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Abstract

Humans readily generalize, applying prior knowledge to novel
situations and stimuli. Advances in machine learning have be-
gun to approximate and even surpass human performance, but
these systems struggle to generalize what they have learned
to untrained situations. We present a model based on well-
established neurocomputational principles that demonstrates
human-level generalisation. This model is trained to play one
video game (Breakout) and performs one-shot generalisation
to a new game (Pong) with different characteristics. The model
generalizes because it learns structured representations that are
functionally symbolic (viz., a role-filler binding calculus) from
unstructured training data. It does so without feedback, and
without requiring that structured representations are specified
a priori. Specifically, the model uses neural co-activation to
discover which characteristics of the input are invariant and to
learn relational predicates, and oscillatory regularities in net-
work firing to bind predicates to arguments. To our knowledge,
this is the first demonstration of human-like generalisation in
a machine system that does not assume structured representa-
tions to begin with.

Keywords: predicate learning; generalisation; neural net-
works; symbolic-connectionism; neural oscillations

Introduction
Recently deep neural network (DNN) systems have reached
and even exceeded human levels of performance on a range of
cognitive tasks (for a review see, Hassabis, Kumaran, Sum-
merfield, & Botvinick, 2017). For example, DNNs have
learned to master an impressive number of games (Mnih et
al., 2015; Silver et al., 2017). DNNs are general, in that
they can learn to perform a variety of tasks without a priori
background knowledge. Nevertheless, while DNNs readily
perform interpolation (i.e., generalisation to untrained items
from within the bounds of the training set), they struggle to
perform extrapolation (i.e., generalisation to items from out-
side the bounds of the training set). For example, a network
trained to play Breakout must be completely retrained to play
Pong (Mnih et al., 2015).

In contrast, a person is able to quickly catch on to playing
a game like Pong after learning to play a game like Breakout.
After all, Breakout and Pong are very similar: In both games
the objective is to use a paddle to keep a ball in play, and to
hit the ball toward some goal. While in Breakout the ball is
played vertically towards blocks at the top of the screen, and
in Pong the ball is played horizontally towards an opponent
paddle.

Accounts of how humans generalize are frequently based
on powerful symbolic languages that include structured re-
lations (or predicates), which can be promiscuously applied
to new arguments (Doumas & Hummel, 2012; Lake, Ull-
man, Tenenbaum, & Gershman, 2017). In this view, we
have abstract representations like right-of and above. These
representations allow us to characterize different domains
with the same representations, and generalize what we have
learned about these representations across domains. Struc-
tured models, however, face a challenge that is complemen-
tary to that which DNNs face: They characteristically require
the modeler to specify a collection of necessary representa-
tional structures in advance of any actual learning (e.g, Lake,
Salakhutdinov, & Tenenbaum, 2015).

We have previously proposed a neural network model of
how structured representations are instantiated in a biologi-
cally plausible neural system, and how such representations
are learned in the first place (Doumas, Hummel, & Sand-
hofer, 2008). The model, called DORA, uses unsupervised
comparison to discover which characteristics of the input are
invariant, and to learn functional predicates; it then applies
these predicates to arguments in a symbolic fashion, using
oscillatory regularities to dynamically bind predicates and ar-
guments. DORA learns representations that are functionally
and formally symbolic from flat vector data, without feed-
back, and without requiring that structured representations be
specified a priori.

In the following we show that after learning to play one
video game, Breakout, the representations that DORA learns
support generalisation to a completely new game, Pong, in
one shot. Importantly, DORA’s learning and reasoning rely
intimately on the phase dynamics that carry binding informa-
tion in the model.

Model description
DORA is a symbolic-connectionist model descended from
LISA (Hummel & Holyoak, 2003). Its operation is sum-
marized as follows. (1) DORA starts with representations
of differentiated objects encoded as flat feature vectors. (2)
Through a process of analogical mapping, objects are com-
pared (and co-activated) and their feature vectors are super-
imposed. (3) DORA learns a representation of the overlaid
pattern through Hebbian learning. The resulting representa-
tion is an encoding of what the compared objects have in com-
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mon. (4) The learned representations are bound to objects
by systematic asynchrony of firing, resulting in functional
single-place predicates. (5) Co-occurring sets of single-place
predicates are linked to form functional multi-place relations.
Below we provide a conceptual overview of DORA’s opera-
tion at a high level of abstraction (for computational details
see, Doumas et al., 2008).

