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Abstract

Existing compartmental mathematical modelling methods for epidemics, such as SEIR

models, cannot accurately represent effects of contact tracing. This makes them inappropri-

ate for evaluating testing and contact tracing strategies to contain an outbreak. An alterna-

tive used in practice is the application of agent- or individual-based models (ABM). However

ABMs are complex, less well-understood and much more computationally expensive. This

paper presents a new method for accurately including the effects of Testing, contact-Tracing

and Isolation (TTI) strategies in standard compartmental models. We derive our method

using a careful probabilistic argument to show how contact tracing at the individual level is

reflected in aggregate on the population level. We show that the resultant SEIR-TTI model

accurately approximates the behaviour of a mechanistic agent-based model at far less

computational cost. The computational efficiency is such that it can be easily and cheaply

used for exploratory modelling to quantify the required levels of testing and tracing, alone

and with other interventions, to assist adaptive planning for managing disease outbreaks.

Author summary

The importance of modeling to inform and support decision making is widely acknowl-

edged. Understanding how to enhance contact tracing as part of the Testing-Tracing-Iso-

lation (TTI) strategy for mitigation of COVID is a key public policy questions. Our work

develops the SEIR-TTI model as an extension of the classic Susceptible, Exposed, Infected

and Recovered (SEIR) model to include tracing of contacts of people exposed to and infec-

tious with COVID-19. We use probabilistic argument to derive contact tracing rates

within a compartmental model as aggregates of contact tracing at an individual level.

Our adaptation is applicable across compartmental models for infectious diseases spread.

We show that our novel SEIR-TTI model can accurately approximate the behaviour of
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mechanistic agent-based models at far less computational cost. The SEIR-TTI model rep-

resents an important addition to the theoretical methodology of modelling infectious dis-

ease spread and we anticipate that it will be immediately applicable to the management of

the COVID-19 pandemic.

This is a PLOS Computational Biology Methods paper.

Introduction

Since the beginning of 2020, the W orld has been in the midst of a COVID-19 pandemic,

caused by the novel coronavirus SARS-COV-2. To slow down the spread, many countries,

including the UK have imposed social distancing mitigation strategies. However, such mea-

sures cannot feasibly be imposed over a long period as this may lead to economic collapse. As

a consequence countries need to consider how to ease lockdown measures while controlling

SARS-COV-2 spread.

The World Health Organisation has recently updated their guidance on this, recommend-

ing a six point strategy that requires firstly assuring that the pandemic spread has been

suppressed, and is followed by detecting, testing, isolating and contact-tracing of infected indi-

viduals [1].

Mathematical modelling has figured prominently in decision making around control and

containment of COVID-19 spread, including the imposition of physical distancing measures [2].

It provides a logical framework for understanding the propagation of an infectious disease

through a population and allows different interventions to be explored, including testing and

contact tracing of infected individuals as possible strategies to ease social distancing restric-

tions. Such models are also necessarily simplifications and understanding of their assumptions

and what they do and do not represent is required to correctly interpret them.

Mathematical models have a long history of being used to describe the spread of infectious

diseases from plague outbreaks more than a century ago [3] to the more recent SARS [4] and

Ebola [5], [6] epidemics, and from making decisions around different vaccination strategies

for influenza [7, 8] to modelling HIV [9, 10], and from modelling pandemic influenza [11] to

currently facilitating real-time policy decision making around the COVID-19 epidemic [12–

19]. There are several common approaches, each with advantages and disadvantages [20, 21].

Compartmental models [21–23] partition the population into different compartments such as

susceptible, exposed to the virus but not infectious, infectious and removed and track the

movements of individuals between these groups. Though dynamics of real disease outbreaks

are fundamentally stochastic [24–26], this level detail is mainly relevant for early stages or

small outbreaks [27]. Commonly within compartmental models a mean-field approximation

given by ordinary differential equations (ODE) is used [21, 28, 29]. The latter approach is par-

ticularly attractive because it is computationally efficient and can yield informative results.

ODE systems can be generalised to explicitly incorporate dependence on system state at some

times in the past, yielding delay-differential equations (DDE) [30–32], the analogue for contin-

uous state of Markov processes with finite memory. Such formulations require meticulous

care to solve accurately [33, 34] and much of what is known about their behaviour consists of

asymptotic results [35–38]. Branching processes are used [14, 29, 39, 40] where more flexibility

is desired in representing the timing of transitions among compartments and, for continuous

time, are amenable to stochastic differential equation (SDE) treatment. For some choices of

distribution, the SDE formulation is Markovian and can be analysed as a continuous-time
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Markov chain (CTMC) [25, 41]. Finally, individual- or agent-based models (IBM/ABM)

explicitly represent each individual in the population and allow for fine-grained modelling of

the characteristics of each one such as different contact patterns or susceptibilities to the dis-

ease [42–46]. They have been [47], and are being [15–17] widely used for planning and epi-

demic control. While ABMs allow for maximal flexibility and realism, this comes at a high

computational cost and it can be difficult to extract analytical results that relate the fine-

grained behaviour to population-level effects. It is generally feasible to conduct agent-based

simulations for populations of tens of thousands, but there are salient features of epidemics

such as the timing and size of peaks of infectious individuals that depend on population sizes

two orders of magnitude larger. An important subset of ABMs are network or graphical mod-

els [48–53] where the structure of the population, the possible interactions among its mem-

bers, are explicitly represented. In addition to the computational cost and analytical difficulties

with ABMs, sufficient data to support their fine-grained realism is rarely available. For many

purposes, including the one that we are concerned with here, an accurate qualitative under-

standing of the effect of interventions like testing and contact tracing, cheap, coarse, high-level

models are more useful than expensive fine-grained models that rely on vast often not readily

available data.

While classic compartmental models can easily be used to simulate some interventions

analogous to parameter changes, they cannot readily include contact tracing of infected indi-

viduals unless vast assumptions are made. This is because modelling contact-tracing is intrinsi-

cally reliant on individual behaviour within a network structure. Previous work on Ebola [6],

SARS [4] and COVID-19 used simple approaches to represent contact tracing in a compartmen-

tal model: asserting that a constant fraction of exposed individuals becomes isolated due to

contact tracing [15, 19, 54, 55] or reducing transmission by a constant amount, perhaps after a

delay [56]. We believe that existing approaches are insufficient for the purpose of understand-

ing how the rate and timing of testing and contact tracing affect success in containing out-

breaks. The purpose of contact tracing is to attempt to isolate infectious, or soon to be

infectious individuals. Although attempts have been made to model contact tracing in combi-

nation with isolation [57], the two processes were modelled independently, deriving an analyt-

ical solution that overestimated the tracing function. Furthermore, contact tracing should

result in the isolation of both infectious and exposed individuals and this is a key assumption

that previous work has missed. Contact tracing will also inevitably result in the isolation of sus-

ceptible and recovered individuals with the former contributing to a reduced rate of disease

propagation. To properly understand this process it is imperative to model the effects of con-

tact tracing with mathematical rigour.

In this paper we develop an extension to the classic Susceptible-Exposed-Infectious-

Removed (SEIR) model [22, 58, 59] simulated with ODEs to include testing, contact-tracing,

and isolation (TTI) strategies. We call this model SEIR-TTI. This model captures the salient

features of the manifestation at the population level of the dynamics of testing and tracing at

the individual level.

