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A MODIFIED MSA FOR STOCHASTIC CONTROL PROBLEMS

B. KERIMKULOV1,2, D. ŠIŠKA2,3, AND  L. SZPRUCH2,4

Abstract. The classical Method of Successive Approximations (MSA) is an
iterative method for solving stochastic control problems and is derived from
Pontryagin’s optimality principle. It is known that the MSA may fail to con-
verge. Using careful estimates for the backward stochastic differential equation
(BSDE) this paper suggests a modification to the MSA algorithm. This mod-
ified MSA is shown to converge for general stochastic control problems with
control in both the drift and diffusion coefficients. Under some additional as-
sumptions the rate of convergence is shown. The results are valid without
restrictions on the time horizon of the control problem, in contrast to iterat-
ive methods based on the theory of forward-backward stochastic differential
equations.

1. Introduction

Stochastic control problems appear naturally in a range of applications in engin-
eering, economics and finance. With the exception of very specific cases such as the
linear-quadratic control problem in engineering or Merton portfolio optimization
task in finance, stochastic control problems typically have no closed form solutions
and have to be solved numerically. In this work, we consider a modification to
the method of successive approximations (MSA), see Algorithm 1. The MSA is
essentially a way of applying the Pontryagin’s optimality principle to get numerical
solutions of stochastic control problems.

We will consider the continuous space, continuous time problem where the con-
trolled system is modelled by an R

d-valued diffusion process. Let W be a d′-
dimensional Wiener martingale on a filtered probability space (Ω,F , (Ft)t≥0,P).
We will provide exact assumptions we need in Section 2. For now, let us fix a finite
time T ∈ (0,∞) and consider the controlled stochastic differential equation (SDE)
for given measurable functions b : [0, T ]× R

d × A → R
d and σ : [0, T ]× R

d × A →

R
d×d′

dXs = b(s,Xs, αs) ds+ σ(s,Xs, αs) dWs , s ∈ [0, T ] , X0 = x . (1)

Here α = (αs)s∈[0,T ] is a control process belonging to the space of admissible
controls A, valued in a separable metric space A and we will write Xα to denote
the unique solution of (1) which starts from x at time 0 whilst being controlled by
α. Furthermore let f : [0, T ]× R

d × A → R and g : Rd → R be given measurable

1Maxwell Institute Graduate School in Analysis and Applications
2School of Mathematics, University of Edinburgh
3Vega Protocol
4Alan Turing Institute

E-mail addresses: B.Kerimkulov@sms.ed.ac.uk, D.Siska@ed.ac.uk, L.Szpruch@ed.ac.uk.
Date: 18th November 2020,
Supported by the Alan Turing Institute under EPSRC grant no. EP/N510129/1 and by The

Maxwell Institute Graduate School in Analysis and its Applications, a Centre for Doctoral Training
funded by the UK Engineering and Physical Sciences Research Council (grant EP/L016508/01),
the Scottish Funding Council, Heriot-Watt University and the University of Edinburgh.

1

http://arxiv.org/abs/2007.05209v2
http://www.maxwell.ac.uk/migsaa
https://www.maths.ed.ac.uk
https://vegaprotocol.io
https://www.turing.ac.uk


2 A MODIFIED MSA FOR STOCHASTIC CONTROL PROBLEMS

functions and consider the gain functional

J(x, α) := E

[

∫ T

0

f(s,Xα
s , αs)ds+ g(Xα

T )

]

(2)

for all x ∈ R
d and α ∈ A. We want to solve the optimisation problem i.e. to find the

optimal control α∗ which achieves the minimum of (2) (or, if the infimum cannot
be reached by α ∈ A then an ε-optimal control αε ∈ A such that infα∈A J(x, α) ≤
J(x, αε) + ε).

In the present paper, we study an approach based on Pontryagin’s optimality
principle, see e.g. [4], [7] or [25]. The main idea is to consider optimality conditions
for controls of the problem (2). Given b, σ and f we define the Hamiltonian H :

[0, T ]× R
d × R

d × R
d×d′

×A → R as

H(t, x, y, z, a) = b(t, x, a) · y + tr(σ⊤(t, x, a)z) + f(t, x, a) . (3)

Consider for each α ∈ A, the BSDE, called the adjoint equation

dY α
s = −DxH(s,Xα

s , Y
α
s , Zα

s , αs) ds+ Zα
s dWs, Y α

T = Dxg(X
α
T ), s ∈ [0, T ] . (4)

It is well known from Pontryagin’s optimality principle that, if an admissible control
α∗ ∈ A is optimal, Xα∗

is the corresponding optimally controlled dynamic (1) and
(Y α∗

, Zα∗

) is the solution to the associated adjoint equation (4), then ∀a ∈ A and
∀s ∈ [0, T ] the following holds

H(s,Xα∗

s , Y α∗

s , Zα∗

s , α∗
s) ≤ H(s,Xα∗

s , Y α∗

s , Zα∗

s , a) a.s. (5)

We now define the augmented Hamiltonian H̃ : [0, T ]×R
d×R

d×R
d×d′

×A×A →
R for some ρ ≥ 0 by

H̃(t, x, y, z, a′, a) := H(t, x, y, z, a) +
1

2
ρ|b(t, x, a)− b(t, x, a′)|2

1

2
ρ|σ(t, x, a)− σ(t, x, a′)|2 +

1

2
ρ |DxH(t, x, y, z, a)−DxH(t, x, y, z, a′)|

2
.

(6)

Notice that when ρ = 0 we have exactly the definition of Hamiltonian (3). Given the
augmented Hamiltonian, let us introduce the modified MSA in Algorithm 1 which
consists of successive integrations of the state and adjoint systems and updates to
the control. Notice that the backward SDE depends on the Hamiltonian H, while
the control update step comes from minimizing the augmented Hamiltonian H̃.

