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Abstract

Deep learning is emerging as a new paradigm for solv-
ing inverse imaging problems. However, the deep learn-
ing methods often lack the assurance of traditional physics-
based methods due to the lack of physical information con-
siderations in neural network training and deploying. The
appropriate supervision and explicit calibration by the in-
formation of the physic model can enhance the neural net-
work learning and its practical performance. In this paper,
inspired by the geometry that data can be decomposed by
two components from the null-space of the forward operator
and the range space of its pseudo-inverse, we train neural
networks to learn the two components and therefore learn
the decomposition, i.e. we explicitly reformulate the neural
network layers as learning range-nullspace decomposition
functions with reference to the layer inputs, instead of learn-
ing unreferenced functions. We show that the decomposition
networks not only produce superior results, but also enjoy
good interpretability and generalization. We demonstrate
the advantages of decomposition learning on different in-
verse problems including compressive sensing and image
super-resolution as examples.

1. Introduction
We consider a linear inverse problem of the form :

yε = Hx + ε, (1)

where the goal is to recover the unknown signal x ∈ RD
from the noisy measurement yε ∈ Rd with typical dimen-
sion D � d, and H : RD → Rd is the forward operator
which models the response of the acquisition device or re-
construction system, while ε ∈ Rd represents the measure-
ment noise intrinsic to the acquisition process.

Inverse problems have wide applications in computer vi-
sion, medical imaging, optics, radar, and many other fields.
The forward operator H in (1) could represent various in-
verse problems, from e.g. an identity operator for image de-
noising, to convolution operators for image deblurring, ran-
dom sensing matrices for compressive sensing(CS), filtered

subsampling operators for super-resolution (SR), (under-
sampled) Fourier transform for magnetic resonance imag-
ing (MRI) and the (subsampled) Radon transform in com-
puted tomography (CT). The inverse problems in (1) are of-
ten noisy and ill-posed since the operator H has a non-trivial
null space. Such under-determined systems are extremely
difficult to solve and the solutions are very sensitive to the
input data. The classical approach for solving them have
traditionally been model-based [3, 8], which typically aim
to regularize the solutions by constraining them to be con-
sistent with prior knowledge about the signal and usually
can only be solved iteratively.

More recently, due to the powerful representation learn-
ing and transformation ability, deep learning [19] or deep
neural networks (DNN) have emerged as a new paradigm
for inverse problems. The community has already taken
significant steps in this direction, with deep neural networks
being successfully applied to a wide variety of inverse prob-
lems [27, 22, 31]. For example, [4, 41] use a fully con-
nected feedfoward neural network for image denoisng and
inpainting. [10, 17] learn end-to-end mappings between yε
and x with vanilla convolutional neural networks (CNN).
[44, 20] further use CNNs with residual blocks [13] and skip
connections to improve the neural network performance.
[24, 29, 15] learn downsampling and upsampling feature
maps with encoder-decoder CNNs. [7, 43] use autoen-
coders for learning new representations for x and yε to solve
the inverse problems. [40] use CNN as a prior and train
with early stopping criteria to recover a single image from
its observation. [39, 26] unfold the model-based optimiza-
tions with DNN. [28, 2] use generative models for natural
images to recover images from Gaussian measurements.

However, the DNN itself in the above deep learning-
based approaches often lack the guarantees of traditional
physics-based methods as they are purely data-driven and
learning-based. In addition, the designing of DNNs is usu-
ally complicated and has poor intuitive interpretation when
they are decoupled from the inverse problem of interest.
Furthermore, it is a commonly held belief in the inverse
problems community that using the physics is preferable to
relying solely on data [35, 25]. This raises a number of
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questions: is a purely data-driven neural network the best
way to solve an inverse problem? Does physical informa-
tion facilitate neural networks to find a better inverse prob-
lem solution? How should one best make use of the prior
physical (acquisition) information?

