Fig.S3A. In the case of hnRNP-C and SC35-1 where 𝜆 values were obtained from 855 
“local” curves, the normalisation of 𝜆 was performed using the cluster density of the 856 
same local region; then 𝜆∗ values obtained from different regions in the same nucleus 857 
were averaged (see Table SI). The number of clusters estimation (to calculate the 858 
cluster density) was made with DBSCAN by setting 𝑁"#$ = 0 and 𝜀 close to the 859 
beginning of the exponential regime of interest, as shown in Fig.S3B, and by keeping 860 
only clusters with at least 30 particles. In order to compute the cluster density, for SAF-861 
A and hnRNP-C we set local circular regions of radius 𝑟 = 1.5	𝜇𝑚 and fixed 𝜀 = 20	𝑛𝑚 862 
for cluster analysis (for hnRNP-C the same local regions as defined above). For SC35, 863 
we considered two sets of local regions: (i) inside speckles to normalise the shorter 864 
decay length where we used ROIs with radius 𝑟 = 500	𝑛𝑚 and fixed 𝜀 = 10	𝑛𝑚 for 865 
cluster analysis (same regions as above); (ii) outside speckles to normalise the longer 866 
decay length, where we used ROIs with radius 𝑟 = 1.5	𝜇𝑚  and 𝜀 = 40	𝑛𝑚 for cluster 867 
analysis. Average nuclear values of 𝜆, 𝜌'/ 	 and 𝜆∗ are shown in Table SI. 868 
 869 
 870 
SuperStructure analysis of ceramides data 871 
 872 
SuperStructure analysis was run on the two ceramides datasets provided by the 873 
authors of (Burgert et al., 2017), namely +bsMase and -bsMase, by setting 𝑁"#$ = 0 874 
and 𝜀 ∈ [0:200]. We set 𝑑𝜀 = 0.5	𝑛𝑚 for 𝜀 ∈ [0: 10]	𝑛𝑚 and 𝑑𝜀 = 2	𝑛𝑚 for 𝜀 ∈875 
[10:200]	𝑛𝑚. This choice was due to the higher resolution necessary to extract intra-876 
cluster information at small 𝜀. From the curves in Fig.4B, it is clear that there is not any 877 
strong connectivity (we observe a Poissonian decay). Therefore, we identified free 878 
unclustered emitters as noise. We have additionally run SuperStructure in 16 879 
independent local circular regions of radius 𝑟 = 1.5	𝜇𝑚 to extract the quantities of 880 
interest. In particular, we measured the average densities of total localisations: 𝜌/E'� =881 



595 ± 130	𝜇𝑚56 and 𝜌/E'5 = 475 ± 87	𝜇𝑚56, respectively for + and - bsMase treatment. 882 
This is in accordance with results in the original paper. Then, we fitted “local” 883 
SuperStructure curves in the intra-cluster regime with Eq.1 for 𝜀 ∈ [0: 3]	𝑛𝑚: 𝜌-"� =884 
22391 ± 3306	𝜇𝑚56 and  𝜌-"5 = 15505 ± 3470	𝜇𝑚56 repsectively for + and -bsMase 885 
treatments. Finally, we fitted “local” SuperStructure curves in the super-cluster regime 886 
with Eq.3 in the range 𝜀 ∈ [50:200]	𝑛𝑚 for +bsMase and 𝜀 ∈ [60: 200]	𝑛𝑚 for -bsMase 887 
(the difference in fit starting value is explained by the two curves horizontal shift): 𝜌t'� =888 
62.01 ± 20.76	𝜇𝑚56 and 𝜌t'5 = 43.56 ± 11.05	𝜇𝑚56. These values are in accordance 889 
with the sum of cluster density and noise at the 𝜀-value were the fit starts. We have 890 
additionally performed a cluster analysis with DBSCAN and results are in agreement 891 
with the original paper results (see Fig.S4 for details). In order to verify that there is 892 
not any limited connectivity hidden by noise, we performed a cluster analysis also at 893 
two different values of 𝜀 and monitored the change in density of clusters and density 894 
of free emitters (see Fig.S4 for details).  895 
 896 
 897 
Online Supplemental Material 898 
 899 
Table.SI recapitulates values for 𝜆, 𝜌'/ and 𝜆∗ in nuclear proteins data. Fig.S1 shows 900 
a simulated distribution of points inside a single cluster and how it is well represented 901 
by Eq.1 in Methods. Fig.S2 shows SuperStructure curves (or decay lengths) for 902 
simulated datasets in different conditions: (A) different 𝑝@ and doubling the typical 903 
cluster density; (B) different values of cluster density; (C) different 𝑝@ without and with 904 
noise addition; (D) unconnected clusters with noise at different densities; (E) decay 905 
lengths of the first super-cluster regime for different connectivities 𝑝@ as function of 906 
noise density; (F) homogeneous mesh (high 𝑝@) and different values of connection 907 
density (controlled by 𝑝@'E$$). Fig.S3 (A)-(B) shows how the normalisation of 𝜆 was 908 
performed in nuclear protein data (exhaustively explained in Methods); (C) shows that 909 
nuclear proteins connectivity is not a technical artefact. Fig.S4 shows that there is no 910 
local connectivity in ceramides data and confirms original paper results on ceramides 911 
cluster size. Fig.S5 shows SuperStructure + DBSCAN segmentation capabilities by 912 
estimating the radius and circularity of SC35 speckles alongside SR-Tesseler 913 
software. 914 
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Figures and Supplemental Figures 974 
 975 
 976 