We note that slightly different nomenclature for SEIR has ben used by different authors.

Exposed means infected but not yet infectious and is sometimes called Latent. Infectious is

sometimes called Infective and represents individuals capable of transmitting the disease.

Removed is often called Recovered, though we opt for the former as it indicates that those indi-

viduals are no longer causing infection but we make no statement about whether they are

removed through recovery or death.

Due to its relative simplicity, SEIR-TTI is applicable across a spectrum of diseases. With

appropriate parametrisation, it can be used anywhere a standard SEIR model can be used with

the same caveats and limitations.
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008633 March 4, 2021 3 / 28

https://doi.org/10.1371/journal.pcbi.1008633


Though we are clearly motivated by the current COVID-19 pandemic and wish to under-

stand how interventions like TTI can be used to contain it, we do not claim that we are model-

ling it in particular. Our contribution is a mathematical tool and software implementation that

can be used for understanding TTI, not a model of COVID-19.

The method that we present is general and can also be applied to other compartmental

models, with the standard caveat that with more compartments comes more work to deter-

mine the appropriate rates that need to be informed by data. We validate our SEIR-TTI ODE

model against a mechanistic agent-based model where testing, tracing and isolation of individ-

uals is explicitly represented and show that we can achieve good agreement at far less computa-

tional cost. We also provide a flexible software package at https://github.com/ptti/ptti/tree/

ptti-theory-paper with a convenient declarative language for specifying parameters and inter-

ventions and implementations of the SEIR-TTI ODE model, mechanistic agent-based model,

a second non-mechanistic rule-based model in the κ-language formalism [60, 61], and several

related models such as classic SEIR.

Results

We design a compartmentalised model describing the populations of susceptible (S), exposed

(E—infected but not infectious), infectious (I) and removed (R) population cohorts.

These models are widely used to describe the spread of various infectious diseases with dis-

ease progression captured by movement of individuals sequentially between compartments

accounting for progression from susceptible individuals (S) being exposed to the virus and

becoming infected but not infectious (E), to becoming infectious (I) until they recover (R). A

schematic illustrating this model is shown in Fig 1.

The novelty of our model is that we have within each compartment included subgroups of

people diagnosed and undiagnosed with the virus, attributable to reported and unreported

diagnosis. Individuals in our model are defined to be diagnosed either through testing or puta-

tively through tracing. Diagnosed individuals are then isolated.

Fig 1. Schematic of an SEIR model with diagnosis described by testing and contact-tracing. SEIR is a

compartmentalised model describing susceptible (S), exposed (E—infected but not infectious), infectious (I) and

removed (R) population cohorts. Individuals move between these compartments in sequence as they become exposed,

infected and infectious during disease progression until recovery. The novelty here is that each compartment

comprises diagnosed and undiagnosed individuals with diagnosis leading to isolation. We assume that diagnosis

happens through testing or putatively through tracing. Tracing is mediated through contact, and the intersection with

CI represents contact with an infectious individual. Non-infectious individuals having been isolated through contact

tracing have, in effect, been misdiagnosed. Individuals transition between compartments X and Y at rates ΔX!Y which

we derive in the text.

https://doi.org/10.1371/journal.pcbi.1008633.g001
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The effect of testing and isolation alone

Before introducing contact tracing, we examine the standard SEIR model with testing. These

results, and those in the following section, use the system of differential equations as described

in detail in the Methods. We choose a relatively large initial number of infectious individuals

merely for illustrative purposes as it renders the dynamics clearer—the more aggressive testing

regimes would result in immediate containment of a small outbreak which would be difficult

to see whereas a large outbreak nevertheless takes some time to contain. The parameters have

the usual meaning, with values fixed for the purposes of this section: N = 6.7 × 107 individuals

is the total population, I(0) = 105 is the initial number of infected individuals, b̂ ¼ 0:033 infec-

tions/contact is the probability of transmission; c = 13 contacts/day is the contact rate, α =

0.2 days−1 is the incubation rate, the rate of leaving the exposed state and becoming infectious;

and γ = 7−1 days−1 is the rate of recovery, or leaving the infectious state. These values result in

a basic reproduction number of R0 = 3. In the simplest case, testing is conducted at random at

some rate θ of tests per infectious individual per day and those that receive a positive result are

immediately isolated.

Representative trajectories from this system for various values of θ are shown in Fig 2. The

upper panel shows the time-series for total infections, exposed and infectious, and the lower

panel shows the effective reproductive number, Re(t). We can observe that while testing the

entire population every 20 days (θ = 0.05) results in a lower maximum total number of infec-

tions, we require very frequent testing, every 3-4 days (θ = 0.3, 0.25) in order to control an out-

break and cross the Re(t) = 1 threshold (red horizontal line). It is straightforward to work out

the condition under which testing crosses this threshold by analysing the fixed points in the

underlying system of differential equations since the required condition is that there is no

change in the number of infectious people as they each infect one other on average and then

are removed. Some arithmetic yields ycrit ¼ b̂c � g, the red line in Fig 3.

The above shows that, whilst testing and isolating alone can be sufficient to control an out-

break, it would take a herculean effort on its own. Without any form of distancing (c� 13) it is

necessary to conduct tests about every 3.5 days. If a sizeable number of infected individuals are

asymptomatic, there is no alternative but to test the entire population at this rate. Imposing

strict social distancing measures can help. If contact rate is cut by half, the required rate is

closer to once per fortnight. There is, however, a strategy to avoid regularly sampling the entire

population in order to direct tests to those most likely to be infected: contact tracing, which we

consider next.

The effect of contact tracing

The central mathematical result is the expression for the rate at which individuals are isolated

due to contact tracing,

D
ðCT Þ
XU!XD

¼ Z ywPrðCIjXUÞXU ð1Þ

where η and χ are the probability of success and the rate of contact tracing respectively and θ is

the rate of testing as before. The notation is explained in detail in the methods section, but the

intuition is that, for any compartment X, divided into unconfined, XU, and isolated, XD, sub-

compartments, the rate of moving between them is proportional to the probability of having

had contact with an infectious individual conditional on being in XU.

The effects of contact tracing is shown in Fig 4. The scenario is the same as with testing

alone, except that the testing rate is fixed at θ = 14−1days−1 and the tracing rate is fixed at χ =

2−1days−1. The tracing success rate, η, is allowed to vary. The interpretation is that, on average,
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Fig 2. The effect of testing and isolation alone in a hypothetical population. The dynamics represented here are for a scenario with normal contact, c = 13, and an

initial number of infected individuals, I(0) = 100, 000. Individuals who test positive are isolated for the duration of their illness. The top plot shows the total infections

(exposed and infectious individuals) over time for various testing rates ranging from none, θ = 0, to testing all infectious individuals every two days, θ = 0.55. The

bottom plot shows the reproduction number over time for these same scenarios. Observe that even fairly frequent testing, e.g every five days, θ = 0.2, this is only

sufficient to reduce peak infections by one order of magnitude from about 20 million to about two million. In the infrequent testing regimes, θ 2 [0.05, 0.25], we can

also observe that the curve described by Re(t)R(t) is not a sigmoid but instead first falls to a value above R(t) = 1 before stabilising and then falling again. This is because

though testing and isolating does have an effect at those rates, it is not sufficiently frequent to identify all of those who are infectious.

https://doi.org/10.1371/journal.pcbi.1008633.g002
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an infectious individual expects to be tested in 147 days and contacts can expect to be traced in

2 days. The choice of these values for illustrative purposes is purposeful. Recall from the previ-

ous section that γ, the recovery rate is fixed at 7−1days−1. One would expect that testing and

isolating individuals, on average, after they have recovered and it is too late would be insuffi-

cient to contain an outbreak. Indeed it is not sufficient, but it does reduce the maximum num-

ber of infected individuals somewhat. However, since tracing happens as a consequence of

testing, it amplifies its effectiveness. This can be seen in the figure where even a modest tracing

success rate of 30-40% results in a substantial reduction of more than half the peak infections.