All of these above questions inspire us to think about
whether the introduction of physical information in neural
networks would be beneficial to the training of deep learn-
ing methods to better solve inverse problems. To that end, in
this paper, relying on the range-nullspace decomposition of
data and the recently proposed null-space learning [35, 25],
we construct a physics-engaged and end-to-end trainable ar-
chitecture: Deep Decomposition Network (DDN). The con-
tributions of this paper are summarized as follows.

• First, we propose to use two convolutional neural net-
works to separately capture the residuals lying on the
range of H† and the nullspace of H. By incorporat-
ing the two learned residuals with pseudo-inverse in-
put, the proposed scheme, which we call a deep de-
composition network (DDN), is able to recover both
the components of the image and preserve data fidelity
with respect to the measurements, yε. Thanks to the
explicit deep decomposition learning and the introduc-
tion of physical information, the neural networks also
enjoy intuitive interpretability.

• Second, to the best of our knowledge, this is the first
method of using such a decomposition in neural net-
works to directly solve inverse problems. Although
previous work has incorporated the physical model as
well, these have either neglected the noise component
[25, 35] or retained the undesirable iterative nature of
model-based systems, e.g. [11, 12, 32, 45]. We eval-
uate DDNs on compressive sensing and image super-
resolution tasks. It is shown that the DDN not only
achieves superior reconstruction performances but also
facilitates the generalization of the deep neural net-
work for inverse problems. Our DDN code is available
at: ***.

Notations. In this paper, except in some specified cases,
lower-case bold letters a represent column vectors and
upper-case bold ones A represent matrices. Given a matrix
A ∈ Rm×n, letR(A) be the range of A, i.e., the subspace of
Rm spanned by the columns of A; the null space (or kernel)
of A, denoted byN (A), is the solution space (a subspace of
Rn) of the linear system Ax = 0. A> and A† represent the
transpose and pseudo-inverse of A, respectively.

2. Background
2.1. Deep learning for the inverse problem

Depending on whether the physical acquisition informa-
tion with respect to H is used during DNN training and test-

ing, we divide the deep learning approaches into two cate-
gories: Physics-free and Physics-engaged.

Physics-free. The DNN aims to learn a direct mapping
from yε (or its projection, e.g. H†yε) to x without exploit-
ing the knowledge of H at any point in the training or test-
ing process (with the exception of the input). The general
principle is that, given enough training data, we should be
able to design a proper neural network to learn everything
we need to know about H to successfully estimate x di-
rectly. The success of this approach is likely to depend on
the complexity of the forward operator H. However, it has
been observed to work well for numerous computer vision
tasks, such as denoising and inpainting [41], superresoluion
[10] and deblurring [42, 18]. The DNN can be trained by a
sole least squares loss [41, 24, 15] or a combination of least
squares loss and auxiliary losses such as adversarial loss
[20, 18, 30, 37]. In general, this approach requires large
quantities of training data because it is required to not only
learn the geometry of the image space containing x, but also
aspects of H. Hence, an interesting question is how hard
(relatively) are each of these components to learn and how
important is it to incorporate H into the learning process.
When the forward problem is too complex such that it can
not be incorporated into the neural network model it will
always be necessary to go Physics-free. Finally, since di-
rect estimation using a DNN for solving inverse problems
is essentially a form of regression, there is a potential gen-
eralization issue with such physic-free DNN approaches.

Physics-engaged. The most widely used strategy con-
sidering physics of H in deep learning approaches is
through a model-based approach, in which one or more pre-
trained DNNs are used within a more traditional iterative
physics-engaged model-based framework such as [3, 8]. As
mentioned before, the inverse problem (1) typically boils
down to solving an optimisation problem broadly of the fol-
lowing form:

argmin
x
f(x) + λφ(x), (2)