 977 
 978 
 979 
Figure 1. Working principle of SuperStructure analysis. (1) SMLM data is taken as input for the 980 
analysis. (2) Cluster analysis is run using the DBSCAN algorithm with 𝑁"#$ = 0 and 𝜀 progressively 981 
increasing in an adequate range for the system. SuperStructure curves describe the number of detected 982 
clusters 𝑁' as a function of 𝜀 are generated. (3) SuperStructure curves are plotted and inspected to 983 
identify super-cluster regimes representing the onset of connected structures. (4) Intra- and super-984 
cluster regimes are fitted with our models (see Methods) to quantify the emitters density inside clusters 985 
𝜌-" and the connectivity among clusters (via the decay length 𝜆# for super-cluster regime 𝑖). 986 
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 1010 
 1011 
 1012 
Figure 2. Evaluating SuperStructure on simulated datasets. A. Sketch representing the artificial 1013 
dataset consisting of inter-connected clusters of localisations on a 2D plane. Clusters are characterised 1014 
by an internal density of localisations 𝜌-" and radius 𝑅'/ and are randomly distributed on the plane at 1015 
an average cluster density 𝜌'/.	Clusters can be connected by a sparse point distribution with probability 1016 
𝑝@  and connections have a density of points 𝜌'E$$ (controlled by the 𝑝@'E$$ parameter). B. Average 1017 
SuperStructure curves (zoomed in the inset) for simulated datasets with different connectivity 𝑝@ . Other 1018 
parameters are kept fixed: average cluster radius 𝑅'/ ≃ 40	𝑛𝑚, emitters density within clusters 𝜌-" =1019 
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16000	𝜇𝑚56, cluster density 𝜌'/ = 8.2	𝜇𝑚56 and 𝑝@'E$$ = 0.5 (which fixes the density of emitters within 1020 
connections 𝜌'E$$). The curves show the number of detected clusters normalised by the total number 1021 
of localisations. Curves are the average of 20 independent simulated datasets. Shaded regions 1022 
represent the standard deviation from the average. Three regimes can be distinguished: (i) intra-cluster 1023 
(red), (ii) first super-cluster (yellow) and (iii) second super-cluster regime (blue). The decay in the intra-1024 
cluster regime corresponds to a Poisson avoidance function with density parameter 𝜌-" = 16000	𝜇𝑚56 1025 
(Eq.1, dotted line in the inset). The first super-clusters regime can be fitted by a single exponential 1026 
(Eq.4, dashed line in the inset) which returns an effective decay length 𝜆. The second super-cluster 1027 
regime can be fitted with another exponential if 𝑝@ ≠ 0 (Eq.4, dashed line in the main figure). In case of 1028 
𝑝@ = 0, there is only one super-cluster regime and it follows a Poisson function with density parameter 1029 
𝜌'/ = 8.2	𝜇𝑚56	(Eq.3, dotted line in the main figure). C. Snapshots of detected clusters for an artificial 1030 
dataset with connectivity 𝑝@ = 0.004 and by progressively increasing the value of the radius 𝜀 =1031 