The relationship between testing rate and tracing rate can be seen from Fig 5. When θ is

very small, meaning very little testing, then contact tracing has little effect. This is unsurprising

because testing causes tracing. When there is very frequent testing, on the other hand, there is

little benefit to contact tracing. When testing happens more frequently on average than an

individual can infect another, it is sufficient to control the outbreak on its own. However for

intermediate values, contact tracing amplifies the effectiveness of testing. The above result can

be seen from this plot as well: when testing of infectious individuals is expected in a week, a

modest 40% success rate at tracing contacts in two days is enough to reduce the reproduction

number from 2 to less than 1.5, a substantial benefit.

Ordinary differential equations and agent-based models

The central result of this paper is not specific observations about how testing and contact trac-

ing affect the propagation of epidemics, though those are valuable, but a technique to compute

these effects efficiently. This technique allows consideration of larger populations than would

be possible with agent- or individual-based models allowing for the exploration of many differ-

ent scenarios. Figs 3 and 5, for example, each contain 25 × 25 = 525 data points resulting from

a separate simulation. Performing these 1050 total simulations takes under a minute on a regu-

lar laptop. This would have not been possible with agent- or individual-based models, with

population sizes in the hundreds of thousands or millions.

Fig 3. Reproduction number after 30 days for various values of the contact rate, c and the testing rate, θ. The red

line is is given by the equation ycrit ¼ b̂c � g. As above, b̂ ¼ 0:033 and γ = 0.1429.

https://doi.org/10.1371/journal.pcbi.1008633.g003
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It could be argued that it is sufficient to capture these dynamics in an agent-based model

for modest populations and simply rescale the output for large populations. That approach is

not sound for two reasons that are easily seen. First, small outbreaks. Imagine a hypothetical

country of 70 million people with 100,000 infections. Proportionally, that is 14.3 infections in a

population of 10,000. There is a non-negligible probability that an outbreak of size 14 will die

out on its own. This will be accounted for by the ABM but is not a realistic possibility for an

Fig 4. The effect of testing, tracing in a hypothetical population. The dynamics presented here are the same as those of Fig 2 with a testing rate θ =

14−1days−1, meaning testing of infectious individuals on average once per two weeksonce per week. The rate of contact tracing is set at χ = 2−1days−1,

meaning that it takes on average two days to trace a contact. A variety of values of tracing success rate, η are explored. Under these conditions, even a

modest success rate of 30-40% enhances testing and results in a maximum of infectious individuals that is about half the magnitude with testing alone.

The lower panel is, as above, the corresponding time-series for the reproduction number.

https://doi.org/10.1371/journal.pcbi.1008633.g004
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outbreak of 100 thousand. Scaling therefore suggests fundamentally different results. Second,

without intervention, the number of infectious individuals will reach a maximum as the avail-

able pool of susceptible individuals becomes depleted. This takes longer in a large population

simply because the pool is larger. If timing of the peak of an outbreak is a quantity of interest, a

scaled ABM will give the wrong result.

However, doing this requires some approximations and it is important to understand

where and how well these approximations hold. To do this, we compare with two different

agent based models as described in the methods, and show that our method agrees well for a

large range of physically interesting and realistic parameter values. The first ABM reproduces

the same uncorrelated processes as the ODEs, with agents moving between compartments at

constant rates, without any correlation with their time of arrival in them. This results in an

exponential distribution of the times that each agent spends in a given state. However, in real-

ity, the distribution of these times is rarely exponential; more realistic choices are distributions

with a maximum at t> 0 [62–66]. Therefore we also try a second correlated ABM, in which

agents all stay inside each compartment for a fixed amount of time, after which they transition.

This can be seen, mathematically, as the permanence times having a Dirac distribution instead.

All compartments and rules for this model are the same, and the rates are picked so that the

time for each transition equals the average time for the exponential distribution in the other

models. More details are provided in the methods section.

A comparison of the ODE and the first type of ABMtwo systems for reasonable parameter

values is shown in Fig 6. The figure shows good agreement between the mean trajectory of the

ABM and the ODE approximation. The agreement is particularly precise for the exposed and

infectious compartment of both varieties. We can observe a slight over-estimate of the number

of unconfined susceptible individual and corresponding under-estimate of the unconfined

removed ones. These over- and under-estimates are nevertheless acceptably close with a rela-

tive error in the magnitude of the susceptible population of under 10%.

There exist extreme scenarios where the ODE performs poorly at reproducing the mean

trajectory of the ABM system. An example is shown in Fig 7. One such scenario is when the

Fig 5. Reproduction number after 30 days for various values of the testing rate, θ and the contact tracing

success η.

https://doi.org/10.1371/journal.pcbi.1008633.g005
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testing rate is very low. The figure shows when θ = 50−1days−1. This circumstance violates the

assumption underlying Eq 22 that the number of susceptible contacts available for tracing

should be much smaller than the total susceptible population. Intuitively, this can be under-

stood as the ODE approximation holding well when testing and tracing are conducted suffi-

ciently rapidly to perform their required purpose. When they do not, the approximation is

poor. Even in this extreme scenario, however, where the curve produced by the ODE system is

several standard deviations distant from the average trajectory of the ABM, its shape is still

similar and realistic.

Fig 6. Comparison of differential equation and agent-based model. Here the population size is 10000 individuals with 100 initially infected. The testing rate is θ =

7−1days−1, and tracing rate and success probability are χ = 0.5, η = 0.5. The plots show the time-series for each compartment. The top row are the compartments

representing unconfined individuals, those in SU, EU, IU and RU. The bottom row are those representing isolated—diagnosed or distanced—individuals, SD, ED, ID, RD.

The heavy orange curves are the output of the ODE-based simulation. The teal curves are the average output of the agent-based simulation, with envelopes for one and

two standard deviations.

https://doi.org/10.1371/journal.pcbi.1008633.g006

Fig 7. Pathological parameter values. This plot shows the effect of very low levels of testing, θ = 50−1days−1. In this circumstance, the number of traceable susceptible

individuals takes on unphysically high values, shown by the red line in the top left panel. This results in an overestimation of the maximum number of unconfined

exposed and infectious individuals and a corresponding underestimation of the effect of contact tracing in preventing infection in this scenario.

https://doi.org/10.1371/journal.pcbi.1008633.g007
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Fig 8 shows simulations for the same scenario as Fig 6, but using the correlated ABM. In

this case, as explained in the methods section, there is an important point to be made about

what the testing rate represents. Here we have taken θ = 7−1days−1 and θ0 = 2θ, meaning that

we assume the total rate means infectious individuals have a 50% likelihood of being tested 3.5

days after displaying symptoms. In an uncorrelated ABM or an ODE model, only the total test-

ing rate θ matters and test events occur according to the underlying (exponential) distribution.