where the first term f(x) aims to enforce data fidelity, e.g. f
could be the MSE between Hx and yε, while the regularizer
φ allows us to insert knowledge onto the solution x, and
λ ∈ R+ controls the strength of the regularization. Typi-
cally there is no closed-form solution to (2) and it usually
needs to be solved iteratively. This has led to the following
proposed uses for pretrained DNNs: (i) use DNN to replace
the proximal operator associated with φ(x) in a proximal
gradient algorithm [11, 12, 32, 44, 45], (ii) use DNN to re-
place the gradient ∇φ in an unrolled optimization method
[5, 9, 26, 39], (iii) directly replace the regularizer φ with
DNN [23, 33], (iv) use DNN as a generative model to gen-
erate x from a latent code that needs to be estimated [2, 36].
These iterative methods are Physics-engaged, as they actu-
ally use the regularizer along with the forward model and
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Figure 1: Examples ofR-N decomposition for clean signal
x. Left: Compressive sensing (d/D = 0.1). Right: Super-
resolution (25% downscaled).

observation by minimizing the disparity between the oracle
and its reconstruction.

As an exception to the above physics-engaged deep
learning approaches, there have been some recent studies
aimed at explicitly using H-related information during the
DNN training process in an end-to-end manner. For exam-
ple, [35, 25] explicitly learn the nullspace component of x
with respect to H. However, this separate nullspace learning
does not deal with the presence of noise in the input nor with
situations where no nullspace exists. Another interesting di-
rection presented in [9] considers a Neumann series expan-
sion of linear operators to approximate the inverse mapping
of (2). However, this requires the network to precondition
and store the results of each iteration in order to accumu-
late the approximate Neumann series to solve the inverse
problem.

In this paper, inspired by the nullspace method of [35,
25], we explore the possibility of a more flexible end-to-end
neural network structure that is capable of exploiting both
the range and null space structures of the inverse problem.
Before discussing the proposed method, let us briefly recall
the Range-Nullspace decomposition of data.

2.2. Range-Nullspace (R-N ) Decomposition

Given a linear forward operator H ∈ Rd×D and its right
pseudo inverse H† ∈ RD×d, which satisfies HH† = Id,
it holds that RD = R(H†) ⊕ N (H), which implies that
for any sample ∀x ∈ RD there exists two unique elements
x+ ∈ R(H†) and x⊥ ∈ N (H) such that x = x+ + x⊥.
Therefore we define the following range-nullspace (R-N )
decomposition,

Definition 1 R-N Decomposition: Let Pr , H†H be the
operator that projects the sample x from sample domain to
the range of H†, and denote by Pn , (ID − H†H) the
operator that projects x to the null space of H. Then ∀x ∈
RD, there exists the unique decomposition:

x = Pr(x) + Pn(x), (3)

where we will call Pr(x) and Pn(x) the r-component and
n-component of x, respectively.

Remark 1 In this paper we will only focus on the above de-
composition. However, we comment that in principle the
pseudo-inverse, H†, could be replaced by any general right

inverse of H in the above decomposition which might pro-
vide added flexibility in certain inverse problems.

An illustration of R-N Decomposition is shown in Fig-
ure 1. Thus, the task of solving an inverse problem is to
find these two components Pr(x) and Pn(x) based on the
observed data, yε. The simple linear estimator to solve this
problem is to use the approximation:

x∗ = H†yε. (4)

This estimator enjoys global and exact data-consistency, i.e.
Hx∗ ≡ yε, which is an important consideration when solv-
ing inverse problems [25]. However, comparing (4) with
(3) we can see that this is achieved by simply setting the
nullspace component to zero: Pn(H†yε) = 0. In general
this provides a poor solution for ill-posed problems. Thus
it is necessary to further estimate the missing component
Pn(x). Such an estimator is necessarily nonlinear.

