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Abstract 11 

Sexual selection has been proposed as a force that could help maintain the diversity of major 12 

histocompatibility complex (MHC) genes in vertebrates. Potential selective mechanisms can 13 

be divided into pre-copulatory and post-copulatory, and in both cases the evidence for 14 

occurrence is mixed, especially in natural populations. In this study, we used a large number 15 

of parent-offspring trios that were diplotyped for MHC class II genes in a wild population of 16 

Soay sheep (Ovis aries) to examine whether there was within-trio post-copulatory selection 17 

on MHC class II genes at both the haplotype and diplotype levels. We found there was 18 

transmission ratio distortion of one of the eight MHC class II haplotype (E) which was 19 

transmitted less than expected by fathers, and transmission ratio distortion of another 20 

haplotype (A) which was transmitted more than expected by chance to male offspring. 21 

However, in both cases these deviations were not significant after correction for multiple 22 

tests. In addition, we did not find any evidence of post-copulatory selection at the diplotype 23 

level. These results imply that, given known parents, there is no strong post-copulatory 24 

selection on MHC class II genes in this population. 25 

 26 

Introduction 27 

The major histocompatibility complex (MHC) is one of the most variable gene families in the 28 

vertebrate genome. Classical MHC genes are an essential component of the adaptive immune 29 

system and comprise two main classes of genes (class I and II) that are responsible for the 30 

recognition and presentation of foreign antigens. Class I-encoded molecules are expressed on 31 

all nucleated somatic cells primarily involved in presenting endogenously derived peptides to 32 

CD8+ cytotoxic T cells. Class II-encoded molecules are expressed on antigen-presenting cells 33 

and are primarily involved in presenting exogenously derived peptides to CD4+ T cells. 34 

Pathogen-mediated balancing selection is thought to be the main force maintaining the 35 

diversity of MHC genes, but sexual selection is considered to be an important mechanism in 36 

some species. MHC genes could be under sexual selection because parents are selected to 37 

optimize the immunity of their offspring or because MHC genes are used as a proxy for certain 38 

sexually selected traits (1-6). 39 

MHC-dependent sexual selection could occur at both the pre-copulatory and post-copulatory 40 

stages, based on different aspects of MHC genes including selection favouring or disfavouring 41 

specific alleles, selection favouring more and/or more diverse MHC alleles, and MHC 42 

compatibility (similarity/dissimilarity) between partners. A meta-analysis including studies on 43 

both pre-copulatory and post-copulatory selection across non-human vertebrates supports 44 

female choice for MHC diversity and choice for MHC dissimilarity regardless of which sex 45 

chooses (7). Pre-copulatory sexual selection in the form of MHC-dependent mate choice has 46 

been reported in a wide range of vertebrate taxa in natural populations including fishes (8, 47 

9), reptiles (10), birds (11, 12), and mammals (13, 14).  48 
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MHC-dependent post-copulatory selection may also play an important role in shaping MHC 49 

diversity in some species, and this could occur at two stages, either before fertilization, 50 

through sperm competition or cryptic female choice, or after fertilization through mother-51 

foetus interactions (15).  The “Sperm receptor selection hypothesis” has been proposed to 52 

explain selection before fertilization (16). Although the expression of MHC genes in 53 

spermatozoa or oocytes is controversial, with both positive and negative evidence, linkage 54 

disequilibrium between odorant receptor genes and MHC genes could still contribute to the 55 

recognition between spermatozoa and oocytes (15, 17). Thus, in either a polyandrous mating 56 

system or within a sire, specific spermatozoa could be selected for fertilization based on their 57 

MHC haplotype. After fertilization, females could allocate more energetic resources to 58 

genetically “preferred” embryos which could induce MHC-dependent sexual selection (18, 59 

19). Finally, the similarity between maternal and foetal MHC genes could result in selective 60 

abortion of embryos. For example in a Hutterite population, significantly increased foetal loss 61 

rates were observed among couples with identical MHC haplotypes (20, 21).  62 

MHC-dependent post-copulatory selection has mostly been studied experimentally and 63 

different studies have focused on different stages and produced mixed results. At the pre-64 

fertilization stage, some experimental studies of fishes demonstrated cryptic female choice 65 

favouring sperm from MHC-similar males (22, 23) while another study of red junglefowl 66 

(Gallus gallus) found sperm from MHC-dissimilar males were favoured (24). Sperm selection 67 

within a sire has also been investigated. Some experimental studies found no evidence of 68 