Algorithm 1 Modified Method of Successive Approximations:

Initialisation: make a guess of the control α0 = (α0
s)s∈[0,T ].

while difference between J(x, αn) and J(x, αn−1) is large do

Given a control αn−1 = (αn−1
s )s∈[0,T ] solve the following forward SDE, then

solve backward SDE:

dXn
s = b(s,Xn

s , α
n−1
s ) ds+ σ(s,Xn

s , α
n−1
s ) dWs , Xn

0 = x ,

dY n
s = −DxH(s,Xn

s , Y
n
s , Zn

s , α
n−1
s ) ds+ Zn

s dWs, Y n
T = Dxg(X

n
T ) .

(7)

Update the control

αn
s ∈ argmin

a∈A
H̃(s,Xn

s , Y
n
s , Zn

s , α
n−1
s , a) , ∀s ∈ [0, T ] . (8)

end while

return αn.

The method of successive approximations (i.e. case ρ = 0) for numerical solution
of deterministic control problems was proposed already in [5]. Recent application
of the modified MSA to a deep learning problem has been studied in [32], where
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they formulated the training of deep neural networks as an optimal control problem
and introduced the modified method of successive approximations as an alternative
training algorithm for deep learning. For us, the main motivation to explore the
modified MSA for stochastic control problems is to obtain convergence, ideally
with rate, of an iterative algorithm, applicable to problems with the control in
the diffusion part of the controlled dynamics. This is in contrast to [36] where
convergence rate of an the Bellman–Howard policy iteration is shown but only for
control problems with no control in the diffusion part of the controlled dynamics.

In Lemma 2.3, which can be established using careful BSDE estimates, we can
see the estimate on the change of J when we do a minimization step of Hamiltonian
as in (8). If the sum of the last three terms of (14) is bigger than the first term, then
for classical MSA algorithm (i.e. case ρ = 0) we cannot guarantee that we do an
update of the control in optimal descent direction of J . That means that the method
of successive approximations may diverge. To overcome this, we need to modify
the algorithm in such way so that we ensure convergence. With this in mind the
desirability of the the augmented Hamiltonian (6) for updating the control becomes
clear, as long as it still characterises optimal controls like H does. Theorem 2.4
answers this question affirmatively which opens the way to the modified MSA.
In Theorem 2.5 we show that the modified method of successive approximations,
converges for arbitrary T , and in Corollary 2.6, we show logarithmic convergence
rate for certain stochastic control problems.

We observe that the forward and backward dynamics in (7) are decoupled, due
to the iteration used. Therefore, it can be efficiently approximated, even in high
dimension, using deep learning methods, see [31] and [30]. However, the minimiz-
ation step (8) might be computationally expensive for some problems. A possible
approach circumventing this is to replace the full minimization of (8) by gradient
descent. A continuous version of this gradient flow is analyzed in [37].

The main contributions of this paper are the probabilistic proof of convergence
of the modified method of successive approximations and establishing convergence
rate for a specific type of optimal control problems.

This paper is organised as follow: in Section 1.1 we compare our results with
existing work. In Section 2 we state the assumptions and main results. In Section 3
we collect all proofs. Finally, in Appendix A we recall an auxiliary lemma which is
needed in the proof of Corollary 2.6.

1.1. Related work. One can solve the stochastic optimal control problem using
dynamic programming principle. It is well known, see e.g. Krylov [8], that under
reasonable assumptions the value function, defined as infimum of (2) over all ad-
missible controls, satisfies the Bellman partial differential equation (PDE). There
are several approaches to solve this nonlinear problem. One may apply a finite dif-
ference method to discretise the Bellman PDE and get a high dimensional nonlinear
system of equations, see e.g [20] or [22]. Or one may linearize the Bellman PDE
and then iterate. The classical approach is the Bellman-Howard policy improve-
ment / iteration algorithm, see e.g. [1], [2] or [3]. The algorithm is initialised with
a “guess” of Markovian control. Given a Markovian control strategy at step n one
solves a linear PDE with the given control fixed and then one uses the solution to
the linear PDE to update the Markovian control, see e.g. [27], [28] or [29]. In [36],
a global rate of convergence and stability for the policy iteration algorithm has
been established using backward stochastic differential equations (BSDE) theory.
However, the result only applies to stochastic control problems with no control in
the diffusion coefficient of the controlled dynamics.

It is known that the solution of the stochastic optimal control problem can be
obtained from a corresponding forward backward stochastic differential equation
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(FBSDE) via the stochastic optimality principle, see [26, Chapter 8.1]. Indeed, let
us consider (1) and (4), and recall from the stochastic optimality principle, see [25,
Theorem 4.12], that for the optimal control α∗ = (α∗

s)s∈[0,T ] we have that (5)
holds. Assume that under some conditions on b, σ and f we have that the first
order condition stated above uniquely determines α∗ for s ∈ [0, T ] by

α∗
s = ϕ(s,Xα∗

s , Y α∗

s , Zα∗

s ) , (9)

for some function ϕ. Therefore, after plugging (9) into (1) and (4), we obtain the
following coupled FBSDE:

dXα∗

s = b̄(s,Xα∗

s , Y α∗

s , Zα∗

s ) ds+ σ̄(s,Xα∗

s , Y α∗

s , Zα∗

s ) dWs , s ∈ [0, T ] , Xα∗

0 = x .

dY α∗

s = −DxH̄(s,Xα∗

s , Y α∗

s , Zα∗

s ) ds+ Zα∗

s dWs, YT = Dxg(X
α∗

T ), s ∈ [0, T ] ,

(10)

where (b̄, σ̄)(s,Xα∗

s , Y α∗

s , Zα∗

s ) = (b, σ)(s,Xα∗

s , ϕ(s,Xα∗

s , Y α∗

s , Zα∗

s )) and

H̄(s,Xα∗

s , Y α∗

s , Zα∗

s ) = H(s,Xα∗

s , Y α∗

s , Zα∗

s , ϕ(s,Xα∗

s , Y α∗

s , Zα∗

s )). It is worth men-
tioning that when σ does not depend on the control σ̄ will depend on forward
process and time only. This means that σ̄ does not have Y and Z components.