Nullspace network. Recently, Schwab et al. [35] study
the use of a neural network G to feed a refined backprojec-
tion G(H†yε) to the null-space projection operator Pn, then
the reconstruction in (4) is reformulated as

x∗ = H†yε + Pn(G(H†yε)), (5)

where the network G is suggested to be trained by minimiz-
ing the MSE between x and x∗. Note the solution (5) enjoys
global data consistency, i.e. Hx∗ ≡ yε. However, the solu-
tion (5) unfortunately, only works for the noise-free situa-
tion, and does not allow any denoising in the range R(H†).
Indeed, (5) can only denoise in the nullspace and the de-
noising ability is therefore worst-case bounded by ‖ε‖/‖H‖
since ‖H(x − x∗)‖ = ‖ε‖. The noise may further limit the
ability to predict the null space component from the noisy
measurements. Although it is reminiscent of decoupling the
neural network denoiser from the inverse problem, it does
not benefit from this since the training needs to be tailored
to the task [32], which will be confirmed in our experiments.

3. Deep Decomposition Learning
Inspired by nullspace learning [35, 25] we aim to remove

the range space denoising deficiency while still exploiting
the nullspace property. For convenience, we rewrite the in-
verse problem (1) as yε = Hx − ε, let us consider the case
ε 6= 0 which is more piratical. By theR-N decomposition,
it holds that x can be exactly recovered by,

x = Pr(x) + Pn(x)
= H†yε + H†ε+ Pn(x).

(6)

However, as mentioned before, in the scenario of the inverse
problem, both x and ε in (6) are still unknown and need to
be recovered.

3
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(a)R-N decomposition of x
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(b) Independent
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(c) Cascade

Figure 2: The illustration of deep decomposition learning. In all sub-figures, Pn and Pr are the operators that project data
to the nullspace of H and the range of H†, respectively, G and F are two neural networks that need to be trained. In (a), x
admits the range-nullspace (R-N ) decomposition x = H†yε+ f + g. The component f = Pr(F(H†yε)) in both (b) and (c).
The component g = Pn(G(H†yε)) in (b) and g = Pn(G(H†yε + F(H†yε))) in (c).

We address this problem by using two neural networks
and introducing the decomposition learning framework. In-
stead of hoping a single neural network will directly fit a de-
sired underlying mapping between H†yε and x = Pr(x) +
Pn(x), we explicitly let two networks, denoted by F and G
fit the two mappings from H†yε to the residual r-component
Pr(x) − H†yε and the n-component Pn(x), respectively.
In particular, the output of F should be bounded by the
magnitude of noise ε, while G should be a smooth, i.e. a
Lipschitz continuous neural network, since G is essentially
a nullspace network, which does not need to be strongly
bounded but should be regularized in order to get reasonable
generalization. Therefore, the oracle x is decomposed as
the sum of a linear component H†yε (the input), a bounded
residual component Pr ◦ F ∈ R(H†) and a smooth n-
component Pn ◦ G ∈ N (H).

We consider two versions of DDN estimators. First, we
define an independent connection architecture DDN estima-
tor Ai using theR-N decomposition,

Ai(yε) , H†yε + Pr(F(H†yε)) + Pn(G(H†yε)). (7)

where there are no interactions between F and G.
An alternative (but essentially equivalent) mapping Ac

from yε to x which is related to (7) uses a cascade of net-
works, i.e. first denoising withF , then feeding the denoised
H†yε + Pr(F(H†yε)) into G such that:

Ac(yε) , H†yε + Pr
(
F
(
H†yε

))
+ Pn

(
G
(
H†yε + Pr

(
F(H†yε)

)))
.

(8)

Intuitively (8) is preferable since it is no more complex
than the independent network topology and provides the
nullspace network G with a range denoised input, thereby
reducing the learning burden needed to be done by G. Our
experiments also verified the cascade connections typically
perform better than the independent one.

Figure 2 gives an illustration of the above deep decom-
position learning, as well as the corresponding independent
architecture and the cascade architecture for F and G in (7)
and (8), respectively. Note the DDN A(yε) defined in (7)

and (8) offers the ability to denoise both the r-component
Pr(x) and the n-componentPn(x), and if ‖HF‖ ≤ ‖ε‖, the
solution enjoys a relaxed notion of data-consistency (in the
spirit of the discrepancy principle popular in inverse prob-
lems), which convergences to exact data consistency when
‖HF − ε‖ → 0.