MHC-dependent gamete fusions (25, 26) while other studies have reported haplotype-69 

specific fertilization bias toward gametes with complementary MHC genes (27-29).  70 

 71 

Even fewer studies have investigated post-copulatory selection in semi-natural or natural 72 

populations, and again the results are equivocal. First, some studies used behavioural 73 

observations combined with molecular parentage data to examine post-copulatory selection 74 

caused by cryptic female mate choice or sperm competition between different males. For 75 

example, fathers were reported to have more MHC supertypes (MHC variants with similar 76 

physicochemical properties) different from those of the mother than randomly assigned 77 

males in a population of grey mouse lemur (Microcebus murinus), although such a deviation 78 

was not observed in behavioural data (30). Other studies have used molecular parentage data 79 

to study within-trio post-copulatory selection. For example in a semi-natural rhesus macaque 80 

(Macaca mulatta) colony, although there was no evidence for post-copulatory selection 81 

against MHC-homozygous individuals, the distribution of paternally and maternally inherited 82 

MHC haplotypes tended to differ from expected (31). A similar pattern was observed in a 83 

lesser kestrel population (Falco naumanni) at the allele level: an MHC supertype including two 84 

common alleles showed significant transmission ratio distortion when inherited from males 85 

but not from females (32). However, in a semi-natural population of mandrills (Mandrillus 86 

sphinx), no evidence of post-copulatory selection on MHC genes was found (33). As 87 

experimental studies cannot reflect the complexity of the natural environment, more studies 88 

in natural populations are needed to understand the generality of patterns of post-copulatory 89 

selection on MHC genes.  90 
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Here, we used an unmanaged population of Soay sheep (Ovis aries) living on the island of 91 

Hirta, St Kilda, to study post-copulatory selection on MHC genes. Since 1985, a large number 92 

of sheep have been individually followed from birth to death and a multigenerational 93 

pedigree covering nearly all studied individuals has been constructed using genome-wide SNP 94 

genotypes. A previous study using MHC-linked microsatellite markers of several hundred 95 

individuals born between 1985 and 1994 found all loci were in Hardy-Weinberg proportions 96 

and strong evidence of balancing selection (34). Recently, eight functional MHC class II 97 

haplotypes were identified in this population using sequence-based genotyping (35). Using 98 

13 selected SNPs in the MHC class II region, we successfully characterized MHC class II 99 

diplotypes, variants of all possible combinations of the MHC haplotypes that exist in the 100 

population, in 5349 sheep and found that the data are in Hardy-Weinberg equilibrium (36, 101 

37). Combining the MHC class II genotyping with the pedigree information, we identified a 102 

large number of trios with offspring and both parents successfully diplotyped for MHC genes. 103 

Using these trios, we tested within-trio post-copulatory selection on MHC class II haplotypes 104 

in Soay sheep by answering several questions using different parental groups classified by 105 

their MHC class II diplotypes: 1) Is there selection against homozygote offspring? 2) Is there 106 

selection against offspring which have an identical diplotype to their mother? 3) Is there 107 

selection favouring offspring with more divergent MHC class II haplotypes? 4) Is any specific 108 

MHC class II haplotype favoured?  5) Is there transmission ratio distortion of specific MHC 109 

class II haplotypes from fathers or mothers or to male or female offspring? 110 

 111 

Methods 112 

Study population and parentage data 113 

The Soay sheep population used in this study has lived on the island of Soay, in the St. Kilda 114 

archipelago for many centuries. In 1932, 107 Soays were introduced to the larger 115 

neighbouring island of Hirta and have been living there unmanaged since. From 1985, a 116 

longitudinal individual-based study has been conducted on the sheep resident in the Village 117 

Bay area of Hirta to investigate ecological and evolutionary questions (38). 90% of lambs, born 118 

in April or May of each year, are ear-tagged and tissue sampled for DNA extraction soon after 119 

birth. Any missed lambs or immigrant adults are captured, tagged and sampled in an August 120 

catch up or in the rut in November. As far as possible all sheep alive since 1989 have been 121 

genotyped on the Illumina Ovine 50K SNP array. Parentage is inferred for each individual using 122 

a subset of 315 SNPs in low linkage disequilibrium derived from the SNP array using the 123 

pedigree reconstruction software Sequoia (39, 40). In cases where no SNP genotypes were 124 

available, a small number of parentage inferences were made using field observations (for 125 

mothers) or a previous microsatellite genotyping approach (41). 126 

The Soay sheep has a promiscuous mating system. Both females and males mate multiply and 127 

often with different partners within a year. Females usually have single lambs, less commonly 128 

twins, and very rarely triplets (38), with twins and triplets accounting for approximately 20% 129 

of new-born lambs (Supplementary table 1). Twins and triplets are always non-identical (J. 130 
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Pemberton & S. Johnston, pers. obs.) and usually have different fathers (Supplementary table 131 