The theory of FBSDE has been studied widely and there are several methods to
show the existence and uniqueness result, and a number of numerical algorithms
have been proposed based on those methods. First is the method of contraction
mapping. It was first studied by Antonelli [9] and later by Pardoux and Tang [15].
The main idea there is to show that a certain map is a contraction, and then to
apply a fixed point argument. However, it turns out that this method works only
for small enough time horizon T . In the case when σ̄ does not depend on Y and
Z, having small T is sufficient to get contraction. Otherwise, one needs to assume
additionally that the Lipschitz constants of σ̄ in z and that of g in x satisfy a cer-
tain inequality, see [26, Theorem 8.2.1]. Using the method of contraction mapping
one can then implement a Picard-iteration-type numerical algorithm and show ex-
ponential convergence for small T . The second method is the Four Step Scheme.
It was introduced by Ma, Protter and Yong, see [10], and was later studied by
Delarue [17]. The idea is to use a decoupling function and then study an associ-
ated quasi-linear PDE. We note that in [10, 17] the forward diffusion coefficient σ̄
does not depend on Z. This corresponds to stochastic control problems with the
uncontrolled diffusion coefficient. The numerical algorithms based on this method
exploits the numerical solution of the associated quasi-linear PDE and therefore
faces some limitations for high dimensional problems, see Douglas, Ma and Prot-
ter [12], Milstein and Tretyakov [19], Ma, Shen and Zhao [21] and Delarue and
Menozzi [18]. Guo, Zhang and Zhuo [24] proposed a numerical scheme for high-
dimensional quasi-linear PDE associated with the coupled FBSDE when σ̄ does not
depend on Z, which is based on a monotone scheme and on probabilistic approach.
Finally, there is the method of continuation. This method was developed by Hu
and Peng [11], Peng and Wu [16] and by Yong [14]. It allows them to show the
existence and uniqueness result for arbitrary T under monotonicity conditions on
the coefficients, which one would not expect to apply to FBSDEs arising from a
control problem as described by (9), (10). Recently, deep learning methods have
been applied to solving FBSDEs. In [35], three algorithms for solving fully coupled
FBSDEs which have good accuracy and performance for high-dimensional prob-
lems are provided. One of the algorithms is based on the Picard iteration and it
converges, but only for small enough T . Such method for solving high-dimensional
FBSDEs has also been proposed in [34].
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2. Main results

We fix a finite horizon T ∈ (0,∞). Let A be a separable metric space. This is
the space where the control processes α take values. We fix a filtered probability
space (Ω,F ,F = (Ft)0≤t≤T ,P). Let W = (Wt)t∈[0,T ] be a d′-dimensional Wiener
martingale on this space. By Et we denote the conditional expectation with respect
to Ft. Let |·| denote any norm in a finite dimensional Euclidean space. By ‖·‖L∞ we
denote the norm in L∞(Ω). Let ‖Z‖H∞ := ess sup(t,ω) |Zt(ω)| for any predictable

process Z. We understand the following as Dxσ = Dxl
σij , D2

xb = D2
xlxn

bi and

D2
xσ = D2

xlxn
σij , where i, l, n = 1, 2, . . . , d and j = 1, 2, . . . , d′. By Z⊤ we denote

the transpose of Z. The state of the system is governed by the controlled SDE (1) .
The corresponding adjoint equation satisfies (4).

Assumption 2.1. The functions b and σ are jointly continuous in t and twice
differentiable in x. There exists K ≥ 0 such that ∀x ∈ R

d, ∀a ∈ A, ∀t ∈ [0, T ],

|Dxb(t, x, a)|+ |Dxσ(t, x, a)|+ |D2
xb(t, x, a)| ≤ K . (11)

Moreover, assume that D2
xσ(t, x, a) = 0 ∀x ∈ R

d, ∀a ∈ A, ∀t ∈ [0, T ].

Clearly the assumption (12) implies that ∀x, x′ ∈ R
d, ∀a ∈ A, ∀t ∈ [0, T ] we have

|b(t, x, a)− b(t, x′, a)|+ |σ(t, x, a) − σ(t, x′, a)| ≤ K|x− x′| . (12)

The assumption that D2
xσ(t, x, a) = 0 ∀x ∈ R

d, ∀a ∈ A, ∀t ∈ [0, T ] is needed so
that (21), in the proof of Lemma 3.1, holds. Without this assumption (21) would
only hold if we could show that ‖Zα‖H∞ < ∞. Without additional regularization of
the control problem this is impossible. Indeed, with [13, Proposition 5.3] we see that
Zα
t is a version of DtY

α
t (the Malliavin derivative of Y α

t ) and DtY
α
t itself satisfies

an a linear BSDE. However, to obtain the estimates using this representation,
one term that arises is Dtαs where t ∈ [0, T ] and s ∈ [t, T ]. So we would need
ess supω∈Ω,t∈(0,T ),s∈(t,T ) |Dtαs(ω)| < ∞. This is not necessarily the case here.

Assumption 2.2. The functions f is joinly continuous in t, and f and σ are twice
differentiable in x. There is a constant K ≥ 0 such that ∀x, ∀a ∈ A, ∀t ∈ [0, T ]

|Dxg(x)|+ |Dxf(t, x, a)|+ |D2
xg(x)|+ |D2

xf(t, x, a)| ≤ K . (13)

Under these assumptions, we can obtain the following estimate.

Lemma 2.3. Let Assumption 2.1 and 2.2 hold. Then for any admissible controls
ϕ and θ there exists a constant C > 0 such that

J(x, ϕ)− J(x, θ) ≤ E

∫ T

0

[H(s,Xθ
s , Y

θ
s , Z

θ
s , ϕs)−H(s,Xθ

s , Y
θ
s , Z

θ
s , θs)] ds

+ CE

∫ T

0

|b(s,Xθ
s , ϕs)− b(s,Xθ

s , θs)|
2 ds

+ CE

∫ T

0

|σ(s,Xθ
s , ϕs)− σ(s,Xθ

s , θs)|
2 ds

+ CE

∫ T

0

|DxH(s,Xθ
s , Y

θ
s , Z

θ
s , ϕs)−DxH(s,Xθ

s , Y
θ
s , Z

θ
s , θs)|

2 ds .