4, 24, 44, 84	𝑛𝑚. D. Decay length 𝜆 versus cluster density 𝜌'/ scales as 𝜌'/5J.T for any value of connectivity 1032 
𝑝@ . E. Decay length 𝜆 versus connectivity 𝑝@  scales as 𝑝@5J.K for different values of 𝜌'/. In (D) and (E) 20 1033 
independent datasets were fitted with Eq.4 and the resulting 𝜆 values were averaged. Vertical bars 1034 
represent the standard deviation from the average. 1035 
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 1080 
 1081 
 1082 
Figure 3. Application of SuperStructure algorithm to SAF-A, hnRNP-C and SC35 super-1083 
resolution data. A. Reconstructed dSTORM images by using the shifted histograms method with a 1084 
pixel size of 10.6	𝑛𝑚. Insets of 4	𝜇𝑚6 size of reconstructed dSTORM images and spatial positions of 1085 
the data. Palettes represent the cluster id computed by running SuperStructure with 𝑁"#$ = 0 and 𝜀	at 1086 
the start of the first super-cluster regime. B. Identified clusters for increasing values of 𝜀	in the regimes 1087 
where clusters merge. C. Normalised average SuperStructure curves in the range [0: 150]	𝑛𝑚. The 1088 
number of detected clusters has been normalised with the total number of localisations in the system. 1089 
The average is calculated over 6 independent datasets (nuclei). Solid curves: SuperStructure analysis 1090 
was run on the entire nucleus and the resulting curves for the 6 independent datasets were averaged 1091 
(“all-nucleus” curves). Dashed curves: SuperStructure analysis was run in 5 local regions of interest 1092 
(ROIs) for each of the 6 nuclei, then the curves of each region (for each nucleus) were averaged (“local” 1093 
curves). In hnRNP-C these local regions were chosen within the nuclear mesh (to exclude nucleoli) and 1094 
in SC35 within speckles. Vertical dashed lines highlight different SuperStructure regimes: intra-cluster, 1095 
first super-cluster and second super-cluster regimes. For SAF-A and hnRNP-C the exponential regime 1096 
of clusters merging (first super-cluster regime) is highlighted with a solid straight line. In case of SC35, 1097 
two regimes are highlighted: the merging of clusters within speckles (first super-cluster regime) and the 1098 
merging of speckles with isolated clusters (second super-cluster regime). D. Normalised “all-nucleus” 1099 
average SuperStructure curves in the range [0: 200]	𝑛𝑚 for the three proteins. Average is computed 1100 
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over 6 nuclei. Shaded regions represent standard deviation from the average. Poisson fits (Eq.1) for 1101 
the intra-cluster regime at small 𝜀 are shown in the inset. E. Intra-cluster density of emitters 𝜌-" as 1102 
parameter of Poisson fit for 6 independent nuclei (Eq.1). F. Normalised decay length 𝜆∗ for the super-1103 
cluster regimes highlighted in C for 6 independent nuclei. SuperStructure curves were fit with Eq.4 to 1104 
extract the decay length 𝜆, then the normalisation 𝜆∗ = 𝜆/𝜌'/