1). Since each offspring therefore represents a separate fertilisation, we treated each 132 

offspring as an independent data point.  133 

 134 

MHC data 135 

The ovine class II region comprises two distinct subregions, class IIa and IIb, which both 136 

contain a number of loci, with pathogen resistance mainly reported to be associated with 137 

class IIa loci (42). The MHC data used in this study were obtained from a previous study (35, 138 

36). First, seven expressed loci (DRB1, DQA1, DQA2, DQA2-like, DQB1, DQB2 and DQB2-like) 139 

within the MHC class IIa region were characterised in 118 Soay sheep using genotyping-by-140 

sequencing. As a consequence, a total of eight MHC class II haplotypes were identified and 141 

named A to H, and confirmed in an additional 94 Soays selected from the pedigree to 142 

maximise genetic diversity (35). Second, a panel of 13 SNPs, mostly located in the flanking 143 

regions of the MHC class IIa haplotypes, including 11 SNPs from the Ovine Infinium HD chip 144 

and two other SNPs located within DQA1 gene, were selected for imputation of the eight 145 

haplotypes and genotyped in 5951 Soay sheep using Kompetitive Allele-specific PCR (KASP). 146 

After imputation and quality control, we rejected 276 individuals on 3 plates with high 147 

genotyping error rate, 297 individuals with missing SNP genotypes, 26 individuals with novel 148 

MHC haplotypes potentially caused by genotyping errors and 3 individuals with diplotypes 149 

which were inconsistent with their parents. Finally, the diplotypes of 5349 individuals that 150 

lived in the study area between 1985 and 2012 were identified (36, 37). The frequency of each 151 

haplotype is shown in Supplementary Figure 1. 152 

Analytical methods 153 

In this study, we only used offspring-mother-father trios in which all three members were 154 

diplotyped (N=2459 trios). We omitted all trios in which the diplotyped offspring died as a 155 

foetus when its mother died.  We characterized seven parental groups based on the parental 156 

diplotype combination (Table 1). Groups 1 and 2 are of no further interest because all 157 

offspring will have the same diplotypes. For all other groups, Monto-Carlo simulations were 158 

conducted by randomly choosing one haplotype from each true parent in a pair to create a 159 

simulated offspring. Each trio was simulated for 10,000 iterations using a custom script in R 160 

v.3.5.2. The observed sample size of offspring for each group is shown in Table 1. 161 

Table 1. Classification and sample size of parental groups. The letters in parental diplotypes 162 

are here used as examples to describe the seven possible combinations of parental 163 

diplotypes.  Since there are eight haplotypes in the population named A to H, in reality there 164 

are multiple different diplotype combinations in each group, e.g.  group 1 includes AA-AA, BB-165 

BB, CC-CC etc. 166 

Group Parental diplotype 
combination 

Expected ratio of heterozygotes: 
homozygotes in offspring 

 Number of 
trios 

1 MM-MM all homozygote  18 

2 MM-NN all heterozygote  74 

3 MM-NO all heterozygote  432 
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4 MN-OP all heterozygote  894 

5 MM-MN 1:1  164 

6 MN-MN 1:1  78 

7 MN-MO 3:1  799 

total 
  

 2459 
 167 

After simulation, we conducted five kinds of analyses to test for post-copulatory selection on 168 

MHC variation in Soay sheep, comparing the observed value with the simulated distribution.  169 

For all the analyses, significance was determined by comparing the observed value with the 170 

2.5% and 97.5% tails of the distribution of the values of the 10,000 iteration simulations. 171 