(14)

The proof will be given in Section 3. We now state a necessary condition for
optimality for the augmented Hamiltonian.

Theorem 2.4 (Extended Pontryagin’s optimality principle). Let α∗ be the (locally)
optimal control, Xα∗

be the associated controlled state solving (1), and (Y α∗

, Zα∗

)
be the associated adjoint processes solving (4). Then for any a ∈ A we have

H̃(s,Xα∗

s , Y α∗

s , Zα∗

s , α∗
s , α

∗
s) ≤ H̃(t,Xα∗

s , Y α∗

s , Zα∗

s , α∗
s, a) , ∀s ∈ [0, T ] . (15)
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The proof of Theorem 2.4 will come in Section 3. We are now ready to present
the main result of the paper.

Theorem 2.5. Let Assumptions 2.1 and 2.2 hold. Then Algorithm 1 converges to
a local minimum of (2) for sufficiently large ρ > 0.

Theorem 2.5 will be proved in Section 3. It can be seen from the proof that
ρ needs to be two times larger than the constant appearing in Lemma 2.3, which
itself depends increases with T, d and constants from Assumption 2.1 and 2.2.

We cannot guarantee that the Algorithm 1 converges to the optimal control
which minimizes (2), since the extended Pontryagin’s optimality principle, see The-
orem 2.4, is the necessary condition for optimality. The sufficient condition for
optimality tells us that to get the optimal control we need to assume convexity of
the Hamiltonian in state and control variables, and need to assume convexity of
the terminal cost function. To that end, we need to assume convexity of b, σ, f and
g in x and a.

In the following corollary, we show that under a particular setting of the problem
we have logarithmic convergence of the modified method of successive approxima-
tions to the true solution of the problem.

Corollary 2.6. Let Assumptions 2.1 and 2.2 hold. Moreover, if b, σ and f are in
the form of

b(t, x, a) = b1(t)x + b2(t, a) ,

σ(t, x, a) = σ1(t)x+ σ2(t, a) ,

f(t, x, a) = f1(t, x) + f2(t, a)

for ∀t ∈ [0, T ] , ∀x ∈ R
d , ∀a ∈ A. In addition, assume that f and g are convex in

x, f2, b2, σ2 are convex in a. Then we have the following estimate for the sequence
(αn)n∈N from Algorithm 1:

0 ≤ J(x, αn)− J(x, α∗) ≤
C

n
,

where α∗ is the optimal control for (2) and C is a positive constant.

The proof of Corollary 2.6 will be given in Section 3. Theorem 2.5 and Corol-
lary 2.6 are extensions of the result in [5] to the stochastic case.

3. Proofs

We start working towards the proof of Theorem 2.5. Recall the adjoint equation
for an admissible control α:

dY α
s = −DxH(s,Xα

s , Y
α
s , Zα

s , αs) ds+ Zα
s dWs, s ∈ [0, T ], YT = Dxg(X

α
T ) . (16)

From now on, we shall use Einstein notation, so that repeated indices in a single
term imply summation over all the values of that index.

Lemma 3.1. Assume that there exists K ≥ 0 such that ∀x ∈ R
d, ∀a ∈ A, ∀t ∈ [0, T ]

we have

|Dxb(t, x, a)|+ |Dxσ(t, x, a)| ≤ K ,

and

|Dxg(x)|+ |Dxf(t, x, a)| ≤ K .

Then ‖Y α‖H∞ is bounded.
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Proof. From the definition of the Hamiltonian (3) we have

Dxi
H(s,Xα

s , Y
α
s , Zα

s , αs) = Dxi
bj(s,Xα

s , αs)(Y
α
s )j +Dxi

σjp(s,Xα
s , αs)(Z

α
s )

jp

+Dxi
f(s,Xα

s , αs) , ∀s ∈ [0, T ] , i = 1, 2, . . . , d .

Hence, one can observe that (16) is a linear BSDE. Therefore, from [33, Proposition
3.2] we can write the formula for the solution of (16):

Y α
t = Et

[

S−1
t STDxg(X

α
T ) +

∫ T

t

S−1
t SsDxf(s,X

α
s , αs) ds

]

,

where the process S is the unique strong solution of

dSij
t = Sil

t Dxl
bj(t,Xα

t , αt) dt+Sil
t Dxl

σjp(t,Xα
t , αt) dW

p
t , i, j = 1, 2, . . . , d, S0 = Id ,

and S−1 is the inverse process of S. Thus, due to [33, Corollary 3.7] and assumptions
of lemma we have the following bound:

‖Y α‖H∞ ≤ C‖Dxg(X
α
T )‖L∞ + CT ‖Dxf(·, X

α
· , α·)‖H∞ .

Hence, due to assumptions of lemma we conclude that ‖Y α‖H∞ is bounded. �

Proof of Lemma 2.3. Let ϕ and θ be some generic admissible controls. We will
write (Xϕ

s )s∈[0,T ] for the solution of (1) controlled by ϕ and (Xθ
s )s∈[0,T ] for the

solution of (1) controlled by θ. We denote solutions of corresponding adjoint equa-
tions by (Y ϕ

s , Zϕ
s )s∈[0,T ] and (Y θ

s , Z
θ
s )s∈[0,T ]. Due to Taylor’s theorem, we note

that for some R1(ω) ∈ [0, 1], we have ∀ω ∈ Ω that

g(Xϕ
T )− g(Xθ

T ) = (Dxg(X
θ
T ))

⊤(Xϕ
T −Xθ

T )

+
1

2
(Xϕ

T −Xθ
T )

⊤D2
xg(X

θ
T +R1(Xϕ

T −Xθ
T ))(X

ϕ
T −Xθ

T )

≤ (Dxg(X
θ
T ))

⊤(Xϕ
T −Xθ

T )

+
1

2
(Xϕ

T −Xθ
T )

⊤
∣

∣D2
xg(X

θ
T +R1(Xϕ

T −Xθ
T ))

∣

∣ (Xϕ
T −Xθ

T )

≤ (Dxg(X
θ
T ))

⊤(Xϕ
T −Xθ

T ) +
K

2

∣

∣Xϕ
T −Xθ

T

∣

∣

2
.

