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Computation of Spherical Harmonic
Representations of Source Directivity Based on the

Finite-Distance Signature
Jens Ahrens and Stefan Bilbao

Abstract—The measurement of directivity for sound sources
that are not electroacoustic transducers is fundamentally limited
because the source cannot be driven with arbitrary signals.
A consequence is that directivity can only be measured at a
sparse set of frequencies—for example, at the stable partial
oscillations of a steady tone played by a musical instrument
or from the human voice. This limitation prevents the data
from being used in certain applications such as time-domain
room acoustic simulations where the directivity needs to be
available at all frequencies in the frequency range of interest.
We demonstrate in this article that imposing the signature of
the directivity that is obtained at a given distance on a spherical
wave allows for all interpolation that is required for obtaining
a complete spherical harmonic representation of the source’s
directivity, i.e., a representation that is viable at any frequency, in
any direction, and at any distance. Our approach is inspired by
the far-field signature of exterior sound fields. It is not capable
of incorporating the phase of the directivity directly. We argue
based on directivity measurement data of musical instruments
that the phase of such measurement data is too unreliable or
too ambiguous to be useful. We incorporate numerically-derived
directivity into the example application of finite difference time
domain simulation of the acoustic field, which has not been
possible previously.

Index Terms—Sound radiation, spherical harmonics

I. INTRODUCTION

THE measurement and modelling of sound source direc-
tivity has seen increased interest in recent years. The

main application areas are the analysis of the directivity of,
for example, musical instruments in order to understand the
impact on the listening experience [1], how the directivity in-
teracts with room acoustics [2], [3], how noise from machinery
propagates in a given environment [4], or virtual reality [5].
Source directivity and even more so dynamic source directivity
have been shown to increase plausibility as well as other
favorable psychoacoustic attributes of auralizations [6].

Simple models for directivity include [6], [7], [8] in which
the directivity is represented by radiated rays or beams.
Spherical harmonics (SH) have been shown to be a powerful
representation of sound source directivity [9], [10], going back
to early work by Weinreich [11]. We will focus on wave-based
room acoustical simulations such as [12] as an application
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scenario in the present article because it is this case that both
places the most stringent requirements on the modelling of
the sound source directivity and allows for the most accurate
simulation of the acoustic field. Specifically, the directivity
needs to be available with respect to magnitude and phase at
any arbitrary frequency in a continuous-space representation
such as an SH expansion.

The incorporation of source directivity into geometrical
acoustics has seen some investigation. Spatial resolution of
source directivity was studied in [3]; a significant impact of
the maximum SH order of the directivity on room acoustical
metrics was found with saturation occurring at an SH order
of around 10. It was found in [13] that directivities of order
higher than 4 were not perceptually significant in a binaural
auralization of an image source-based room simulation.

A major challenge is the measurement of directivities of
sources that are not electroacoustical transducers. This is
mainly because it is not possible with most sources to drive
them in a reproducible manner with a known input signal as in
the case of, e.g., musical instruments or machinery. Most of the
available data comprise polar plots or similar of the radiated
magnitude or power for a given representative signal. Many
times, no information on the phase is available. Examples
are [14] (human voice), [1], [15] (musical instruments), [16],
[17] (vehicles), [18] (wind turbines), and [19] (loudspeakers).
Data on violins that were excited in an automized manner are
presented in [20].

The musical instrument directivities presented in [21] were
measured using a spherical array of 32 microphones surround-
ing a musician playing single tones and scales at different
dynamic levels. The directivity was defined as the magnitude
and phase that were deduced from each of the microphone
signals at the corresponding frequencies of stable partial
oscillations.

Some attempts have been made to compute spherical
harmonics based representations for directivities of non-
electroacoustic sound sources [22], [23]. They are limited to
individual selected frequency bins of the DFT spectrum. We
therefore consider the resulting SH representations incomplete
as they do not represent the directivity at all frequencies in
the frequency range of interest.

Conceptually, the directivity represents a whole set of
information, including the location of a radiating surface,
time-frequency information as well as the propagation of the
radiated sound field. The limitations of the measurement pro-
cedures do not allow for all this information to be represented
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in the data. In most cases, the phase data are either not
available at all (as explained above) or unreliable as we will
illustrate in Sec. V-C.