(1) At the diplotype level we examined whether there was a deficit or excess of MHC 172 

homozygotes in groups 5-7 using the ratio of heterozygote : homozygote. We did this 173 

separately for each group as the expected ratio of heterozygote : homozygote is different 174 

across the three groups (Table 1).  175 

(2) We investigated whether there was a deficit or excess of offspring with MHC class II 176 

diplotypes identical with a parent using groups 5 and 7.  We compared the number of 177 

offspring which had identical diplotypes with the mother and those which had identical 178 

diplotypes with their father separately. This test was not performed on group 6, since both 179 

parents have identical diplotypes. 180 

(3) We investigated whether offspring had more or less divergent MHC class II diplotypes than 181 

expected in groups 3-7. The pairwise divergence of each pair of MHC class II haplotypes was 182 

measured by the proportion of the amino acid sequence that differed (p-distance; 183 

Supplementary Table 4) (36). We compared the mean divergence of MHC class II diplotypes 184 

across all the offspring in simulated data with that in the real data.  185 

(4) At the haplotype level, we investigated whether specific haplotypes were over- or under-186 

represented in comparison with the parental generation across all the simulated groups (3-187 

7). 188 

(5) We focused on whether there is transmission ratio distortion of MHC class II haplotypes 189 

in Soay sheep from either fathers or mothers. For each haplotype, we assessed the frequency 190 

with which it was inherited from a father and a mother separately.  We did this in all simulated 191 

groups except for group 6 in which it was not possible to tell which parent a haplotype came 192 

from.  193 

(6) Finally, we investigated whether the frequency of a haplotype received by an offspring 194 

was over- or under-represented in male or female offspring, using all simulated groups (3-7). 195 

 196 

Results 197 

Here we present the results of the six tests described above in turn. 198 
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(1) The expected ratio of heterozygote: homozygote for each group is shown in Table 1.  In all 199 

tested groups (5, 6, 7) the ratio of heterozygote: homozygote diplotypes was in line with 200 

random expectation (Supplementary Figure 2, Supplementary Table 5).  201 

 (2) The expected number of offspring with diplotypes identical to a parent was 82 in group 5 202 

(half of 164 trios) and 200 in group 7 (a quarter of 799 trios).  The number of offspring with 203 

identical diplotypes to their mother or father was in line with random expectation 204 

(Supplementary Figure 3, Supplementary Table 6).  205 

 (3) We found that the divergence of MHC class II diplotype in offspring was in line with 206 

random expectation (Supplementary Figure 4, Supplementary Table 7). 207 

 (4) We found that no specific haplotype was either over- or under-represented across all 208 

offspring (Supplementary Figure 5, Supplementary Table 8). 209 

 (5) We found evidence for transmission ratio distortion of haplotype E. Observed paternally 210 

inherited haplotype E was under-represented compared with simulated data (Figure 1A), but 211 

maternally inherited haplotype E was neither over- nor under-represented (Supplementary 212 

Figure 6, Supplementary Table 9). The nominal P-value for paternal haplotype E distortion is 213 

p=0.0065, but after Bonferroni correction for 16 tests (8 haplotypes x 2 sexes, critical p after 214 

correction: 0.0015625) it was not significant and is hereafter referred to as marginally 215 

significant. 216 

 (6) We found that haplotype A was over-represented in male offspring (Figure 1B) but not in 217 

female offspring (Supplementary Figure 6, Supplementary Table 9). The nominal P-value for 218 

male haplotype A distortion is p=0.007, but after Bonferroni correction for 16 tests (as above) 219 

it was not significant and is hereafter referred to as marginally significant. 220 

As shown in Supplementary Table 1, some twins are full sibs. Twins are always dizygotic, so 221 

represent separate fertilisation events (J. Pemberton & S. Johnston, pers. obs.). In addition, a 222 

small number full sibs are born in different years, also from separate fertilisation events. 223 

Nevertheless, to eliminate the possibility of non-independence of parental pairs affecting our 224 

results, we repeated the whole analysis after retaining only the first instance of a parental 225 

pair in the data set. The results were consistent with those reported above (Supplementary 226 

Table 10). 227 

Discussion 228 

In this study, we investigated post-copulatory selection on MHC class II haplotypes in a wild 229 

population of Soay sheep using a large number of informative parent-offspring trios. We 230 

found no evidence of selection against homozygous offspring, no deficit or excess of identical 231 

diplotypes between offspring and either parent, and no selection favouring offspring with 232 

more divergent MHC class II diplotypes. Thus, we did not find any evidence of post-copulatory 233 

selection at the diplotype level. At the haplotype level, we did not find any haplotype was 234 

either over- or under-represented across all offspring. However, we found that haplotype E 235 

was underrepresented when inherited from fathers and haplotype A was overrepresented in 236 

male offspring, although neither result survived Bonferroni correction.  237 
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Our results provide little evidence for within-trio post-copulatory selection on MHC class II 238 

haplotypes. Although some experimental studies have reported post-copulatory selection on 239 