The last inequality holds due to Assumption 2.2. Recall that Y θ
T = Dxg(X

θ
T ).

Hence, using Itô’s product rule, we get

E[g(Xϕ
T )− g(Xθ

T )] ≤ E

[

(Y θ
T )

⊤(Xϕ
T −Xθ

T ) +
K

2

∣

∣Xϕ
T −Xθ

T

∣

∣

2
]

≤ E

∫ T

0

(Xϕ
s −Xθ

s )
⊤ dY θ

s + E

∫ T

0

(Y θ
s )

⊤[dXϕ
s − dXθ

s ]

+ E

∫ T

0

tr[(σ(s,Xϕ
s , ϕs)− σ(s,Xθ

s , θs))
⊤Zθ

s ] ds+
K

2
E

[

∣

∣Xϕ
T −Xθ

T

∣

∣

2
]

.

From this, the forward SDE (1) and the adjoint equation (4) we thus get

E[g(Xϕ
T )− g(Xθ

T )]

≤ −E

∫ T

0

(Xϕ
s −Xθ

s )
⊤DxH(s,Xθ

s , Y
θ
s , Z

θ
s , θs) ds

+ E

∫ T

0

(Y θ
s )

⊤[b(s,Xϕ
s , ϕs)− b(s,Xθ

s , θs)] ds

+ E

∫ T

0

tr[(σ(s,Xϕ
s , ϕs)− σ(s,Xθ

s , θs))
⊤Zθ

s ] ds+
K

2
E

[

∣

∣Xϕ
T −Xθ

T

∣

∣

2
]

.

(17)
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On the other hand, by definition of the Hamiltonian we have

E

∫ T

0

[f(s,Xϕ
s , ϕs)− f(s,Xθ

s , θs)] ds

= E

∫ T

0

[H(s,Xϕ
s , Y

θ
s , Z

θ
s , ϕs)−H(s,Xθ

s , Y
θ
s , Z

θ
s , θs)] ds

− E

∫ T

0

(Y θ
s )

⊤[b(s,Xϕ
s , ϕs)− b(s,Xθ

s , θs)] ds

− E

∫ T

0

tr[(σ(s,Xϕ
s , ϕs)− σ(s,Xθ

s , θs))
⊤Zθ

s ] ds .

(18)

Summing up (17) and (18) we get

J(x, ϕ) − J(x, θ)

= E[g(Xϕ
T )− g(Xθ

T )] + E

∫ T

0

[f(s,Xϕ
s , ϕs)− f(s,Xθ

s , θs)] ds

≤ E

∫ T

0

[H(s,Xϕ
s , Y

θ
s , Z

θ
s , ϕs)−H(s,Xθ

s , Y
θ
s , Z

θ
s , θs)

− (Xϕ
s −Xθ

s )
⊤DxH(s,Xθ

s , Y
θ
s , Z

θ
s , θs)] ds+

K

2
E

[

∣

∣Xϕ
T −Xθ

T

∣

∣

2
]

.

(19)

Due to Taylor’s theorem, there exists (R2
s(ω))s∈[0,T ] ∈ [0, 1] such that ∀ω ∈ Ω we

have

H(s,Xϕ
s , Y

θ
s , Z

θ
s , ϕs)−H(s,Xθ

s , Y
θ
s , Z

θ
s , θs)

= H(s,Xθ
s , Y

θ
s , Z

θ
s , ϕs)−H(s,Xθ

s , Y
θ
s , Z

θ
s , θs)

+ (Xϕ
s −Xθ

s )
⊤DxH(s,Xθ

s , Y
θ
s , Z

θ
s , ϕs)

+
1

2
(Xϕ

s −Xθ
s )

⊤D2
xH(s,Xθ

s +R2
s(X

ϕ
s −Xθ

s ), Y
θ
s , Z

θ
s , ϕs)(X

ϕ
s −Xθ

s ) .

(20)

Since D2
xσ(s,X

θ
s +R2

s(X
ϕ
s −Xθ

s ), ϕs) = 0 by Assumption 2.1, we have that
∣

∣

∣
D2

xixj
H(s,Xθ

s +R2
s(X

ϕ
s −Xθ

s ), Y
θ
s , Z

θ
s , ϕs)

∣

∣

∣

=
∣

∣

∣
D2

xixj
bl(s,Xθ

s +R2
s(X

ϕ
s −Xθ

s ), ϕs)(Y
θ
s )

l

+D2
xixj

f(s,Xθ
s +R2

s(X
ϕ
s −Xθ

s ), ϕs)
∣

∣

∣
, i, j = 1, 2, . . . , d .

From Lemma 3.1 we know that |Y θ
s | is bounded a.s. for all s ∈ [0, T ]. Hence by

Assumption 2.1 and 2.2 we have

|D2
xH(s,Xθ

s +R2
s(X

ϕ
s −Xθ

s ), Y
θ
s , Z

θ
s , ϕs)| < ∞ . (21)

Therefore, after substituting (20) into (19), and by 21 we get

J(x,ϕ)− J(x, θ) = E

[

∫ T

0

[H(s,Xθ
s , Y

θ
s , Z

θ
s , ϕs)−H(s,Xθ

s , Y
θ
s , Z

θ
s , θs)

+ (Xϕ
s −Xθ

s )
⊤(DxH(s,Xθ

s , Y
θ
s , Z

θ
s , ϕs)−DxH(s,Xθ

s , Y
θ
s , Z

θ
s , θs))

+
K

2

∣

∣Xϕ
s −Xθ

s

∣

∣

2
ds

]

+
K

2
E

[

∣

∣Xϕ
T −Xθ

T

∣

∣

2
]

.