Computational macrostructure
DORA has a long-term-memory (LTM; see Fig. 1) composed
of bidirectionally connected layers of units. Units in LTM are
referred to as token units. Token units in the lowest layer of
LTM are bidirectionally connected to a common pool of fea-
ture units. Token units are yoked to inhibitors that integrate
input from their yoked unit and token units in higher layers,
and fire after reaching a threshold. Yoked inhibitors serve the
purpose of implementing phasic firing and refractory periods
in the token units, which are important for implementing dy-
namic binding in the network.

Features

Driver Recipient

…

…

…

…

Bidirectional excitatory connection

Floating memory set with lateral inhibition 

Flow of activation 

LTM

Figure 1: Macrostructure of the DORA network.

Potentiated sets of token units, or memory sets (dashed
boxes in Fig. 1), correspond to DORA’s working memory.
Memory sets include, the driver, DORA’s current focus of
attention, and the recipient, DORA’s current active memory.
Token units in the same layer inhibit one another within, but
not across, memory sets. Activation in the model flows from
the token units in the driver to token units in the recipient and
LTM via the shared pool of feature units.

Representation learning
At a very high level, DORA’s learning algorithm has three
important features (for details see (Doumas et al., 2008)).
DORA starts with representations of single objects encoded
as a flat vectors of features. A localist token unit connects to
the features defining the specific object (Fig. 2A). As the first
step in learning, DORA compares multiple objects. Com-
pared objects become co-active, and pass activation to their
constituent features. Any features shared by the compared
objects will receive roughly twice as much input and be-
come roughly twice as active as unshared features (Fig. 2Bi).

The process of comparison serves to highlight features shared
(and unshared) by compared objects.

Second, DORA learns an explicit representation of the
shared properties using Hebbian learning. During compari-
son, units are recruited in the token layer i (TL i), connected
to the features, and token layer ii (TL ii), and learn connec-
tions to active units in proportion to their activation (Fig.
2Bii). As a result, DORA learns a token unit that conjunc-
tively codes for the rough featural overlap of the compared
objects (unit r in Fig. 2Bii), and another token unit linking
the newly learned unit to one of the compared objects units
(unit r+b Fig. 2Bii).

Crucially, these new representations are bound to argu-
ments via time-based binding (wherein binding information
is carried by when units fire), and therefore function as single-
place predicates (Doumas et al., 2008). In DORA, bound
predicates and arguments fire in direct sequence. For exam-
ple, to bind a predicate r to an object b, the units representing
r fire followed by the units representing b, and to bind a pred-
icate l to an object p, the units representing l fire followed by
the units representing p (Fig. 2Ci). The binding signal is ex-
plicit and dynamic (i.e., binding information can be created
and destroyed on the fly): Binding r to p and l to b only in-
volves the units representing r, l, b, and p firing in a different
order (Fig. 2Cii). Time-based binding emerges naturally in
a system with lateral inhibition, unit refraction, and conjunc-
tive encodings of linked units (Doumas & Hummel, 2005;
Doumas et al., 2008).

Third, DORA learns representations of multi-place re-
lational structures, by linking systematically co-occurring
predicate-argument sets. When structurally similar sets of
predicate-argument pairs are in the driver and recipient and
are compared, a systematic pattern of firing necessarily
emerges: Specifically, similar predicate-argument pairs will
be co-active in the driver and recipient, and out will fire of
phase with any other predicate-argument pairs (Fig. 2Di).
DORA uses the same Hebbian recruitment and learning de-
scribed in the second step above to link sets of predicate-
argument pairs. Explicitly, DORA recruits a unit at token
layer iii (TL iii), and learns connections to active units in TL
ii via Hebbian learning as they become active (Fig. 2Di).
Thus, DORA learns to link a set of predicate-argument pairs
into a single structure (Fig. 2Dii). The resulting structure
effectively encodes and behaves like a multi-place predicate
(for details see Doumas et al., 2008; Hummel & Holyoak,
2003).