MHC genes both before fertilization (22, 24) and after fertilization (29), evidence in semi-240 

natural or natural populations is weak. Only one study of lesser kestrel showed significant 241 

transmission ratio distortion of an MHC supertype inherited from fathers (32). In our study, 242 

we also identified transmission ratio distortion of particular MHC class II haplotypes both in 243 

the parental generation and filial generation. However, we could not rule out the possibility 244 

that these results are false-positives due to multiple testing. In addition, we did not identify 245 

any signature of post-copulatory selection at the diplotype level. Our results are consistent 246 

with the lack of deviation from Hardy-Weinberg equilibrium in the wider Soay sheep MHC 247 

class II dataset (36).  248 

Our study contrasts somewhat with the two previous studies that found significant or 249 

suggestive evidence of post-copulatory selection on MHC genes in semi-natural or natural 250 

populations (31-33). The difference is potentially due to differences in MHC diversity, 251 

sample size, analytical method and species. First, MHC class II diversity in Soay sheep, with 252 

only eight haplotypes, is much lower than in the other two studies. Moreover, the eight 253 

haplotypes are at relatively even frequencies, as demonstrated by significant deviation from 254 

expected in the Ewens-Watterson test at different life history stages and within the standing 255 

population each year (36), which maximises analytical power. Using microsatellite 256 

genotyping, a total of 176 MHC haplotypes were identified in Rhesus macaques. As a result, 257 

the number of informative trios that had a 1:1 expected ratio of homozygous and 258 

heterozygous offspring was too low to use for further analysis, which reduced the study to 259 

only the parental category which had an expected 3:1 heterozygote:homozygote ratio. In 260 

the study of lesser kestrel, as the allele number of each individual was very high, MHC 261 

supertypes were used as the MHC marker for the study of transmission ratio distortion, 262 

which may not reflect actual selection at either the allele or haplotype level. Second, our 263 

sample size was larger than previous studies: in the Rhesus macaque there were 154 264 

informative trios and in the lesser kestrel there were 228 meiotic events from 44 families. 265 

With several hundred trios in each test, our study had more statistical power. Third, our 266 

results were produced by comparing the results of Monto-Carlo simulation and real data 267 

while the study of Rhesus macaques and lesser kestrel used Bayesian t-test and 268 

Kolmogorov–Smirnov test respectively. Monto-Carlo simulation does not require specific 269 

statistical assumptions and thus could avoid the use of models with potentially 270 

inappropriate assumptions (43). These things said, there remains the possibility that there 271 

are species differences in post-copulatory selection on MHC genes, which could explain 272 

variation between studies. 273 

Our study focused on within-trio post-copulatory selection on MHC genes using parentage 274 

data. However, in polyandrous mating systems there may also be MHC-dependent mating, 275 

sperm competition and cryptic female choice favouring sperm from particular males among 276 

mated partners (44, 45) which were not examined in the present study. To test these ideas, 277 

a large number of mating observations and associated parentage data should be available 278 

simultaneously to differentiate MHC-dependent pre-copulatory selection and post-279 

copulatory selection. To date, this hypothesis has only been tested in a population of mouse 280 
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lemurs (30). Consort data has been collected in Soay sheep over many years and there is 281 

some evidence for assortative mating in the population (46). Thus, further studies could 282 

combine the consort data, molecular parentage data and actual MHC diplotypes together to 283 

investigate whether there is MHC-dependent selection via sperm competition in this 284 

polyandrous mating system.  285 

In conclusion, we have identified a large number of informative trios using MHC genotyping 286 

and parentage data to study within-trio post-copulatory selection on MHC class II genes in a 287 

wild population of Soay sheep. With the advantage of limited MHC diversity and large sample 288 

size, this is the first study to investigate post-copulatory selection thoroughly at both the 289 

diplotype and haplotype levels in a free-living population. We found evidence of transmission 290 

ratio distortion of specific MHC class II haplotypes inherited from fathers and inherited by 291 

male offspring, but we could not rule out the possibility of false positive results in these tests. 292 

These results imply little evidence of MHC-dependent post-copulatory selection in the study 293 

population. Our study also highlights the value of large-scale genetic parentage inference and 294 

Monte Carlo simulation for investigating post-copulatory selection on the MHC in free-living 295 

population. 296 
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