In an ABM where events happen after a deterministic or strongly correlated time, this distinc-

tion matters. In particular, it’s important to make sure that anyone who gets tested is tested

soon enough in the course of their disease that they can be usefully isolated, before they’ve had

time to spread it. If all testing happens exactly seven days after infection—the same length of

time as the recovery period—testing will do nothing to prevent propagation of the disease.

Given this consideration, we used a reasonable assumption that led to the same overall value of

θ as the previous simulation. It should be noticed, however, that the ODE performs less well at

matching this different model. The correlated ABM simulation results in more infections than

the previous one. This shows the effect of transition time distributions; using constant rates,

and thus exponential distributions, adds a significant component of very short-time transitions

(both recoveries and testing/isolation) that actually end up improving outcomes. In weak test-

ing regimes, where the waiting times can be quite long, this can cause an ODE model to make

more optimistic predictions. Fig 9 instead shows what happens in a strong testing regime,

where waiting times are short enough that the interval between infection and testing matters

less. In this case, the ODE and ABM descriptions match quite well. The irregular appearance

of the ABM curves here is due to the discrete nature of its transitions, leading to strong and

correlated fluctuations.

Methods

We consider the problem of determining the effect of testing and contact tracing in a popula-

tion, P, consisting of a set of indistinguishable individuals among whom a disease propagates.

Fig 8. Comparison of differential equation and agent-based model with correlated transitions. Here the population size is 10000 individuals with 100 initially

infected. The testing rate is θ = 7−1days−1, the base testing rate is θ0 = 2θ, and tracing rate and success probability are χ = 0.5, η = 0.5. The plots show the time-series for

each compartment. This choice of parameter values is such that, because the transitions are strongly correlated, individuals are only tested at the end of their infectious

period and are effectively never isolated. The top row are the compartments representing unconfined individuals, those in SU, EU, IU and RU. The bottom row are those

representing isolated—diagnosed or distanced—individuals, SD, ED, ID, RD. The heavy orange curves are the output of the ODE-based simulation. The violet curves are

the average output of the agent-based simulation with correlated transitions, with envelopes for one and two standard deviations.

https://doi.org/10.1371/journal.pcbi.1008633.g008
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To answer this we adapt the standard Susceptible-Exposed-Infectious-Removed (SEIR) com-

partmental model [22, 58] to incorporate contact tracing as well as testing and isolation of

cohorts of people. Our adaptation extends the classic SEIR to not only include progression

through disease stages from exposure, via infection to recovery, but to also keeping track of the

changing make up of the population as the disease progresses. To achieve this we require our

model to have two additional features:

1. to keep track of whether people have been isolated from the rest (either due to testing posi-

tive, or having been traced as a contact of someone who tested positive)

2. to keep track of whether people have been in contact with an infectious individual recently

enough to be potential targets for tracing.

Ordinary compartment models like SEIR are designed to separate individuals into distinct,

non-overlapping groups. This is not a problem for the first feature, as people who are isolated

and people who are not constitute entirely distinct sets. We therefore can represent uncon-

fined and isolated individuals simply by doubling the number of states, labeling SU, EU, IU
and RU the Undiagnosed people who are respectively Susceptible, Exposed, Infectious, or

Removed, and similarly, SD, ED, ID and RD the ones who have been Diagnosed or otherwise

Distanced from the rest of the population, by means of home isolation, quarantine, hospitalisa-

tion and such.

However, dealing with contact tracing is harder, as it can not be achieved with separate

compartments. Here we take two approaches. First, we describe an agent-based model that

simulates contact tracing with an approximation of how it could take place in real life. This

agent-based model serves as our reference. Then we describe fully our compartment model,

and, relying on a system of second order Ordinary Differential Equations (ODEs), we intro-

duce the concept of overlapping compartments. Overlapping compartments represent model

states that are not mutually exclusive, so that it is possible for an individual to belong in more

than one of them e.g. be infected and contact-traced, or exposed and tested. We define

Fig 9. Comparison of differential equation and agent-based model with correlated transitions. As in Fig 8, the population size is 10000 individuals with 100 initially

infected. The testing rate is θ = 2.5−1days−1, the base testing rate is θ0 = θ, and tracing rate and success probability are χ = 0.5, η = 0.5. This choice of parameters exhibits a

good match between the models because the testing rate, though strongly correlated, is faster than the recovery rate. The plots show the time-series for each

compartment. The top row are the compartments representing unconfined individuals, those in SU, EU, IU and RU. The bottom row are those representing isolated—

diagnosed or distanced—individuals, SD, ED, ID, RD. The heavy orange curves are the output of the ODE-based simulation. The violet curves are the average output of the

agent-based simulation with correlated transitions, with envelopes for one and two standard deviations.

https://doi.org/10.1371/journal.pcbi.1008633.g009
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equations for this model in order to represent the processes that happen in the agent-based

model, providing the comparisons seen above in the Results section.

An agent based model of contact tracing

Among the possible measures to suppress an epidemic, contact tracing is defined as “an

extreme form of targeted control, where the potential next-generation cases are the primary

focus” [67]. In other words, contact tracing is the process by which we aim to identify and iso-

late individuals who have been in contact with an infectious patient in the past and are thus

more likely to have been exposed to the disease, in order to remove them from the pool of pos-

sible infectious patients before they develop symptoms.

We start by defining our modified SEIR model in agent-based form. The model features N
agents each characterised by a state symbolising progression throughout the disease (S, E, I, or

R) as well as a single bit characterising whether they are Undiagnosed or Diagnosed/Distanced

(U or D). As mentioned above, we label SU, SD, EU, etc. respectively the numbers of individuals

in each combination of those states, and S, E, I, R the totals (U and D combined). In addition,

we store a contact matrix keeping track of which individuals have been in contact with which

infectious members of the population, and an array of all those individuals for whom one past

infectious contact has been identified, and thus they can be traced as potentially exposed indi-

viduals. We call CT the total number of such traceable individuals. This contact matrix encap-

sulates a history of interactions in a way that is realistic but is not possible to represent directly

in ODE form. It is specifically the functioning of this individual contact matrix that we claim

to reproduce at the population level with our ODE formulation below.

We simulate the model using Gillespie’s algorithm [68], which provides a way to sample

exact trajectories produced by such stochastic processes. The possible state transitions that can

take place are:

1. contact between a random individual and one belonging to IU, with rate cIU. The contact

is stored in the contact matrix. If the individual happens to belong in SU, with likelihood

b̂ � 1, the contact results in exposure, and the SU individual becomes EU;

2. progression of the disease for an E individual into I, with rate αE;

3. recovery from the disease, or removal due to hospitalisation or death, for an I individual

into R, with rate γI;

4. diagnosis by regular testing of an IU individual, with rate θI. The individual is moved to ID;

all its past contacts, retrieved from the contact matrix, are marked as traceable with likeli-

hood η� 1. If the individual moved to ID was marked as traceable, it is unmarked (as

they’re already in isolation and there is no need to trace them any more);

5. release from isolation of an SD individual, making them SU, with rate κSD;

6. release from isolation of an RD individual, making them RU, with rate κRD;

7. contact tracing of a traceable individual with rate χCT. The individual is moved from XU to

XD, where X is whatever state of progression they are in, and they’re removed from the list

of traceable individuals.