5I/6 was performed (where 𝜌'/ is the detected 1105 
cluster density at the beginning of each regime of interest). P-values were calculated using a Student’s 1106 
T-test: 𝑛𝑠	𝑃 > 0.05;	∗ 𝑃 < 0.05;	∗∗ 𝑃 < 0.01;		∗∗∗ 𝑃 < 0.001. 1107 
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 1161 
 1162 
 1163 
Figure 4. Application of SuperStructure algorithm to ceramides data from (Burgert et al., 2017). 1164 
A. dSTORM reconstruction of ceramides dataset using the shifted histogram method. The left panel 1165 
represents signal from cells treated with bSMase; the right panel is a control without treatment. B. 1166 
SuperStructure curves of the two conditions for the entire dataset. Curves show the number of detected 1167 
clusters normalised by the total number of localisations. The red region highlights the intra-cluster 1168 
regime, while the blue region the Poissonian unconnected super-cluster regime. Shaded purple region 1169 
highlights the horizontal shift between the two curves. Dashed lines represent Poisson fits at low and 1170 
high 𝜀. C. – E. Average density of total localisations (C), intra-cluster density extracted as parameter 1171 
from Poisson fit (Eq.1) (D) and overall density in the super-cluster regime extracted as parameter from 1172 
Poisson fit (Eq.3) (E) for + and -bsMase treatment datasets. Calculations and fits were performed on 1173 
data and SuperStructure curves from 16 independent circular regions of radius 𝑟 = 1.5	𝜇𝑚 within the 1174 
original dataset. P-values were calculated using a Student’s T-test: 𝑛𝑠	𝑃 > 0.05;	∗ 𝑃 < 0.05;	∗∗ 𝑃 < 0.01,1175 
∗∗∗ 𝑃 < 0.001. 1176 
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 1196 
 1197 
 1198 
Figure S1. A. In order to test the Poissonian functional form (Eq.1) of the intra-cluster regime of 1199 
SuperStructure curves, we simulated localisations inside clusters as a uniform distribution of 𝑁-" points 1200 
distributed within a circle of radius 𝑅'/. The resulting average density is 𝜌-".  The number of points 1201 
included in any circular sub-region of radius 𝜀 is, on average, 𝑛(𝜖) = 𝜋𝜌-"𝜖6, and is in fact itself Poisson 1202 
distributed. B. To check the theoretical prediction of Eq.1 we have created simulated datasets for 1203 
various 𝜌-" and 𝑁-". The theoretical predictions (dotted lines) with 𝑚 = 2 are in good agreement with 1204 
the SuperStructure curves, indicating that indeed Eq.1 correctly captures the behaviour of uniformly 1205 
distributed points forming one idealised cluster. However, note that for 𝑚 = 2 there is already an over-1206 
counting of clusters at large values of 𝜖 due to the fact that DBSCAN merges indirectly related emitters 1207 
in a single big cluster. This suggests not to extend the summation to higher values of 𝑚. From Eq.1, 1208 
the end of the intra-cluster regime can be approximated by the width of the Poisson function, i.e.  𝜀∗ ≃1209 
3𝜅J (at 99 % confidence level), where 𝜅J = 1/q𝜋𝜌-" is the decay length identified by Eq.1. This is 1210 
confirmed by observing that predicted 𝜀∗ for the curves are 𝜀∗(𝜌-" = 2000	𝜇𝑚56) ≃ 38	𝑛𝑚,  1211 
𝜀∗(𝜌-" = 10000		𝜇𝑚56) ≃ 18	𝑛𝑚 and  𝜀∗(𝜌-" = 100000	𝜇𝑚56) ≃ 5.3	𝑛𝑚, which correspond to 𝑁'//1212 
𝑁-" ≃ 105K (when most of the points have been merged in a single cluster). 1213 
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 1237 
 1238 
 1239 
Figure S2. Average SuperStructure curves for different datasets. SuperStructure analysis was run on 1240 
20 independent datasets (in the same conditions) and the resulting curves were then averaged. Shaded 1241 
regions represent the standard deviation from the average. Parameters are set to their standard values 1242 
if not otherwise specified (see Methods). Palettes in the inset configurations represent cluster analysis 1243 
at 𝜀 = 80	𝑛𝑚. A. Locally connected clusters with different grades of connectivity and doubling the cluster 1244 
density (from left to right): 𝜌'/ = 8.2	𝜇𝑚56 (left) and 𝜌'/ = 16.3	𝜇𝑚56 (right), connection density 𝑝@'E$$ =1245 
0.5, no noise and different values of connectivity 𝑝@ . The higher cluster density makes SuperStructure 1246 
curves more markedly distinct as a function of 𝑝@ , compared to the same curves for a lower density. B. 1247 
Locally connected clusters with low connectivity and increasing cluster density: connectivity 𝑝@ = 0.002, 1248 
connection density 𝑝@'E$$ = 0.5, no noise and different cluster densities 𝜌'/. The first super-cluster 1249 
regime maintains the single exponential decay, but the decay length 𝜆 decreases with the cluster 1250 
density. In the main text, we showed that this dependence goes as 𝜆 ∝ 𝜌'/