Processing
DORA is a settling network. It starts in some state, such as
a set of units in driver (e.g., chosen at random from LTM, or
based on DORA’s current perceptual state such as a video-
game screen shot). Token units in the driver compete (via
lateral inhibition) to become active, and activation flows to
token units in the recipient and LTM via shared feature units.
DORA eventually settles into some state (e.g., with some
units active in driver and recipient). Due to the refraction of
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Figure 2: Representation learning in DORA. (A) DORA starts with representations of objects encoded as flat feature vectors.
(B) (i) By comparing objects b and p, shared features receive more input and become more active. (ii) Using Hebbian learning
DORA learns an explicit representation of the featural overlap of b and p—unit labeled r—and links r to b (unit labeled r+b).
(C) Illustration of binding in DORA. (i) To bind r to b and l to p units coding r fire at t1, followed by units for b at t2, l at t3 and p
at t4. (ii) Complementary binding information is carried by a different sequence of firing. (D) Learning multi-place relations. (i)
Similar predicate-argument sets are compared in driver and recipient. Driver units activate featurally similar units in recipient:
Violet units in the driver will activate violet units in recipient, and red units in the driver will cause red recipient units to
become active. Using Hebbian learning DORA learns a conjunctive encoding of the predicate-argument pairs in recipient as
they become active (green unit in Tiii). (ii) The resulting representation encodes a multi-place relational proposition.

nodes and yoked inhibitors, this state will eventually become
upset and the process will start again.

The representations that DORA learns support a variety
of operations from the LISA and DORA including analog-
ical mapping, schema refinement, and relational generalisa-
tion. During mapping, DORA discovers structural correspon-
dences between token units in the driver and recipient. Dur-
ing refinement, DORA learns a schema from the featural in-
tersection of mapped items in driver and recipient. During
generalisation, DORA implements a version of copy-with-
substitution-and-generalisation (CWSG) (Holyoak, Novick,
& Melz, 1994), wherein information from one situation is
carried over into a mapped situation (described in more de-
tail in section following).

DORA’s algorithm is capable of composing features into
structured representations of relations and arguments (i.e.,
propositions). However, in order to learn relational represen-
tations, there need to be invariants that characterise the under-
lying relations—e.g., to learn a representation of above that
captures every instance of aboveness, there must be some de-
tectable property(ies) that remain constant over all instances
of aboveness (Biederman, 2013). We have developed a novel
algorithm to discover invariants for relative magnitude (e.g.,
“same”, “more”, “less”) based on the known properties of

neural encodings of absolute magnitude and eye movements
(Doumas, Hamer, Puebla, & Martin, 2017). The algorithm
exploits the invariants that emerge when neural encodings of
absolute magnitude are superimposed.

Model in context
DORA is a model of representation learning. It assumes that
objects are differentiated and makes no strong claims about
how choices between available options (i.e., moves in a video
game) are made. As such, we situated DORA’s predicate
learning algorithm between a visual pre-processor, and tab-
ular Q-learning (Watkins, 1989) (see Fig. 3). The visual
pre-processor served to differentiate objects, and the tabular
Q-learning allowed DORA to learn associations between rep-
resentational states and move options in a game.

The visual pre-processor used edge detection (via local
contrast) with an inbuilt bias such that any enclosed edges
were treated as a single object. The pre-processor delivered
representations of individual objects characterised by their
colour and their location, (represented in raw pixels).

Simulations
We ran three sets of simulations. Simulation 1 compared
DORA to several other networks for their capacity to gener-
alize to Pong after training on Breakout. Simulation 2 served
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Figure 3: Predicate learning in context.

to evaluate the capacity of the relational representations that
DORA learned from video game screens to support human-
level analogical reasoning. Simulation 3 extended the test of
cross-domain transfer: DORA learned representations from
instances unrelated to games, and then used these representa-
tions to learn to play one game and generalize to another

Simulation 1
We compared (1) an implementation of DORA with Q-
learning against (2) DQN; (3) DQN with the same pre-
processed inputs used by DORA; (4) a supervised deep neu-
ral network (DNN) with the same pre-processed inputs used
by DORA with fixed frame skipping; (5) a supervised DNN
with the same pre-processed inputs used by DORA with ran-
dom frame skipping; (6) Humans (two Breakout and Pong
novices). We trained all these systems to play one videogame
(Breakout), and then tested their ability to generalize to a dif-
ferent videogame (Pong) without any explicit training. Fi-
nally, we evaluated these systems’ ability to switch back to
playing the original game, after time spent learning to play
the second.

For the first 250 games of Breakout, DORA made ran-
dom moves, generating game states from which it learned
structured representations in an unsupervised manner as de-
scribed above. DORA successfully learned predicate repre-
sentations encoding to instances such as more-y(object1, ob-
ject2) and more-x(object1, object2). DORA then attempted
to learn to play Breakout using the representations that it
had learned during the first 250 games to represent the cur-
rent game screen and then made a response. Associations
between these learned representations and successful moves
were learned via tabular Q-learning. Fig. 4a shows the per-
formance of all networks on Breakout as an average score of
the last 100 games played, and a high score. All systems
performed quite well, reaching levels of performance that
matched or exceeded human participants. As would be ex-
pected, DORA took far fewer games to learn to play Breakout
than any of the other networks (1,000 vs. 10,000,000 games
for DORA and DQN, respectively).