The transitions described above can be intuitively seen as corresponding to the ones that

would happen in an idealised real-life version of epidemic spread with testing and contact trac-

ing. The biggest deviation from reality is the perfect mixing of the population implied by the

first process. The testing and tracing processes are parametrised by θ, the rate of diagnosis of
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infectious individuals, η, the likelihood or efficiency with which the tracing process identifies

contacts, and χ, the rate at which they are found and isolated. We will describe the meaning

and importance of these numbers as we explain how they fit into an ODE model description

of the same processes.

A time-correlated agent based model

We also define a second ABM, for the purpose of investigating how time correlation between

events affects the results. In regular ODE models, and in the ABM that was described above,

transitions between states happen at fixed rates but are completely uncorrelated; this results in

an exponential distribution of times each agent spends in a given state. In real life, this is obvi-

ously an unrealistic scenario: in particular, the time necessary for someone to recover from

a disease is generally better described by a peaked distribution [62–66]. A very simplified

approach was taken here to approximate this situation. A second ABM model was developed,

with the same compartments and transitions as the one described above, but with one key dif-

ference: all events that happened randomly now happen deterministically at a fixed time. This

can also be seen as the times following a pure Dirac delta distribution. In order to enable a

comparison, the time was chosen to be equal to the average time of transition for the uncorre-

lated model. This means for example the transition I! R at a rate proportional to γ corre-

sponds in this model to each individual in I moving to R precisely after an interval of γ−1.

Similarly, contacts between individuals happen regularly at intervals of c−1.

The main difference between this model and the previous one is in the mechanism used to

describe testing. In the regular ABM and in the ODE model, a single parameter θ is sufficient

to describe the rate of testing. This includes both the speed at which an individual suspected of

being infected can be tested and the probability of them being identified and tested at all. How-

ever, these two things are not the same for the purposes of a deterministic model. For example,

a value of θ−1 = 14 days might mean that everyone who is infected gets tested 14 days after

infection, or that 50% get infected 7 days after, and the rest not at all. These can lead to very

different outcomes in this model; in particular, if θ−1 > γ−1, no one will be tested before recov-

ering, and thus, testing is as good as non-existent. For this reason, for this specific model, we

further split the parameter in two:

y ¼ fyy0 ð2Þ

with θ0 being the ‘base’ testing rate and 0� fθ� 1 the fraction of individuals in the I state who

are tested. In practice, in the software used for the simulation, θ and θ0 are defined as input

parameters and fθ is derived from their ratio. The waiting time for a test will then be y
� 1

0
for a

fraction fθ of agents, infinite for everyone else.

The standard SEIR model

We begin by introducing the ODE form of the standard SEIR model [22, 58]. Because of the

large number of model compartments and exchange terms between them that will be featured

in the full model, we introduce a systematic notation to refer to rates that link them. We refer

to ΔX!Y as the rate at which members of the population move from compartment X to com-

partment Y. For example, ΔS!E is the rate at which Susceptible members of the population are

Exposed to the virus. In addition, for convenience when discussing movements that can hap-

pen due to multiple phenomena, we might add a superscript, such as D
Z
X!Y , to indicate only

the part of that rate that can be ascribed to a given process Z.
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With this notation, the differential equations that describe the standard SEIR model have

the following form,

dSU
dt

¼ � DSU!EU
ð3Þ

dEU

dt
¼ DSU!EU

� DEU!IU
ð4Þ

dIU
dt

¼ DEU!IU
� DIU!RU

ð5Þ

dRU

dt
¼ DIU!RU

ð6Þ

Note that all terms involve compartments identified with U subscripts as these equations all

apply to the undiagnosed part of our model. They will then be expanded upon to include the

effects of isolation and testing in the next section.

The terms in the above differential equations are defined in the usual way as,

DSU!EU
¼ bSU

IU
N

ð7Þ

DEU!IU
¼ aEU ð8Þ

DIU!RU
¼ gIU ð9Þ

where b ¼ b̂c is the infection rate, α is the disease progression rate and γ is the disease recovery

rate.

While this formulation treats the populations as continuous analytical functions, in general

these equations describe the mean trajectory of what is fundamentally a stochastic system.

This stochastic system can be simulated with Gillespie’s algorithm and, up to this point, is

equivalent in the continuous limit to an agent-based model featuring the same compartments

and transition rates.

The SEIR model with diagnosis and isolation

Now we add diagnosis to our description. Four more compartments, SD, ED, ID and RD, are

created to keep track of population cohorts who have been identified as potentially infected,

and thus isolated from the rest of the population as a measure to limit the spread of the disease.

Disease progression is not affected by this process; therefore,

DED!ID
¼ aED ð10Þ

DID!RD
¼ gID ð11Þ

Including isolation will change the infection rate, as unlike population IU, the isolated popu-

lation ID does not contribute to further infection. Hence we do not include an infection term

here. This is an idealisation. In reality isolation will not be perfect, and we can imagine a

reduced ‘cross-infection’ rate in which some people belonging to SU are infected by people in

ID. This could happen with medical professionals treating infectious patients or care workers

who maintain a quarantine facility. We could even consider infection of people in SD due to

PLOS COMPUTATIONAL BIOLOGY Testing, tracing and isolation in compartmental models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008633 March 4, 2021 15 / 28

https://doi.org/10.1371/journal.pcbi.1008633


those in ID, such as a patient in home isolation infecting their family. However, for present

purposes, we will work in an ideal situation where isolation is perfect.

Finally, we need to incorporate mechanisms to move individuals between the U and D
branches of the model. For this purpose we define a testing rate, θ, which represents the frac-

tion of people belonging in IU who, each day, are diagnosed with the disease. We note that this

parameter does not refer to any specific testing procedure; it just represents the total of people

who are recognised as having the disease. It can represent, for example, actual testing for a spe-

cific pathogen as well as clinical diagnosis. We only focus on the category of IU as these are the

patients who are most likely to realise they are sick and seek medical help. This generic testing

process is described by the equation,

D
T
IU!ID

¼ yIU ð12Þ

In addition, people will be released from isolation after a finite time without symptoms. For

this reason, we don’t include a mechanism for people in ID to return to the U branch of the

model, as they’re likely to be symptomatic or test positive for the pathogen. Instead, we con-

sider that people who have been isolated despite being not infected, or who are still isolated

after having recovered, will return to normal conditions at a rate κ,

DSD!SU
¼ kSD ð13Þ

DRD!RU
¼ kRD ð14Þ

With this model adaptation, a single infected individual can now take two paths:

1. SU! EU! IU! RU, in which they are exposed to the disease, become infectious, and

finally recover, without being isolated or diagnosed, as in the normal SEIR model, or,

2. SU! EU! IU! ID! RD! RU, in which, after becoming infectious, they are identified,

isolated, removed from the pool of those who can infect other susceptible people, and after

recovering, released from isolation.