Note that the independent model is by its nature a shal-
lower but wider network than the cascade model which by
construction is deeper, but given the decomposition both
networks have essentially the same complexity.

3.1. Training strategy

Let X = {(y(i)
ε , x(i))}Ni=1 denote a training set ofN sam-

ples, where x(i) and y(i)ε are the clean oracle signal and its
noisy measurement given by (1). Denote by `(x, y) the loss
function, which measures the discrepancy between x and y.
Given an estimator A, its empirical loss associated with the
training set X is defined as:

`emp(A) ,
1

N

∑
y(i)ε ,x(i)∈X

`(A(y(i)ε ), x(i)). (9)

In this paper we will consider the case where ` is the least-
squares loss.

According to the two connection types for F and G, we
consider the following two training strategies.

Joint training. We first consider jointly training F and G
by solving a single optimization program,

min
F,G

`emp(A) + λ1φ1(F) + λ2φ2(G), (10)

where the first term serves the data-fidelity, and A(yε) take
the form either in (7) or in (8). φ1 and φ2 are two regular-
ization terms that are used in training F and G to impose
the desired boundedness and smoothness conditions. Ac-
cordingly, we define different regularizations for F and G
to tune the networks to their specific tasks.

For F , we set φ1 as

φ1(F) =
N∑
i=1

`(HF(H†y(i)
ε ), ε(i)), (11)
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in order to encourage the data discrepancy term to be small.
For G let {w(j)}Lj=1 denote networks connection weights

for layers 1 . . . , L. We then set φ2 as the weight decay term
to control the Lipschitz of the network [35] and to encour-
age good generalization [16], i.e.

φ2(G) =
∑
j

‖w(j)‖22. (12)

Decoupled training. Due to the decomposition x =
Pr(x) + Pn(x) in the independent architecture there are
no interactions between the respective targets of F and G,
therefore one can decouple (10) into two independent sub-
optimizations to train F and G separately. For example, F
can be trained by,

argmin
F

1

N

N∑
i=1

`(H†y(i)
ε + Pr(F(H†y(i)ε )),Pr(x(i)))

+ λ1φ1(F),
(13)

and G can be trained by,

argmin
G

1

N

N∑
i=1

`(Pn(G(H†y(i)ε )),Pn(x(i))) + λ2φ2(G).

(14)
In the cascade architecture we have the option of decoupling
the optimization in a cascaded manner. First training F as
in (13), and then, with F fixed, training G using,

argmin
G

1

N

N∑
i=1

`(Pn(G(H†y(i)ε + Pr(F(H†y(i)
ε ))),Pn(x(i)))

+ λ2φ2(G).
(15)

While joint training and decoupled training are theoretically
equivalent, in practice, the decoupled training enjoys more
intuitive interpretability, and it is easier to control F and G
each to achieve better convergence results. However, the
joint training is slightly more efficient than the decoupled
because the networks can be trained simultaneously.

3.2. The relationship to other work

In the noise-free case (ε = 0), the decomposition learn-
ing (6) reduces naturally to vanilla nullspace learning (5).
Thus a DDN can be regarded as a generalized nullspace
network. While in the noisy case, one might be tempted to
consider adopting a separate generic denoiser to preprocess
the measurements yε. However, such denoisers are typi-
cally built in a manner decoupled from the inverse prob-
lem of interest, therefore to train a nullspace network with
such denoised measurements could amplify the reconstruc-
tion error, causing more inconsistent results. This will be

demonstrated in the experiments later. In contrast, the de-
noising process in the DDN is not decoupled from the in-
verse problem but integrated into a unified learning model.
The experiments show this not only improves the quality of
the results but in addition, helps the model’s generalization.