5I/6. Also, the exponential 1251 
decay 𝜆6 of the second super-cluster regime decreases with the density of clusters and this regime 1252 
evolves from a Poisson-like (low 𝜌'/) to an exponential decay (high 𝜌'/).  This behaviour seems to be a 1253 
pure effect of the cluster density, as all other parameters remain unchanged. Black curve are Poisson 1254 
decays attempts ∼ 𝑒5deSh to fit the second super-cluster regime. C. Locally connected clusters with 1255 
different grades of connectivity and sparse noise addition: cluster density 𝜌'/ = 8.2	𝜇𝑚56, connection 1256 
density 𝑝@'E$$ = 0.5, noise density 𝜌$ = 0	𝜇𝑚56 (left) / 𝜌$ = 64	𝜇𝑚56 (right)  and different values of 1257 
connectivity 𝑝@ . With high noise (8 times the cluster density), the 2nd super-cluster regime becomes 1258 
Poissonian; the 1st super-cluster regime maintains its typical exponential decay, but the decay length is 1259 
altered. Dotted lines represent fit with Eq.3 for 𝜀 ∈ [70: 300]	𝑛𝑚. D. Unconnected clusters of points with 1260 
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increasing density of noise (other parameters are the same as C.). Eq.3 well describes the decay of the 1261 
curves in the inter-cluster regime, with the density parameter 𝜌'/ and 𝜌'/ + 𝜌$ respectively in absence 1262 
and presence of noise. E. Average decay length of the first super-cluster regime for the connected 1263 
systems represented in C. as function of noise density 𝜌$. The fit to calculate the decay length 𝜆	 has 1264 
been made for 𝜀 ∈ [20,60]	𝑛𝑚 for 20 independent datasets. Values of 𝜆 are then averaged. Bars 1265 
represent the standard deviation from the average. Decay lengths for systems with different 1266 
connectivities 𝑝@  are distinguishable as long as the noise density is below the connections density (∼1267 
	500	𝜇𝑚56). However, low noise density also alters the estimation of the decay length. The alteration is 1268 
less severe for highly connected clusters. F. Fully connected meshes of clusters with increasing density 1269 
of the mesh: cluster density 𝜌'/ = 	8.2	𝜇𝑚56, connectivity 𝑝 = 0.025, no noise and different values of 1270 
connection density 𝑝@BCDD . The super-clusters regime is unique, the decay is exponential and the decay 1271 
length 𝜆	decreases with the density of the mesh. Fit of 𝜆 was performed for 𝜀 ∈ [20:60]	𝑛𝑚. The inset 1272 
shows the dependence of 𝜆 on 𝑝@BCDD in a fully connected mesh, which is 𝜆 ∼ 𝑝@BCDD