We therefore applied an approach in [24] that consists in
imposing source position and curvature of the wave front
as well as the angle-dependent magnitude directivity onto a
spherical wave. The present article contributes further analysis
of the method in terms of the distance dependency of the
resulting directivity representation as well as of the effects of
order truncation.

A similar approach had already been employed in the
modeling of the directivity of moving sources in [25] and with
the boundary element method in [5], but its properties were
not investigated further.

Source directivity and the proposed approximation are
presented in Sec. II and III. The accuracy of the proposed
approximation is discussed in Sec. IV. Numerical results
based on publicly available directivity data are presented in
Sec. V. We concentrate here on musical instruments as these
are amongst the most challenging types of sound source in
terms of the sparsity of the measured directivity. We have
presented related work on the examples of a sparsely measured
directivity of a singing voice as well as of data in the Common
Loudspeaker Format in [26].

II. SOURCE DIRECTIVITY

The term directivity with regard to acoustic sources has
been defined in various ways in the literature [27], [19], [28],
[29, p. 204]. Here, we define directivity as the spatio-temporal
transfer function of a sound source under free-field conditions,
evaluated at arbitrary spatial locations. This is the most general
definition, from which the others above can be derived. We
will assume that the directivity is evaluated on a spherical
surface centered around the source and omit the assumed
time dependency of e−iωt (following the sign convention used
in [29]).

A source directivity W (r,γ, ω) is dependent on an angu-
lar frequency ω, in rad/sec, a radial distance r in m from
the nominal source center, and a unit-length 3-vector γ =
[cosα sinβ, sinα sinβ, cosβ]T defined in terms of azimuth
angle α and colatitude β. The directivity is defined as

W (r,γ, ω) =

∞∑
l=0

l∑
m=−l

W̆l,m(ω)h
(1)
l

(
ω
r

c

)
︸ ︷︷ ︸

=W̊l,m(r,ω)

Yl,m(γ) , (1)

and represents the radiated acoustic field exterior to a sphere
that is just large enough to completely enclose the sound
source [29, p. 206]. We will refer to (1) as the conventional
representation of directivity in the remainder of this article.
h

(1)
l (·) is the lth order spherical Hankel function of first kind,

and Yl,m(γ), defined for integer l ≥ 0 and −l ≤ m ≤ l, are
the SH basis functions, which we are assuming to be real and
orthonormal over the unit sphere. W̆l,m(ω) are coefficients that
contain all information about the source directivity. Our choice
of time dependency makes h(1)

l (·) represent an outgoing wave.

The coefficients W̆l,m(ω) follow from

W̆l,m(ω) =
1

h
(1)
l

(
ωRc
) ∫∫

S2

W (R,γ, ω)Yl,m(γ)dΩ , (2)

where W (R,γ, ω) is a directivity known on a spherical surface
with radius R that encloses the source, S2 represents the
unit sphere, and Ω is an infinitesimal surface element on S2.
Alternatively, a least-squares fit of the coefficients W̆l,m(ω) or
W̊l,m(r, ω) to the spatially discrete measurement data points
can be performed based on (1) as demonstrated below. In
either case, only the coefficients up to a given order l = L
that depends on the number of measurement points can be
obtained.

Consider the case of N measurement locations rq = Rγq ,
for angle vectors γq , q = 1, . . . , N . The associated mea-
sured directivities Wq can be arranged as a column N -
vector W = [W1, . . . ,WN ]T , whereby (·)T denotes matrix
transpose. Eq. (1), when truncated to order l ≤ L may be
written in vector-matrix form as [30], [31], [12]

W = YW̊ , (3)

where here

Y =


Y0,0(γ1) Y1,−1(γ1) . . . YL,L(γ1)

Y0,0(γ2)
. . . . . . YL,L(γ2)

...
. . . . . .