Our decomposition learning can also be regarded as a
special gated neural network. To be specific, if we rewrite
(7) as

A = TF(z) + (I− T)G(z) + z, (16)

where z = H†yε, T = H†H, it can be seen the output of F
and G are gated in terms of T and I−T. The importance of
the two components is determined by the physics in terms of
H†H. This is different from previous gated networks such
as [14, 6, 38] in which the model is gated by some bounded
numerical function such as a sigmoid or hardlim which are
not typically related to the physics of the forward model or
its inverse. Our method can also be regarded as a general-
ized residual learning [13], i.e. we decompose the residual
A− z into two components inR(H†) andN (H) with more
explicit interpretability. In particular, in the absence of the
nullspace N (H) or in the case H = I such that Pr = I and
Pn = 0, i.e. there is no nullspace learning, G will be irrel-
evant and only F will be learnable, and the decomposition
learning will be reduced to a non-gated neural network and
equivalent to the standard residual learning.

3.3. The implementation

Architecture. Our goal here is not to explore the po-
tential designs of the neural networks, F and G, but the us-
age of physics in the neural network. Therefore we directly
apply the corresponding state-of-the-art neural network ar-
chitectures to build F and G, respectively. As an example,
we use the denoising CNN (DnCNN) [44], a fully convo-
lutional network, as the architecture of F , and we use the
U-net (encoder-decoder architecture) [15, 34] to build G.
Our network can process both gray and color images, so the
number of channels for the input layer and output layer can
be 1 or 3 appropriately.

Operator. A key aspect of the DDN framework is ac-
cess to the projection operators Pn and Pr. If the inverse
problem is relatively small, then H† can be calculated di-
rectly or approximated using truncated SVD. However, in
larger scale problems this will not be feasible and alternative
approximations must be sought. For some problems, such
as the ones considered in this paper - super-resolution and
compressed sensing - the pseudo-inverse is readily available
or easy to approximate. When this is not the case one may
have to resort to an iterative approximation of the projec-
tors, e.g. using a preconditioned conjugate gradient solver.
In such a scenario the DDN will require more computation
(both in training and implementation) and it is not clear how
this cost will compare to that of iterative DNN solutions
such as those discussed in section 2.
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4. Experiments
We designed our experiments to address the following

questions: Which training strategy, e.g. jointly or decou-
pled, is best for training the DDN? Which connection type,
e.g. the independent or cascade one, is better? Does the
proposed deep decomposition learning help the neural net-
work produce superior results on different inverse problem
tasks? Does the DDN enjoy better generalization?

We conduct super-resolution (SR) and compressed sens-
ing (CS) tasks as examples. We describe the details of the
experiments and results in the following.

4.1. Experimental setup

Datasets. We train the models on two public natural im-
age datasets: the CelebA [21] and BSDS300 [1]. The for-
mer is used in CS and the latter used for the SR task.

The CelebA dataset contains more than 200K celebrity
images, each with 40 binary attributes. We pick the attribute
“smile” to evaluate the proposed method. The center part
of the aligned images in the CelebA dataset are cropped and
scaled to 48×48. We divide the selected images equally into
three subsets for training, validation and testing. There are
32, 557 images in each subset and the training batch size
is 100. The forward operator H is thus a random sensing
matrix with a predefined compressive ratio and the operator
H† is calculated directly by H† = H>(HH>)−1.

The BSDS300 includes 300 high-resolution (HR) natu-
ral images. We use these images for training and evaluate
the models on the benchmark datasets BSDS100 [1]. We
super-resolve low-resolution (LR) images by a scale-factor
of 2 and 4. The LR images are formed by downsampling
with bi-cubic anti-aliasing the HR images [10], and then
corrupting them with Gaussian noise with a standard devi-
ation, σε varying between 0 (no noise) and 25 (10% noise).
The presence of anti-aliasing in the downsampling means
that the bi-cubic upsampling operator is a reasonable ap-
proximation to H†, and this is what we use in our DDN.
Training is performed using 40 × 40 RGB image patches
(LR) for both scale-factors 2 and 4, with a batch size set to
15. The quantitative results presented are then evaluated on
the luminance (Y) channel.