5J.��. 1273 
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 1321 
 1322 
 1323 
Figure S3. A. dSTORM reconstructed images of SAF-A, hnRNP-C and SC35 in a single cell where 1324 
local circular regions for cluster density estimation purpose are highlighted. In case of SC35 two 1325 
different region types are used, one inside speckles for the first exponential regime and one outside 1326 
speckles for the second exponential regime. In the case of hnRNP-C and SC35 local circular regions 1327 
were also used to compute SuperStructure “local curves” and the decay length 𝜆 in the first super-1328 
cluster regime as explained in Methods. B. Average SuperStructure curves for SAF-A, hnRNP-C and 1329 
SC35 as shown and explained in the main text. Solid lines are the result of “all-nucleus’ analysis, while 1330 
dashed lines are the result of a “local” analysis (in local circular regions). Exponential regimes of interest 1331 
are highlighted, as well as the values of 𝜀 at which the cluster analysis is made for clusters density 1332 
estimation purpose (purple dashed vertical line). C. Check that connections are not the result of 1333 
technical artefacts due to bad blinking quality both in SAF-A and hnRNP-C data by monitoring 𝜆 (left) 1334 
and 𝜆∗ (right) for different cluster densities 𝜌'/. The bad blinking quality of fluorophores would lead to 1335 
localisation inaccuracy of emitters at the borders of protein clusters and in turn this could lead to pseudo-1336 
connections between clusters. However, these pseudo-connections would be proportional to the 1337 
clusters density: higher cluster density would result in stronger pseudo-connections, which would reflect 1338 
to a decrease of 𝜆∗ with the clusters density. 𝜆, 𝜌'/ and 𝜆∗ were calculated for the 6 independent nuclei 1339 
as explained in Methods and are shown in Table SI. Every nucleus can be considered as a system 1340 
where the blinking conditions are the same, but clusters densities may vary due to statistical 1341 
fluctuations. While, 𝜆 (left) decreases with 𝜌'/,	as expected, 𝜆∗ (right) is constant for different densities, 1342 
ruling out the hypothesis that connections are artefacts due to bad blinking quality. 1343 
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 1345 
 1346 
Figure S4. A. - B. The absence of local connectivity was confirmed by analysing cluster density (A) 1347 
and sparse localisations density (B) in the cross-over range. We monitored the density of ceramides 1348 
clusters and that of free emitters at 𝜀I = 20	𝑛𝑚 and 𝜀6 = 36	𝑛𝑚. In order to calculate clusters density, 1349 
DBSCAN was run at 𝑁"#$ = 0  and at the given value of 𝜀 and we kept only clusters with at least 10 1350 
particles. The remaining the particles were considered as free localisations. Clusters and free 1351 
localisations were detected at 𝑁"#$ = 0 for 16 independent circular regions. The number of clusters 1352 
remains constant in the considered 𝜀 regime, while the free localisations density significantly decreases, 1353 
more severely for -bSMase cells. As a consequence, we can state that there is not significant merging 1354 
of ceramides clusters, but only embedding of nearby free localisations in already formed clusters. 1355 
C. - D. Confirmation of the original paper results by calculating the ceramides cluster size both as 1356 
gyration radius (C) and number of emitters (D).  Protein clusters were detected at 𝑁"#$ = 0 at 𝜀� =1357 
20	𝑛𝑚 and  𝜀5 = 24	𝑛𝑚. In accordance with the analysis in the paper, we looked at the size of clusters 1358 
with a radius bigger than 30	𝑛𝑚. Note that +bSMase ceramides clusters consist (on average) in 1359 
180	𝑒𝑚𝑖𝑡𝑡𝑒𝑟𝑠 in a circle of radius 42	𝑛𝑚. The resulting density is 32500	𝜇𝑚56. This result is 1360 
approximately in line with our prediction obtained with the Poisson intra-cluster fit, by considering that 1361 
the standard deviation of both cluster radius and emitters is high. Similarly, -bSMase clusters have on 1362 
average 78	𝑒𝑚𝑖𝑡𝑡𝑒𝑟𝑠 in an average cluster radius of 40	𝑛𝑚. The resulting density is 15500	𝜇𝑚56. 1363 
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 1381 
 1382 
 1383 
Figure S5. Size and shape estimation of local super-structures emerging in SC35 dSTORM data (i.e. 1384 
nuclear speckles) by using both SuperStructure and SR-Tesseler. Analysis was performed on a single 1385 
cell as proof of concept. A. Super-structures detection by using SR-Tesseler software, a segmentation 1386 
framework based on Voronoï tessellation (constructed from the localisations coordinates). Adjustments 1387 
of the density factor allows to detect structures at different density levels, such as clusters (violet) or 1388 
speckles (yellow). Blue dots represent no-segmented localisations. The software was downloaded from 1389 
https://github.com/flevet/SR-Tesseler/releases/tag/v1.0 and run on a Windows OS. B. SuperStructure 1390 
curve of the same data. Analysis of decay regimes allows to identify 𝜀 = 40	𝑛𝑚 as a suitable value for 1391 
super-structures identifications. C. Identified clusters at 𝜀 = 40	𝑛𝑚 with SuperStructure. Speckles 1392 
detections are visually compatible with those of SR-Tesseler. D. - E. Radius and circularity of super-1393 
structures by using both SR-Tesseler and SuperStructure. Both radius and circularity are very similar, 1394 
showing the power of SuperStructure in computing shape and size properties. In the analysis we 1395 
considered the 20 largest identified structures (i.e. speckles). SuperStructure: the 2d symmetric gyration 1396 
tensor 𝑅6����⃗  was computed and diagonalised for identified super-structures. The gyration tensor 1397 
components 𝑅��6 	are defined as 𝑅��6 = I