Having these two paths allows attainment of some degree of control of the epidemic; how-

ever, it must be noted that while we have introduced them, the states SD and ED are here left

unused. This is because at this stage we associate testing with symptomaticity; there is yet no

mechanism other than by diagnosis to identify someone who could be infected. This is espe-

cially problematic in terms of the impossibility of isolating exposed people. These are individu-

als with a latent infection who will soon become infectious. Isolating them pre-emptively

would contribute a great deal towards suppressing the epidemic. For this reason, we move on

to include contact tracing as a means of preventive isolation.

The SEIR model with testing, tracing and isolation

We’ve seen previously that it is intuitive how contact tracing can be represented in an agent-

based model, in which individuals are simulated and each has an history of contacts with other

members of the population. It is not as obvious how to treat contact tracing in a compartment

model, where there is no memory of the histories of contacts of specific individuals, but only

average quantities. We outline here a probabilistic method for doing this.

Let us define Pr(X) the probability of an individual of belonging to compartment X of the

population. For example, Pr(SU) = SU/N is the probability of an individual to be Susceptible

and Undiagnosed. In addition, let us define Pr(CI) the probability of an individual of having

had contact with an infectious individual in the past where that infectious individual is still
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infectious. The latter detail is important because here we consider only “next-generation” trac-

ing; in other words, we only try to trace the direct contacts of those infectious individuals who

were found to test positive. This is a conservative assumption. It could be possible to make

contact tracing more effective by also tracing one generation further (the contacts of the con-

tacts), but because the process requires exponentially more resources with each generation

with decreasing likelihood of correctly identifying exposed or infectious individuals, we simply

opt to neglect that possibility. Therefore, in this model the only people who can be traced are

those whose most recent infectious contact is still infectious; once they recover, they cannot be

identified as infectious any more, and thus it will be impossible to trace their contacts as well.

Finally, we define Pr(CT) the probability of an individual of being traced. All these probabilities

are functions of time, and quantities that evolve with the model itself.

First, we rewrite the probability of being traced is

PrðCTÞ ¼ PrðCTjCIÞPrðCIÞ þ PrðCTj:CIÞPrð:CIÞ ð15Þ

where Pr(CT|CI) is the conditional probability of being traced given that one has had an infec-

tious contact in the past, and Pr(CT|¬CI) the probability of being traced given that one has not.

Clearly, Pr(¬CI) = 1 − Pr(CI). If we ignore the possibility of false positives, then Pr(CT|¬CI) = 0,

namely, a person can only be traced if they did have an infectious contact in the past. If we

then set an ‘efficiency’ parameter η representing the fraction of contacts that we are indeed

able to identify, the probability of being traced at a given time is simply

PrðCTÞ ¼ ZPrðCIÞ ð16Þ

To derive transition rates among compartments, we consider that individuals will be traced

proportionally to how quickly the infectious individuals who originally infected them are,

themselves, identified. We add a factor χ to account for the speed of the tracing process itself,

and we find a global tracing rate,

D
ðCT Þ ¼ wyPrðCTÞ ¼ wyZPrðCIÞ ð17Þ

It then follows that, for individuals in a given compartment X, the rate at which they’re isolated

by contact tracing is

D
ðCT Þ
XU!XD

¼ Z ywPrðXU jCIÞPrðCIÞN ¼ Z ywPrðCIjXUÞXU ð18Þ

where in the last step we made use of Bayes’ theorem [69]. This is our Eq 1, the central mathe-

matical result of this paper.

The difficulty is then computing the exact probabilities. These are functions that, in general,

vary in time and require a certain degree of information about the past. We need to define use-

ful assumptions and approximations in order to work with these probabilities in a model that

inherently lacks any memory about the individual histories of the elements of its population.

One simple assumption for Exposed and Infectious individuals is

PrðCIjEUÞ ¼ PrðCIjIUÞ ¼ 1 ð19Þ

meaning that we assume that if an individual has been Exposed or Infected, they must also

have had an infectious contact in the recent past. This is in fact the reason why contact tracing

is an effective use of resources: it skews heavily towards identifying those who have in fact

been exposed to the disease. We remark that this assumption does not hold in general in cir-

cumstances where it is possible for an individual to become infected indirectly, such as by con-

tact with contaminated surfaces. For present purposes we assume that the likelihood of such
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events is small compared with the likelihood of being infected through contact with another

individual.

Another limit of this assumption is that we have defined Pr(CI) as the probability of having

had an infectious contact who is still infectious. For α� γ, or for some infectious individuals

who may take a long time to recover, their original infector might have already recovered in

the time it takes for them to be tested. However, here we study a model in which α> γ, and it

is reasonable to assume that those infectious individuals who are tested are identified relatively

early on in their infection, especially if θ> γ. Therefore, we deem the assumption in Eq 19

acceptable at least insofar as these two conditions hold and indirect infection is unlikely.

Estimating Pr(CI|SU) and Pr(CI|RU) is more complicated. One possible approximation is to

work as if IU were constant on the time-scales of interest; in that case we would have

PrðCIjSUÞ ¼ ð1 � bÞcg0� 1IU ð20Þ

PrðCIjRUÞ ¼ cg0� 1IU ð21Þ

where γ0 is the overall rate at which individuals are removed from the IU state. Putting together

recovery, regular testing, and contact tracing, we find γ0 = γ + θ(1 + ηχ). The main difference

between the two equations is determined by the fact that someone in SU might still be infected,

and thus only has a probability 1 − β of remaining susceptible after a contact with an infectious

member of the population, whereas for recovered individuals this is not an issue any more.

Eqs 20 and 21 can be used to compute rates of contact tracing by combining them with 1.

However, here we try to go beyond the crude approximation of constant IU, as it may often

reflect reality very poorly.

We consider for example the total number of members of SU who also have had recent

infectious contacts, N(CI|SU) = Pr(CI|SU)SU. We can describe these in first approximation as

NðCIjSUÞðtÞ ¼
Z 0

� 1

ð1 � bÞcIUðt � tÞSUðt � tÞFIðt; tÞFSU
ðt; tÞdt ð22Þ

where the FX(t, τ) are the ‘survival functions’ for the state X. In other words, these are the func-

tions that determine how likely it is that an individual that was in X at time τ still is in the same

state at time t. We also used FI, meaning the survival function of the total number of infectious

individuals, I = IU + ID, because here we focus on overall infectiousness, not the fact that one

might have been isolated before recovery. Note, however, that only IU individuals participate

in contacts. The reason that this is an approximation is that we’re not excluding the N(CI|SU)

from the pool of SU that can be contacted, and thus there is a risk of double counting. That risk

will remain negligible as long as N(CI|SU)/SU is small; therefore, this model will perform better

in a regime in which there are few infectious individuals, and thus, few contacts. This is in fact

the regime in which contact tracing is most likely to be feasible in practice, to control small

outbreaks rather than in presence of an uncontrolled epidemic. Regardless, we show in the

Results section that even when this approximation does not hold, while it results in oscillatory

behaviour early on, it still generally adequately describes the overall trends and long term equi-

librium. Eq 22 is equivalent to the integral form of an equation for a compartment model [70].