Let us now get a standard SDE estimate for the difference of Xϕ and Xθ. From
(a + b)2 ≤ 2a2 + 2b2, from taking the expectation, from Hölder’s inequality, from
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Assumption 2.1, from the Burkholder-Davis-Gundy inequality and from Gronwall’s
inequality we obtain

E sup
0≤t≤T

|Xϕ
t −Xθ

t |
2 ≤ CE

∫ T

0

|b(s,Xθ
s , ϕs)− b(s,Xθ

s , θs)|
2 ds

+ CE

∫ T

0

|σ(s,Xθ
s , ϕs)− σ(s,Xθ

s , θs)|
2 ds .

(22)

Young’s inequality allows us to get the estimate

J(x, ϕ)− J(x, θ)

≤ E

∫ T

0

[H(s,Xθ
s , Y

θ
s , Z

θ
s , ϕs)−H(s,Xθ

s , Y
θ
s , Z

θ
s , θs)] ds+

1

2
E

∫ T

0

|Xϕ
s −Xθ

s |
2 ds

+
1

2
E

[

∫ T

0

|DxH(s,Xθ
s , Y

θ
s , Z

θ
s , ϕs)−DxH(s,Xθ

s , Y
θ
s , Z

θ
s , θs)|

2

+
K

2

∣

∣Xϕ
s −Xθ

s

∣

∣

2
ds

]

+
K

2
E

[

∣

∣Xϕ
T −Xθ

T

∣

∣

2
]

.

Hence, from (22) we have that

J(x, ϕ) − J(x, θ) ≤ E

∫ T

0

[H(s,Xθ
s , Y

θ
s , Z

θ
s , ϕs)−H(s,Xθ

s , Y
θ
s , Z

θ
s , θs)] ds

+ CE

∫ T

0

|b(s,Xθ
s , ϕs)− b(s,Xθ

s , θs)|
2 ds

+ CE

∫ T

0

|σ(s,Xθ
s , ϕs)− σ(s,Xθ

s , θs)|
2 ds

+ CE

∫ T

0

|DxH(s,Xθ
s , Y

θ
s , Z

θ
s , ϕs)−DxH(s,Xθ

s , Y
θ
s , Z

θ
s , θs)|

2 ds ,

for some constant C > 0, which depends on K,T , and d. �

Proof of Theorem 2.4. Since α∗ is the (locally) optimal control for the problem (2),
the Pontryagin’s optimality principle holds, see e.g. [23]. Hence for any a ∈ A we
have

H(s,Xα∗

s , Y α∗

s , Zα∗

s , α∗
s) ≤ H(s,Xα∗

s , Y α∗

s , Zα∗

s , a) , ∀s ∈ [0, T ] . (23)

By definition of the augmented Hamiltonian (6) for all s ∈ [0, T ] we have

H̃(s,Xα∗

s , Y α∗

s , Zα∗

s , α∗
s, a) = H(s,Xα∗

s , Y α∗

s , Zα∗

s , a)

+
1

2
ρ|b(s,Xα∗

s , a)− b(s,Xα∗

s , α∗
s)|

2 +
1

2
ρ|σ(s,Xα∗

s , a)− σ(s,Xα∗

s , α∗
s)|

2

+
1

2
ρ|DxH(s,Xα∗

s , Y α∗

s , Zα∗

s , a)−DxH(s,Xα∗

s , Y α∗

s , Zα∗

s , α∗
s)|

2 .

(24)

Therefore, due to (23) and (24) we have

H̃(s,Xα∗

s , Y α∗

s , Zα∗

s , α∗
s , α

∗
s) = H(s,Xα∗

s , Y α∗

s , Zα∗

s , α∗
s)

≤ H(s,Xα∗

s , Y α∗

s , Zα∗

s , a) +
1

2
ρ|b(s,Xα∗

s , a)− b(s,Xα∗

s , α∗
s)|

2

+
1

2
ρ|σ(s,Xα∗

s , a)− σ(s,Xα∗

s , α∗
s)|

2

+
1

2
ρ|DxH(s,Xα∗

s , Y α∗

s , Zα∗

s , a)−DxH(s,Xα∗

s , Y α∗

s , Zα∗

s , α∗
s)|

2

= H̃(s,Xα∗

s , Y α∗

s , Zα∗

s , α∗
s, a) .

This concludes the proof. �
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Proof of Theorem 2.5. Let us apply Lemma 2.3 for ϕ = αn and θ = αn−1. Hence,
for some C > 0 we have

J(x, αn)− J(x, αn−1)

≤ E

∫ T

0

[H(s,Xn
s , Y

n
s , Zn

s , α
n
s )−H(s,Xn

s , Y
n
s , Zn

s , α
n−1
s )] ds

+ CE

∫ T

0

|b(s,Xn
s , α

n
s )− b(s,Xn

s , α
n−1
s )|2 ds

+ CE

∫ T

0

|σ(s,Xn
s , α

n
s )− σ(s,Xn

s , α
n−1
s )|2 ds

+ CE

∫ T

0

∣

∣DxH(s,Xn
s , Y

n
s , Zn

s , α
n
s )−DxH(s,Xn

s , Y
n
s , Zn

s , α
n−1
s )

∣

∣

2
ds .

(25)

Let

µ(αn−1) = E

∫ T

0

[H(s,Xn
s , Y

n
s , Zn

s , α
n
s )−H(s,Xn

s , Y
n
s , Zn

s , α
n−1
s )] ds .