Metric. We quantify the performance of the image re-
construction using Peak Signal to Noise Ratio (PSNR),
and generalization error (GE). In particular, PSNR =
10 log10(255/MSE)2 is used to measure the accuracy of the
image reconstruction. The GE, the difference between the
expected loss and the training loss, is evaluated to examine
whether inclusion of the physics in the end-to-end training
reduces the burden on training data [16]. Here approxi-
mating the expected loss with the testing loss: `exp(A) ,
E(x,y)∼P [`(A(y), x)] ≈ `(A(y),Xtest) we measure GE by:

GE(A) = |`(A,Xtest)− `(A,Xtrain)|, (17)

where `(A,X ) denotes the loss evaluated over the data X .
Comparators. We provide evaluation of our decomposi-

tion learning for inverse problems against various other net-
work configurations: residual learning, Unet with residual
connection (ResUnet) [15]; nullspace learning, nullspace
network (NSN) [35]; and pre-denoising+nullspace learn-
ing, denoising with a pre-trained DnCNN [44] followed by
a NSN (DnNSN). For fairness in all the experiments, the
backbone network architectures were the same for ResUnet,
NSN and the G network in DDN. Similarly the architectures
for the denoiser used in DnNSN was the same as that of F
used in DDN. All networks used H†yε as the input, were
implemented in Pytorch, and trained on NVIDIA 2080Ti
GPUs.

4.2. Results and Analysis

We used ADAM to optimize the DDN with an initial
learning rate of 10−3, and we tuned the λ1 and λ2 for spe-
cific inverse problems, i.e. λ1 = 10−8, λ2 = 10−8 for the
SR task and λ1 = 10−6 and λ2 = 10−7 in the CS problem.

Study of training strategy: We first investigate the
performance of DDN with the different training strategies
(jointly/decoupled training) and different connection types
(independent/cascade). Note that for the independent model
the joint and decoupled training are exactly equivalent. We
perform SR with a scale factor of 2 and noise level σε = 25
(10%) on the BSDS300 dataset. The results are reported
in the Table 1 which demonstrates the cascade architecture
always performs slightly better than the independent one in
term of both PSNR and GE. We also find thatF and G bene-
fit from more iterations in the decoupled training, especially
for the noisy case. In contrast, joint training was observed to
be more efficient. In all subsequent experiments, we there-
fore use the cascade architecture with joint training for the
DDNs.

Metric Independent Cascade
Joint/Decoupled Joint Decoupled

PSNR (dB) 25.85 26.71 26.74
GE (10−4) 1.10 1.27 1.25

Table 1: Comparison of DDN training strategies v.s. con-
nection types of F and G on SR (2×, σε = 25) task.

Comparison results. The results on the CelebA dataset
for CS and the BSDS100 dataset for SR are shown in Fig-
ures 31 and 4, respectively. We also list the statistics of
PSNRs and GEs of the reconstruction outputs in Table 2 and
3 for the different noise levels σε = 0 and 25, respectively.
From the results, we have the following conclusions.

1Note the compressed measurements {yε} are not shown in Figure 3
since they are random compressed vectors without visual semantics.
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Figure 3: Visual demonstration and PSNRs of CS (d/D = 0.3, 0.1) results on the CelebA dataset with noise scale σε = 0, 25.
From left to right in each subfigure: oracle celebrity smile face x, input H†yε, results of ResUnet [15], NSN [35], DnNSN:
DnCNN [44] + NSN (only for (c) and (d)), and results of the proposed method.

Task ResUnet NSN DDN

CS (0.3) 29.75/0.84 29.10/0.82 31.24/0.82
CS (0.1) 26.18/1.86 27.31/1.86 27.89/1.69
SR (2×) 27.56/1.02 28.23/0.82 31.55/0.80
SR (4×) 26.20/1.34 26.38/1.32 26.70/1.23

Table 2: Comparison results of PSNR/GE (×10−4) on dif-
ferent inverse problems with noise level σε = 0.