6�h
∑ ∑ (𝑥# − 𝑥�)(𝑦# − 𝑦�)�

�iI
�
#iI , where 𝑁 is the total number of 1398 

localisations in a super-structure, while 𝑥# and 𝑦# the 𝑥 and 𝑦 positions of the localisation 𝑖. The 1399 
diagonalisation is necessary to obtain the major and minor axis of the speckles, namely 𝛾I and 𝛾6. We 1400 
then calculated the speckles radius 𝑅  = √𝛾I + 𝛾6 and their circularity 𝑐 = ¢|£¤5£h|

£¤�£h
.	SR-Tesseler: radius 1401 

and circularity parameters were obtained as output after Voronoï tessellation. P-values were calculated 1402 
using a Student’s T-test: 𝑛𝑠	𝑃 > 0.05;	∗ 𝑃 < 0.05;	∗∗ 𝑃 < 0.01, ∗∗∗ 𝑃 < 0.001. 1403 
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Supplemental Table 1415 
 1416 

SAF-A 

Nucleus 𝝀	(𝒏𝒎) 𝝆𝒄𝒍(𝝁𝒎5𝟐) 𝝀∗/𝟏𝟎5𝟐 

1 18.75 8.686 5.526 
2 17.46 9.846 5.477 
3 18.94 10.24 6.062 
4 15.30 11.80 5.255 
5 16.57 10.87 5.463 
6 20.41 8.432 5.926 
Avg 17.90 ± 1.68 9.978 ± 1.173 5.618 ± 0.282 

 1417 
hnRNP-C 

Nucleus 𝝀	(𝒏𝒎) 𝝆𝒄𝒍(𝝁𝒎5𝟐) 𝝀∗/𝟏𝟎5𝟐 

1 11.82 8.912 3.520 
2 12.93 6.621 3.320 
3 10.07 12.13 3.492 
4 9.463 12.27 3.374 
5 8.920 13.27 3.229 
6 10.54 11.86 3.613 
Avg 10.62 ± 1.37 10.92 ± 2.37 3.425 ± 0.129 

 1418 
SC35-1 (first regime) 

Nucleus 𝝀	(𝒏𝒎) 𝝆𝒄𝒍(𝝁𝒎5𝟐) 𝝀∗/𝟏𝟎5𝟐 

1 5.882 23.17 2.693 
2 5.094 32.85 2.898 
3 4.777 36.92 2.818 
4 4.797 38.96 2.976 
5 4.591 35.65 2.534 
6 7.033 19.10 2.937 
Avg 5.362 ± 0.855 31.11 ± 7.38 2.809 ± 0.154 

 1419 
SC35-2 (second regime) 

Nucleus 𝝀	(𝒏𝒎) 𝝆𝒄𝒍(𝝁𝒎5𝟐) 𝝀∗/𝟏𝟎5𝟐 
1 36.02 5.517 8.461 
2 29.46 4.838 6.479 
3 27.14 5.404 6.309 
4 35.16 4.527 7.481 
5 31.48 4.584 6.740 
6 30.33 4.951 6.748 
Avg 31.60 ± 3.11 4.970 ± 0.377 7.036 ± 0.735 

 1420 
Table SI. Decay length 𝜆, detected clusters density 𝜌'/ and normalised decay length 𝜆∗ = 𝜆/𝜌'/

5I/6 for 1421 
SAF-A, hnRNP-C and SC-35 (in both super-cluster regimes SC35-1 and SC35-2). Both single-nucleus 1422 
values and average over nuclei (± standard deviation) are shown. For SAF-A and SC35-2, 𝜆 was 1423 
obtained by fitting “all-nucleus” SuperStructure curves, i.e. curves where the entire nucleus was 1424 
analysed. On the other hand, for hnRNP-C and SC35-1, 𝜆 was obtained by fitting “local” SuperStructure 1425 
curves, i.e. curves where local circular regions were analysed as explained in Methods. In the latter 1426 
case, nuclear values showed in the table are the result of an average over 5 independent “local” values 1427 
within the same cell.  1428 
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