...
Y0,0(γN ) Y1,−1(γN ) . . . YL,L(γN )

 (4)

and

W̊ =
[
W̊0,0(R,ω), W̊1,−1(R,ω), . . . , W̊L,L(R,ω)

]T
. (5)

If N ≥ (L+ 1)2, Eq. (3) can be solved in the least-squares
sense by

W̊ = Y†W , (6)

whereby Y† denotes the Moore-Penrose pseudo inverse [32].
The solution may be complemented by a regularization term,
such as that due to Tikhonov [32, Eq. (6.10)], [30].

III. AN APPROXIMATION OF SOURCE DIRECTIVITY

Evaluating the directivity in the limit of r →∞ leads to the
large-argument approximation of the spherical Hankel function
given by (18) in App. B, and (1) simplifies to [29, p. 204]

W∞(r,γ, ω) =
eiω r

c

r

c

iω

∞∑
l=0

l∑
m=−l

(−i)lW̆l,m(ω)Yl,m(γ) .

(7)
W∞(r,γ, ω) is referred to as the far-field signature of the
directivity [33, p. 81]. Eq. (7) indicates that at a sufficient dis-
tance, a source of finite spatial extent radiates spherical wave
fronts (eiω r

c /r), the complex amplitudes of which depend on
the angle and are represented by the coefficients W̆l,m(ω).
In other words, the angular dependence of the directivity is
imposed onto a spherical wave. How far this sufficient distance
has to be depends on the spatial extent of the source and its
distance from the coordinate origin (which coincides with the
nominal location of the source). The observation distance has
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to be much larger than the largest dimension of the source. If
the source is of small spatial extent and located at the origin of
the coordinate system, the discrepancy will be very small. This
assumption holds for most sound sources for which detailed
directivity data are available, such as [21]. Note that classical
polar diagrams display the magnitude of the far-field signature
W∞(r,γ, ω).

Inspired by (7), we follow the proposition from [25] to
impose the nominal source location as well as a model of
the propagation (particularly the radial dependency) on the
measured data. As we will highlight in Sec. V-C, the phase
data can generally not be measured reliably and are often
too sparse to permit interpolation [26]. We therefore extract
only the magnitude of the directivity from the measurement
data and impose it onto a spherical wave that originates from
the coordinate origin [5]. We use the symbol W ′(r,γ, ω) in
the remainder of this paper to represent this new modeled
directivity. More precisely, W ′(R,γ, ω), over the spherical
measurement surface of radius R is given by [24]

W ′(R,γ, ω) = |W (R,γ, ω)| eiωR
c eiφ(γ,ω) . (8)

We refer to |W (R,γ, ω)| as the finite-distance signature of the
directivity. Note that it comprises the distance attenuation from
the source to the spherical measurement surface. The factor
eiωR

c in (8) represents a constant pure delay, which maintains
causality. An optional phase factor eiφ(γ,ω) may be fitted to
the observed magnitude spectra to design the time-domain
structure of the signals. Obvious options are minimum phase
or linear phase [34]. Also, augmentation of the data through
recovery of the algebraic sign of lobes in the directivity based
on the magnitude as proposed in [35] or using [36] may be
applied.

We express W ′(R,γ, ω) in (8) in terms of SH (cf. (1)) as

W ′(R,γ, ω) =

∞∑
l=0

l∑
m=−l

W̊ ′l,m(R,ω)Yl,m(γ) . (9)

Note that the value of the proposed representation does not lie
in the approximation of a given directivity. As demonstrated
in [24], [26] and in Sec. V, the value lies rather in the fact
that this representation enables the computation of complete
SH representations even if the available data are sparse with
respect to the angle and/or the frequency. As we will elaborate
further in Sec. V, such computations require ignoring the phase
either way (if it is available at all).

Eq. (9) may be solved for W̊ ′l,m(R,ω) either using (2)
(without dividing by h(1)

l (·)) or performing a least-squares fit
according to (6). As before, this can be achieved only up to a
certain order l = L in practice.

Using [29, Eq. (6.94)], the complete SH based representa-
tion of W ′(r,γ, ω) is finally given by

W ′(r,γ, ω) =

L∑
l=0

l∑
m=−l

W̊ ′l,m(R,ω)
h

(1)
l

(
ω rc
)

h
(1)
l

(
ωRc
)Yl,m(γ) .