We then tested the capacity of the networks to play a new
videogame, Pong. DORA had learned to play Breakout by
learning associations between relational configurations and

Breakout
100 test games avg.

Breakout
high score
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Figure 4: Game play performance for DORA and DNNs.

actions. During its first game of Pong, DORA represented the
game state using the relations it had learned playing Breakout.
DORA discovered a correspondence between the action sets
in the two games: particularly, more-y/less-y of the paddle
(the paddle moves up and down) in Pong and more-x/less-x
of the paddle (the paddle moves horizontally) in Breakout.
This correspondence allowed DORA to infer via relational
generalisation the configurations that reward specific moves
in Pong. For example, just as more-x(ball, paddle) tends to
reward a more-x move of the paddle in Breakout, more-y(ball,
paddle) rewards a more-y move in Pong (see Fig. 4).

Fig. 4b shows the performance of the human players
and the networks on the first game of Pong after training
on Breakout and the average performance over the first 100
games playing Pong. Like a human player, DORA performed
at a high level on Pong on a single exposure to the game and
continued to play Pong at a high level. By contrast, all other
networks showed poor performance –which is unsurprising
given previous results using DNNs and transferring to differ-
ent contexts.

Importantly, the generalisation failure of the networks
using the same visual processing as DORA demonstrates
that the visual processing does not produce representations
that support the generalisation performance demonstrated by
DORA. Using both Q-learning and supervised learning, the
unstructured (i.e., non-symbolic) representations produced
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Figure 5: Relational generalisation in DORA.

by the visual processor and the DQN did not support ex-
trapolatory generalisation, while the predicate representations
learned by DORA did.

Simulation 2
Simulation 2 was designed to investigate whether the repre-
sentations DORA learned in Simulation 1 have the character-
istics of structured relational representations. One of the key
properties of structured representations is that they should be
applicable (i.e., generalise) across contexts: The representa-
tion of larger should apply just as easily (and mean the same
thing) in a domain like the game Breakout and an analogical
reasoning task. To this end, we tested whether the represen-
tations that DORA learned in Simulation 1 would immedi-
ately generalise to support human level analogical reasoning
by testing whether—with no additional learning—they: (i)
support solving cross mappings; (ii) support mapping simi-
lar, but non-identical predicates; (iii) support mapping objects
with no featural overlap, including completely novel objects,
if they play similar roles; and (iv) provide a basis for map-
ping the arguments of a n-place relation onto those of an m-
place relation even when n and m are unequal (i.e., whether
they, like people, can violate the n-ary restriction, according
to which an n-place predicate can only map to another n-place
predicate). As the representations that DORA learned from
video games should be immediately generalisable to these
other tasks, this simulation used only those representations
learned during simulation 1 and included no new representa-
tion learning.

During a cross-mapping, an object (object1) is mapped to
a featurally less similar object (object2) rather than a featu-
rally more similar object (object3) because it (object1) plays
the same role as the less similar object (object2). For ex-
ample, if cat1 chases mouse1 and mouse2 chases cat2, then
the structural cross-mapping places cat1 into correspondence
with mouse2 because both are bound to the chaser role. The

ability to find such a mapping is a key property of gen-
uinely relational (i.e., as opposed to feature-based) process-
ing. Cross-mappings serve as a stringent test of the structure
sensitivity of a representation as they require violating featu-
ral or statistical similarity.

To test the representations DORA learned in Simulation 1
for their ability to support cross-mappings we randomly se-
lected two of the representations DORA had learned for a
given relation (e.g., both coded for above). DORA bound
these representations to new objects, creating two new propo-
sitions, P1 and P2, such that the agent of P1 was featurally
identical to the patient of P2 and vice versa. DORA then
mapped P1 onto P2. We repeated this procedure 10 times
(each time with a different randomly chosen relational repre-
sentaitons). In each simulation, DORA successfully mapped
the agent of P1 to the agent of P2 (the correct relational map)
and vice-versa. DORA’s success indicates that the relations it
learned in the first part of this simulation apply immediately
across tasks and supporting cross-mapping.