Due to the definition of αn (8) and (15) we have for all s ∈ [0, T ]

H(s,Xn
s , Y

n
s , Zn

s , α
n
s ) +

1

2
ρ|b(s,Xn

s , α
n
s )− b(s,Xn

s , α
n−1
s )|2

+
1

2
ρ|σ(s,Xn

s , α
n
s )− σ(s,Xn

s , α
n−1
s )|2

+
1

2
ρ|DxH(s,Xn

s , Y
n
s , Zn

s , α
n
s )−DxH(s,Xn

s , Y
n
s , Zn

s , α
n−1
s )|2

≤ H(s,Xn
s , Y

n
s , Zn

s , α
n−1
s ) .

Therefore, we can observe that µ(αn−1) ≤ 0. Hence we can rewrite the inequal-
ity (25) as

J(x, αn)− J(x, αn−1) ≤ µ(αn−1)−
2C

ρ
µ(αn−1) = Dµ(αn−1) , (26)

where D := 1− 2C
ρ
. By choosing ρ > 2C we have that D > 0. Notice that for any

integer M > 1 we have

M
∑

n=1

(−µ(αn−1)) ≤ D−1
M
∑

n=1

(J(x, αn−1)− J(x, αn))

= D−1(J(x, α0)− J(x, αM )) ≤ D−1(J(x, α0)− inf
α∈A

J(x, α)) < ∞.

Since (−µ(αn−1)) ≥ 0 and
∑∞

n=1(−µ(αn−1)) < +∞ we have that µ(αn−1) → 0 as
n → 0. This concludes the proof. �

We need to introduce new notation, which will be used in the proof of Corol-
lary 2.6. Denote the set

Iτ,h := [τ − h, τ + h] ∩ [0, T ] , τ ∈ [0, T ], h ∈ [0,+∞) . (27)

Let us define for all s ∈ [0, T ]

∆αn−1H(s) := H(s,Xn
s , Y

n
s , Zn

s , α
n
s )−H(s,Xn

s , Y
n
s , Zn

s , α
n−1
s ) ,

and

µ(αn−1) := E

∫ T

0

∆αn−1H(s) ds .

By definition of αn notice that ∆αn−1H(t) ≤ 0 for all t ∈ [0, T ]. Let us show an
auxiliary lemma.
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Lemma 3.2. For any h > 0 there exists τ , which depends on h and αn−1, such
that

E

∫

Iτ,h

∆αn−1H(t) dt ≤
hµ(αn−1)

T
.

Proof. We will prove by contradiction. Assume that there exists h∗ > 0 such that
∀τ ∈ [0, T ] we have

E

∫

Iτ,h∗

∆αn−1H(t) dt >
h∗µ(αn−1)

T
. (28)

Denote τi = ih∗, i = 0, 1, . . . , N(h∗), where N(h∗) = [T/h∗] - integer part. Since

∆αn−1H(t) ≤ 0 for all t ∈ [0, T ] by definition of αn and ∪
N(h∗)
i=0 Iτi,h∗ is a superset

of [0, T ] we have

µ(αn−1) = E

∫ T

0

∆αn−1H(t) dt ≥

N(h∗)
∑

i=0

E

∫

Iτi,h∗

∆αn−1H(t) dt . (29)

Hence, by (28) we get

µ(αn−1) >
h∗N(h∗)

T
E

∫ T

0

∆αn−1H(t) dt > µ(αn−1) .

Hence we get the contradiction. �

Now we are ready to prove Corollary 2.6.

Proof of Corollary 2.6. First, observe that

b(s,Xn
s , α

n
s )− b(s,Xn

s , α
n−1
s ) = b2(s, α

n
s )− b2(s, α

n−1
s ) ,

σ(s,Xn
s , α

n
s )− σ(s,Xn

s , α
n−1
s ) = σ2(s, α

n
s )− σ2(s, α

n−1
s ) ,

DxH(s,Xn
s , Y

n
s , Zn

s , α
n
s )−DxH(s,Xn

s , Y
n
s , Zn

s , α
n−1
s ) = 0 .

Let us consider the set Iτ,h given by (27). We will specify the choice of τ and h
later. Hence, after applying Lemma 2.3 for αn and αn−1 we have for some C > 0

J(x, αn)− J(x, αn−1)

≤E

∫

Iτ,h

[H(s,Xn
s , Y

n
s , Zn

s , α
n
s )−H(s,Xn

s , Y
n
s , Zn

s , α
n−1
s )] ds

+ CE

∫

Iτ,h

|b2(s, α
n
s )− b2(s, α

n−1
s )|2 + |σ2(s, α

n
s )− σ2(s, α

n−1
s )|2 ds

+ E

∫

[0,T ]\Iτ,h

[H(s,Xn
s , Y

n
s , Zn

s , α
n
s )−H(s,Xn

s , Y
n
s , Zn

s , α
n−1
s )] ds

+ CE

∫

[0,T ]\Iτ,h

|b2(s, α
n
s )− b2(s, α

n−1
s )|2 + |σ2(s, α

n
s )− σ2(s, α

n−1
s )|2 ds .

Since the following holds for all s ∈ [0, T ] and ρ ≥ 0:

H(s,Xn
s , Y

n
s , Zn

s , α
n
s )−H(s,Xn

s , Y
n
s , Zn

s , α
n−1
s )

+
1

2
ρ|b2(s, α

n
s )− b2(s, α

n−1
s )|2 +

1

2
ρ|σ2(s, α

n
s )− σ2(s, α

n−1
s )|2 ≤ 0 ,
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we have for ρ ≥ 2C

J(x, αn)− J(x, αn−1)

≤ E

∫

Iτ,h

[H(s,Xn
s , Y

n
s , Zn

s , α
n
s )−H(s,Xn

s , Y
n
s , Zn

s , α
n−1
s )] ds

+ CE

∫

Iτ,h

|b2(s, α
n
s )− b2(s, α

n−1
s )|2 + |σ2(s, α

n
s )− σ2(s, α

n−1
s )|2 ds .