It can be written in differential form as,

dNðCIjSUÞ
dt

�
�
�
�
t

¼ ð1 � bÞcIUðt � tÞSUðt � tÞ � ðhIðtÞ þ hSU
ðtÞÞNðCIjSUÞ ð23Þ

where the hX ¼
1

FX
dFX
dt are the ‘hazard functions’ for the state X. In particular, hI = γ.
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Given the similarities between these equations and the ones describing the compartment

models, it is natural to think of creating a specific compartment for N(CI|SU). This is in fact

what we do. There is, however, an important difference from regular compartments, because

this compartment does not include individuals that exclusively belong to it; rather, it overlaps

with SU. It is more of a device used for book-keeping purposes, to compute the integral in Eq

22 within the confines of the model, than a compartment in the usual sense. We similarly

define N(CI|EU), N(CI|IU) and N(CI|RU), which leads, using Eq 1, to the following contact trac-

ing rates,

D
ðCT Þ
SU!SD

¼ Z ywNðCIjSUÞ ð24Þ

D
ðCT Þ
EU!ED

¼ Z ywEU ð25Þ

D
ðCT Þ
IU!ID

¼ Z ywIU ð26Þ

D
ðCT Þ
RU!RD

¼ Z ywNðCIjRUÞ ð27Þ

In addition, we establish the following transition rates between these N compartments,

D!NðCI jSU Þ
¼ ð1 � bÞcIUSU ð28Þ

DNðCI jSU Þ!
¼ ðgþ Z ywÞNðCIjSUÞ ð29Þ

DNðCI jSU Þ!NðCI jEU Þ
¼ bcIUNðCIjSUÞ ð30Þ

D!NðCI jEU Þ
¼ cIUEU þ bcIUSU ð31Þ

DNðCI jEU Þ!
¼ ðgþ Z ywÞNðCIjEUÞ ð32Þ

DNðCI jEU Þ!NðCI jIU Þ
¼ aNðCIjEUÞ ð33Þ

D!NðCI jIU Þ
¼ cI2

U ð34Þ

DNðCI jIU Þ!
¼ ðgþ yþ Z ywÞNðCIjIUÞ ð35Þ

DNðCI jIU Þ!NðCI jRU Þ
¼ gNðCIjIUÞ ð36Þ

D!NðCI jRU Þ
¼ cIURU ð37Þ

DNðCI jRU Þ!
¼ ðgþ Z ywÞNðCIjRUÞ ð38Þ

There is a lot going on in Eqs 28–38; most importantly, these new compartments do not

conserve the total size of the population. Their membership grows as contacts happen and

shrinks as time passes. All the key processes can be summed up as follows:

• elements are ‘created’ for each state proportionally to the rate of contact with individuals

belonging to IU, adjusted with 1 − β in the case of SU to account for the likelihood that the

PLOS COMPUTATIONAL BIOLOGY Testing, tracing and isolation in compartmental models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008633 March 4, 2021 19 / 28

https://doi.org/10.1371/journal.pcbi.1008633


contact is infective. These terms are ‘sources’ and can be recognised by having an arrow with

nothing on its left in the subscripts;

• elements ‘decay’ at a rate that amounts to γ (the hazard function for I, which always appears

as it refers to the original infector) plus a rate representing the hazard function for the transi-

tion XU! XD. These terms are ‘sinks’ and can be recognised by having an arrow with noth-

ing on its right in the subscripts;

• elements move between compartments following the usual transitions that control the

dynamics of the SEIR model (infection, progression of the disease, recovery). These terms

are analogous to the corresponding ones connecting XU states, and contribute the remainder

of the hazard function for each XU to Eq 23 and equivalents.

It must also be noted that, in practice, considering Eq 19, it must be N(CI|EU) = EU and

N(CI|IU) = IU, which removes the need for two of the four compartments above and simplifies

the equations to

D!NðCI jSU Þ
¼ ð1 � bÞcIUSU ð39Þ

DNðCI jSU Þ!
¼ ðgþ Z ywþ bcIUÞNðCIjSUÞ ð40Þ

D!NðCI jRU Þ
¼ cIURU þ gIU ð41Þ

DNðCI jRU Þ!
¼ ðgþ Z ywÞNðCIjRUÞ ð42Þ

A few words are necessary on the hazard function for the XU! XD transitions. This is

approximated as ηθχ in states SU and RU even though that is not precisely correct; the correct

hazard function would be ηθχN(CI|XU)/XU, but that introduces a risk of instability for small

values of XU. We justify this choice by the following reasoning. In a weak testing regime (ηθχ
� γ), N(CI|XU)/XU might be high due to a great number of infected individuals, but in princi-

ple should never be greater than 1 (modulo the point above about double counting). Therefore,

the hazard function is dominated by γ. Conversely, in a strong testing regime, the number of

infected individuals, and thus N(CI|XU)/XU, will be very small, and this assumption will at

most end up underestimating the effect of contact tracing (by causing a faster decay in N(CI|

XU) than otherwise would happen). The examples shown in the Results section illustrate how

this affects the simulations—in general, leading to good predictions for the behaviour of the

EU and IU compartments.

Eqs 7–9, 10, 11, 12, 24–27 and 28–38, together, define entirely our model. The parameters

that appear in these equations are summarised for reference in Table 1.

Table 1. Parameters used in the SEIR-TTI model.

Parameter Description

N Population size

c Average contacts per day

b̂ Transmission rate per contact

α−1 Incubation period (time from exposed to infectious)

γ−1 Recovery period (time from infection to recovery)

θ Testing rate of infectious individuals

η Efficiency or success rate of contact tracing

χ Contact tracing rate

https://doi.org/10.1371/journal.pcbi.1008633.t001
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Software implementation

We implement the above ordinary differential equations and agent-based model in our PTTI

Python package (https://github.com/ptti/ptti) using the Compyrtment [71] package that facili-

tates the formulation of initial value problems. It is written for Python 3 and makes use of the

scientific computation libraries NumPy and SciPy [72, 73] as well as the optimisation library

Numba [74]. The specific scripts used to run the simulations and produce the figures seen in

this paper can be found in the ptti-theory-paper branch of the repository.

The PTTI package provides a declarative language for specifying simulations of models

implemented as Python objects. It supports setting of model parameters, simulation hyper-

parameters as well as interventions that modify parameters at particular times to conduct

piece-wise simulations reflecting changing conditions in a convenient and user-friendly way.

We hope that this software formulation will be useful for easy and rapid exploration of the

effects of different intervention scenarios for disease outbreak control.

Discussion

Our work outlines a method for extending the classic SEIR model to include Testing, contact-

Tracing and Isolation (TTI) strategies. We show that our novel SEIR-TTI model can accurately

approximate the behaviour of agent-based models at far less computational cost. Our adapta-

tion is applicable across compartmental models (e.g. SIR, SIS etc) and across infectious dis-

eases. We suggest that the SEIR-TTI model can be applied to the COVID-19 pandemic to

understand the impact of possible TTI strategy to control this outbreak.