We then tested whether DORA’s representations support
mapping similar but nonidentical relations (such as mapping
above to greater-than) and support mapping objects with no
featural overlap that play similar roles. We selected two of
the refined relations that DORA had learned during Simula-
tion 1, P1 and P2 (e.g, above(x,y) or wider(x,y)), such that
each role in P1 shared roughly 50% of its features with a cor-
responding role in P2 (e.g., the role more-height has 50% of
its features in common with the role more-width). To assure
that no mappings would be based on object similarity and that
the mapping would work with completely novel object, none
of the objects that served as arguments of the relations had
any featural overlap and the object features were units that we
added to DORA solely for these simulations (i.e., these were
feature units DORA had not “experienced” previously). We
repeated this process 10 times, each time with a different pair
of relations. Each time, DORA mapped the agent role of P1
to the agent role of P2 and the patient role of P1 to the patient
role of P2, and, despite their lack of featural overlap, corre-
sponding objects always mapped to one another (because of
their bindings to mapped roles).

Finally, we tested whether the representations DORA
learned can violate the n-ary restriction, mapping the argu-
ments of an n-place predicate onto those of an m-place pred-
icate when n 6= m. Models of relational thinking based on
propositional notation or labelled graphs are unable to map
predicates with different numbers of arguments, but people
have little difficulty doing so, as evidenced by our ability to
map the arguments of, say, bigger (Sam, Larry) on onto those
of small (Joyce) and big (Susan) (see Hummel & Holyoak,
1997).

To test DORA’s ability to solve such mappings, we ran-
domly selected a relation, P1, that DORA had learned in the
previous part of this simulation. We then created a single
place predicate (p2) that shared 50% of its features with the
agent role of P1 and none of its features with the patient role.
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The objects bound to the agent and patient role of P1 each
shared 50% of their features with the object bound to p2.
DORA attempted to map P1 to p2. We repeated this process
10 times, each time with a different relation from DORA’s
LTM, and each time DORA successfully mapped the agent
role of P1 to p2, along with their arguments. We then re-
peated the simulation such that p2 shared half its featural con-
tent with the patient (rather than agent) role of P1. In 10 ad-
ditional simulations, DORA successfully mapped the patient
role of P1 to p2 (along with their arguments).

General Discussion
We have shown that a machine system can perform extrapola-
tory generalisation. Specifically, DORA used predicate learn-
ing to discover symbolic representations from video game
screen shots without feedback, and without assuming any
structured representations a priori. Crucially, the predicate
representations that DORA learned allowed it to extrapolate
its knowledge to untrained situations. Specifically, the model
was able to use the representations that it learned playing
Breakout to successfully play a new game, Pong, and to per-
form a number of analogical reasoning tasks. Just like hu-
man players, generalizing to a new game, like Pong, or a new
task, like analogy making, was fast (zero-shot) and did not af-
fect the system’s ability to play the previously learned game.
In contrast, four different DNNs failed to transfer knowledge
from Breakout to Pong.

These results demonstrate that extrapolatory and cross-
domain generalisation can be greatly facilitated by learning
and explicitly representing the relations—rather than just the
literal features—characterizing the domain in question. By
learning the relations characterizing the abstract structure of
Breakout (e.g., relations between the locations of the paddle
and the ball), DORA was prepared to discover analogical cor-
respondences between Breakout and Pong. On this approach
to domain learning, cross-domain transfer is not a matter of
learning a wholly new domain but is instead a matter of learn-
ing how old knowledge applies to new problems. We argue
that this approach is precisely the approach the human mind
takes to learning, both within and across domains.

Our relation-based approach represents a fundamental de-
parture from DNN or other statistical machine learning ap-
proaches, which learn only the statistical relations between
input states (e.g., features of a game screen), and output states
(e.g., moves of the game paddle left/right or up/down). Sta-
tistical relations between input and output features are, in
a trivial sense, relations, so DNNs can in this sense be de-
scribed as “learning relations”. But the simulations described
here demonstrate that there is a fundamental difference be-
tween the capacity to learn statistical relations between fea-
tures (the approach in traditional machine learning) and the
ability to learn an open-ended set of abstract structured rela-
tional representations, both between and within the domains
to be learned. The capacity to learn an open-ended set of re-
lations and represent them as explicit predicates confers the

capacity to profit from prior learning for reasoning a new
domain, rather than suffering from it. Moreover, as demon-
strated here and elsewhere (e.g., Doumas et al., 2008), struc-
tured relational representations can be learned without hav-
ing to assume that such structures exist a priori (Lake et al.,
2015).
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