Task ResUnet NSN DnNSN DDN

CS (0.3) 28.44/0.55 25.84/0.55 18.08/1.45 26.83/0.54
CS (0.1) 26.17/1.35 26.27/1.59 21.13/2.06 27.00/1.30
SR (2×) 24.31/1.75 21.85/1.41 25.92/1.53 26.71/1.27
SR (4×) 23.94/1.82 23.80/1.75 24.05/1.81 24.19/1.60

Table 3: Comparison results of PSNR/GE (×10−4) on dif-
ferent inverse problems with noise level σε = 25.

First, it can be seen that the proposed DDN outperforms
all the counterparts on the SR task both in the noisy and
noise-free cases. While the physics-free approach, Re-
sUnet, achieves the best results on the CS with compres-
sion ratio d

D = 0.3, it fails to handle larger compression
ratios, e.g. d

D = 0.1 where we believe NSN and DDN
benefit more from the presence of explicit nullspace struc-

ture. NSN enjoys good performance only in the noise-free
case, but it performed poorly in the presence of large noise
(σε = 25), as in this scenario the denoising task plays
a significant role in the inverse problem. Since the Re-
sUnet is purely learning-based, it consistently provides sta-
ble restoration regardless of whether the measurements are
clean or noisy, but in both cases it has higher GEs than DDN
and NSN. This suggests that introducing physics into deep
learning models can facilitate the neural network to enjoy
better generalization for solving inverse problems. In ad-
dition the decomposition learning appears to enjoy similar
GE to the NSN in the zero noise case and slightly better
GE when noise is present. Thanks to the introduction of F
and G, regardless of whether the null space is large or small,
or whether the denoising significant or not, the DDN offers
good restoration.

Second, preprocessing the NSN with a denoiser, as in
the DnNSN performed worse than the NSN in the noisy CS
problem (Figure 3), although it performs better than NSN
in the noisy SR task (Figure 4). Furthermore, in both tests
the DnNSN performed substantialy worse than the proposed
DNN. This demonstrates that in order to gain the full bene-
fits of the denoiser it cannot be completely decoupled from
the inverse problem. Similar observations can be found in
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Figure 4: Visual demonstration and PSNRs of SR (2× and 4×) results on the BSDS100 dataset with noise scale σε = 25.
From left to right: oracle image x with its index number in the dataset, LR noisy measurement yε, bi-cubic upsample, results
of ResUnet [15], NSN [35], DnNSN: DnCNN [44] + NSN, and results of the proposed method.

[32]. In contrast, in the DDN, the denoising process is in-
tegrated into the proposed decomposition learning, which
allows the DDN to remove structural noise and to simul-
taneously accurately approximate the r-component Pr and
predict the n-component Pn from its noisy observations.
From the above discussions, we conclude that decompo-
sition learning is well-principled, structurally simple, and
highly interpretable.

Finally, we emphasize that given a linear forward oper-
ator H, the decomposition learning naturally exists and is
easily to define. One can plug the decomposition learning,
(7) or (8), into other existing specialized solvers for differ-
ent problems, with which we believe one could increase the
performance limit of the deep learning solvers. However,
we leave this as our future work.

5. Conclusion

In this paper, we have proposed a deep decomposition
learning method for building an end-to-end neural network
solution for inverse problems. We have explicitly reformu-
lated the DNN layers to learn range-nullspace decomposi-
tion functions with reference to the layer inputs, instead of
learning unreferenced functions. We have shown that the
decomposition networks not only produce superior results,
but also enjoy good interpretability and generalization. We
have demonstrated the advantages of decomposition learn-
ing on compressive sensing and image super-resolution ex-
amples. In future work, we will explore adapting the pro-
posed deep decomposition learning to more challenging in-
verse problems such as tomographic imaging.
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