The importance of modelling to support decision making is widely acknowledged, but

models are far more useful when they can accurately represent the classes of interventions that

are being considered [20]. The approach described in this paper enables accurate and efficient

modelling of contact tracing and testing across a wide range of relevant parameter values. The

ability to accurately model TTI strategies across parameter values is vital for controlling disease

outbreaks including the current COVID-19 pandemic. Effective testing, contact tracing and iso-

lation strategies have been the key measures that have prevented the epidemic spreading in

South Korea [75], New Zealand and Germany [76].

Our work is novel as it is to date, and to the best of our knowledge, the first deterministic

model to explicitly incorporate contact tracing. Previously, an attempt to model contract trac-

ing was made by Fraser et al. [57]. The model was based on the McKendrick-Von Foerster

[77] partial-differential equation that describes dynamical systems in terms of time and one

more independent variable and which can be integrated along the characteristic lines (method

of characteristics) to produce a system of ordinary differential equations analogous to the SIR

system. The McKendrick-Von Foerster equation in [57] described dynamics of the current

population at time t as a function of those infected some time ago (current time t and previous

time τ are the two independent variables in [57]). This equation was also studied more recently

in the context of the French COVID-19 epidemic where the two independent variables were

time and age in [78]. Fraser et al. [57] modelled contact tracing and isolation as two indepen-

dent processes determined by the same distribution and individuals that are infectious were

subdivided into four groups of individuals: those individuals who will never be isolated or con-

tact-traced; individuals who will be isolated but never contact-traced; individuals who will

never be isolated but will be contact-traced and individuals who will be either isolated or con-

tact-traced. The main assumptions of the model are the two probabilities: firstly the probability

with which individuals become symptomatic and isolated; then once symptomatic individuals

who have been isolated have their contacts traced, the people they have infected are themselves

quarantined with some second probability. Level of contact tracing is not a specific parameter

PLOS COMPUTATIONAL BIOLOGY Testing, tracing and isolation in compartmental models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008633 March 4, 2021 21 / 28

https://github.com/ptti/ptti
https://doi.org/10.1371/journal.pcbi.1008633


in this model. Furthermore, contacts of individuals who are asymptomatic when quarantined

are only themselves traced after symptoms develop.

Unlike this model, we have explicitly incorporated in our framework tracing level of both

exposed and infectious people—hence allowing the pool of traced people to be increased and

specifically accounting for the two groups. Furthermore, we also consider that those traced

will be isolated with certain probability and hence we view isolation as follow-on process from

tracing and dependent on it. The main purpose of the model in [57] is show that the propor-

tion of transmission that occurs before symptom occur i.e. the proportion of asymptomatic

infection (θ in their model) is a useful new statistic for describing whether isolation- or con-

tact-tracing-based intervention measures are better at controlling an epidemic outbreak. Their

results suggest that only if asymptomatic infection is above a certain threshold (θ> 1/Re(0))

contact tracing needs to be added to the set of control measures. But the issue with an emerg-

ing pandemic, such as COVID-19, is that we do not know the proportion of asymptomatic infec-

tion θ. Our model instead, allows contact tracing level to be included from the onset of an

emerging pandemic and to be varied for both exposed and infectious people. Importantly, we

aim to quantify how the interplay between testing and tracing is important in controlling out-

breaks –it is the balance between these that quantifies how effective reproduction number

changes—as illustrated in Fig 5.

Contact-tracing has been until now typically modelled successfully with agent-based mod-

els. We are aware that agent-based models allow more realistic infectiousness profiles to be

incorporated, and we have done so in our other work [12] as have other studies [79, 80]. We

are also aware that ABMs allow more realistic distribution of times spent in each state and can

incorporate fixed time delays for testing and tracing rather than constant rates which lead to

exponential waiting time distributions.

An important aspect of our approach is that our ODE formulation explains the behaviour

of anthe agent-based model.

Namely, agent-based models are formulated in terms of local interactions among individu-

als and exhibit emergent behaviour at the population level. For interesting agent-based models,

it is usually difficult to obtain any explicit connection between the local interactions and the

population-level dynamics except through simulation and inspection of the results. We argue

that our work here shows such an explicit connection: we have been able to capture the

dynamics that arise at a population level from testing and contact tracing. We show that this is

correct by demonstrating good agreement with the population-level dynamics that emerge

from the agent-based formulation where only local interactions are specified.

The SEIR-TTI model here considers disease propagation in the classical well-mixed setting.

This is appropriate especially in circumstances where data are sparse and gives qualitatively

similar results to those from fine-grained models that might otherwise provide more quantita-

tively accurate results if only more detailed data were available. In particular, well-mixed mod-

els do not include any notion of the network of contacts across which a contagion spreads in

the real world. In reality, individuals in a large population are not equally likely to have contact

with one another and it has long been known [48–50, 52, 53, 81–83] that heterogeneity in

underlying population structure can have a strong effect [42, 84–86] on disease propagation.

This effect is distinct from the choice of distributions reflecting the natural history of the dis-

ease: whereas peaked distributions are appropriate for transitions between states caused by the

progression of the illness, the distribution of infection events mediated by a contact network

are very different. Both of these classes of distribution are different from the exponential distri-

bution implied by the underlying mass action semantics of a well-mixed model. Future work

will include developing a better understanding of the relationship between network structure

PLOS COMPUTATIONAL BIOLOGY Testing, tracing and isolation in compartmental models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008633 March 4, 2021 22 / 28

https://doi.org/10.1371/journal.pcbi.1008633


and effectiveness of tracing, and mathematical characterisation of the classes of solution avail-

able for these models.

Another extension is investigating the extent to which individual decisions about compli-

ance with measures to reduce disease propagation (voluntary distancing, wearing of masks,

etc.) affect the success of containment. A game-theoretical approach such as that considered

by Zhao et al. [87] may produce useful insights into this question. Insights gained from these

extensions can inform policy design for relaxing onerous restrictions on the population.

An important next step in this work is the real-time policy driven application of SEIR-TTI.

As our next piece of work we are planning to explore how SEIR-TTI model can be combined

with economic analysis to guide decisions around optimal design of a TTI strategy that can

suppress the COVID-19 epidemic in the UK.

Conclusion

This paper shows how to extend compartmental models to incorporate testing, contact tracing

and isolation. The resulting SEIR-TTI model is a key development in the widely used SEIR

models, and an important step if these are to be useful in policy decision making during out-

breaks. The long and successful history of testing, contact tracing and isolation in slowing and

stopping the spread of infectious diseases is well known [67], with clear immediate importance

for COVID-19 control [88].

The design of policies that include a variety of infectious disease control tools, and under-

standing and applying them in ways that are effective for society at large, is critical. Tools and

models that allow policymakers to better understand the policies and the dynamics of a disease

are therefore critical. If making policy decisions without evidence is flying blindly, making

decisions without understanding the consequences of the various control measures is flying

without flight controls. Models like SEIR-TTI can inform policymakers of the role that testing

and tracing can play in preventing the spread of disease. Combined with economic and policy

analysis, this can enable far better decision making both in the immediate future, and in the

longer term. The next step in our work is indeed this: the application of the SEIR-TTI model

combined with economic models to investigate the effect of different TTI strategies to conquer

the COVID-19 epidemic in the UK.
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