Therefore, from Lemma 3.2 and from similar calculations as in (26), there exists τ
such that

J(x, αn)− J(x, αn−1)

≤

(

1−
2C

ρ

)

E

∫

Iτ,h

[H(s,Xn
s , Y

n
s , Zn

s , α
n
s )−H(s,Xn

s , Y
n
s , Zn

s , α
n−1
s )] ds

≤

(

1−
2C

ρ

)

hµ(αn−1)

T
.

Let us choose h = −(ρ− 2C)µ(αn−1)/(ρT ). Hence

J(x, αn)− J(x, αn−1) ≤ −(ρ− 2C)2(µ(αn−1))2/(ρ2T 2). (30)

Let α∗ be the optimal control. Indeed, by the sufficient condition for optimality,
see e.g. [23], and by assumptions of corollary, we have the existence of the optimal
control. Therefore, by convexity of g, and by Itô’s product rule we have

0 ≤J(x, αn−1)− J(x, α∗)

=E

[

∫ T

0

(f(s,Xn
s , α

n−1
s )− f(s,Xs, α

∗
s)) ds+ g(Xn

T )− g(XT )

]

≤E

[

∫ T

0

(f(s,Xn
s , α

n−1
s )− f(s,Xs, α

∗
s)) ds

]

+ E[(Dxg(X
n))⊤(Xn

T −XT )]

≤E

[

∫ T

0

(f(s,Xn
s , α

n−1
s )− f(s,Xs, α

∗
s)) ds

]

+ E

[

∫ T

0

(Y n
s )⊤d(Xn

s −Xs) +

∫ T

0

(Xn
s −Xs)

⊤dY n
s

]

+ E

[

∫ T

0

tr((σ(s,Xn
s , α

n−1
s )− σ(s,Xs, α

∗
s))

⊤Zn
s ) ds

]

.

Hence, we have that

0 ≤J(x, αn−1)− J(x, α∗) ≤ E

[

∫ T

0

f(s,Xn
s , α

n−1
s )− f(s,Xs, α

∗
s) ds

]

+ E

[

∫ T

0

(Y n
s )⊤(b(s,Xn

s , α
n−1
s )− b(s,Xs, α

∗
s)) ds

]

− E

[

∫ T

0

(Xn
s −Xs)

⊤DxH(s,Xn
s , Y

n
s , Zn

s , α
n−1
s ) ds

]

+ E

[

∫ T

0

tr((σ(s,Xn
s , α

n−1
s )− σ(s,Xs, α

∗
s))

⊤Zn
s ) ds

]

.

Recalling the form of b, σ and observing that

DxH(s,Xn
s , Y

n
s , Zn

s , α
n−1
s ) = b1(s)Y

n
s + σ1(s)Z

n
s +Dxf(s,X

n
s , α

n−1
s ) ,
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we have

0 ≤J(x, αn−1)− J(x, α∗) ≤ E

[

∫ T

0

f(s,Xn
s , α

n−1
s )− f(s,Xs, α

∗
s) ds

]

+ E

[

∫ T

0

tr((σ2(s, α
n−1
s )− σ2(s, α

∗
s))

⊤Zn
s ) ds

]

+ E

[

∫ T

0

(Y n
s )⊤(b2(s, α

n−1
s )− b2(s, α

∗
s)) ds−

∫ T

0

(Xn
s −Xs)

⊤Dxf(s,X
n
s , α

n−1
s ) ds

]

.

Since f is convex in x we have for all s ∈ [0, T ] that

f(s,Xs, α
n−1
s ) ≥ f(s,Xn

s , α
n−1
s ) + (Xs −Xn

s )
⊤Dxf(s,X

n
s , α

n−1
s ) .

Therefore, we obtain

J(x, αn−1)− J(x, α∗)

≤ E

∫ T

0

[

H(s,Xn
s , Y

n
s , Zn

s , α
n−1
s )−H(s,Xn

s , Y
n
s , Zn

s , α
∗
s)
]

ds

≤ −µ(αn−1) ,

(31)

where the second inequality holds due to

H(s,Xn
s , Y

n
s , Zn

s , α
n
s ) ≤ H(s,Xn

s , Y
n
s , Zn

s , α
∗
s) .

Let bn := J(x, αn)− J(x, α), then due to (30) and (31) we have that

bn − bn−1 ≤
−(ρ− 2C)2µ(αn−1)2

(ρ2T 2)
≤

−(ρ− 2C)2(bn−1)2

ρ2T 2
.

Therefore, due to Lemma A.1 we have

J(x, αn)− J(x, α∗) ≤
C1

n
.

for some constant C1 > 0. This concludes the proof. �

Appendix A. Auxiliary Lemma

Lemma A.1. Let {bk}k∈N be the sequence of nonnegative numbers such that

bk+1 ≤ bk − qb2k ,

where q is a positive constant. Then bk = O(1/k).

One can find the proof in [6, Lemma 1.4, p. 93]. However, the proof is written
in Russian. For convenience of the reader we provide it here.

Proof. Let bk = ck
k

for some nonnegative sequence (ck)k∈N. Then it is enough to
show that ck is bounded for all k ∈ N. By assumption we have

bk − bk+1 =
ck
k

−
ck+1

k + 1
=

ck
k

(

1−
ck+1

ck

k

k + 1

)

≥ q
c2k
k2

.

Therefore,

1−
ck+1

ck

k

k + 1
≥ q

ck
k

.

After some transformation, we can rewrite the equation above as
(

1 +
1

k

)

(

1− q
ck
k

)

≥
ck+1

ck
.

Thus

1 +
1

k
(1− qck)− q

ck
k2

≥
ck+1

ck
.
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If 1− qck < 0 we have

1 > 1 +
1

k
(1− qck)− q

ck
k2

≥
ck+1

ck
.

Hence ck+1 < ck. On the other hand, if 1 − qck ≥ 0, we have ck ≤ 1
q
. Therefore,

we conclude that for all k we have

ck ≤ max

{

c1,
1

q

}

.

�
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