(10)
Note that the combination of (8) and (10) forces the curvature
of the wavefronts of the directivity to be spherical. This is
because the phase factor eiφ(γ,ω) in (8) will usually imply only

very small timing differences between different directions at a
given frequency compared to the timing differences that a non-
spherical wave front curvature would cause at distance R. We
refer to W ′(r,γ, ω) as proposed representation of directivity
in the remainder.

IV. ACCURACY OF THE PROPOSED REPRESENTATION

The evaluation of the accuracy of the proposed repre-
sentation is complex and hinges on the particulars of the
sound source under consideration. We will use the two simple
directivities of a displaced monopole and of a set of four
displaced monopoles (which emulates a distributed source) as
test cases.

A. Effects of Order Truncation

The coefficients W̆l,m(ω) and W̊ ′l,m(R,ω) in (1) and (10),
respectively, can only be computed up to a maximum order l =
L in practice. This constitutes a spatial bandwidth limitation
which makes the bandlimited representation exhibit a slower
spatial variation. A secondary effect is a modification of the
time-frequency spectrum, which is linked to the order L via the
Hankel function h(1)

l (·). We discuss this aspect in the present
section.

Usually, sound source directivities are measured with spher-
ical or circular microphone arrays. A method for measuring
directivities with distributed arrays under non-free-field con-
ditions is presented in [37]. It is very likely when measuring
the directivity of real-world sources that some parts of the
radiating structure cannot be placed in the center of the setup.

We assume in the following the simplest possible source:
a monopole source that is located at rs = (0.3, 0, 0) m
whose directivity eiω

|r−rs|
c /|r − rs| is known at 1800 equi-

angularly spaced positions on a spherical surface centered at
the coordinate origin with a radius of R = 1 m. We use
these simulated measurement data to extract a conventional
SH representation (1) of the directivity of order L = 6 by
means of an unregularized least-squares fit according to (6)1.

Fig. 1(a) illustrates the magnitude of this 6th-order direc-
tivity at two different frequencies using balloon plots. Note
that all balloon plots in this article present the data on a
linear scale. The original directivity is represented well at
the depicted low frequency (higher row). At the high fre-
quency, the order-limited conventional representation departs
substantially from the original directivity (lower row). This
departure occurs together with a high-frequency roll-off, which
is a consequence of the properties of order-limited translated
SH expansions [38], [39]. The roll-off is clearly visible in
the middle plot of Fig. 1(b) and can cause an attenuation in
the order of 20 dB. The roll-off occurs also for distributed
sound sources like that shown in Fig. 2 (middle plot). Note
that this roll-off does not occur for compact sources located
in the origin of the coordinate system.

1Note that the results are identical when using the analytical expressions of
the SH representation of the displaced monopole (that are obtained via (2))
instead of the least-squares fit due to the orthogonality of the SH and the
linear independence of the spherical Hankel functions in (1).
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(a) Balloon plots of the conventional directivity representation (1)
(middle column) vs. the proposed representation (10) (right column).

Top row: f = 600 Hz. Bottom row: f = 1500 Hz.

(b) Magnitude in dB of the directivity in the horizontal plane

Fig. 1. Magnitude of the directivity of a 6th-order approximation of a
monopole displaced by 0.3 m from the coordinate origin in positive x-
direction evaluated at 1 m distance in the horizontal plane

Fig. 2. Magnitude in dB of the directivity of a set of 4 distributed monopoles
at x = ±0.3 m, y = ±0.3 m that radiate in phase measured in the horizontal
plane at a distance of r = 1 m: actual directivity (left), 6th-order conventional
representation (middle), and 6th-order proposed representation (right). The
decompositions were obtained via an unregularized least-squares fit.

The frequency f ′ above which the roll-off occurs can be
estimated roughly via [40]

f ′ =
(L− Ls) c

2πrs
, (11)

whereby Ls is the order of the directivity of the source when
centered at the coordinate origin (for the monopole, Ls = 0),
and rs is the distance of the source position to the coordinate
origin. This leads to f ′ ≈ 1100 Hz for the scenarios depicted
in Fig. 1 and 2. The proposed representation in Fig. 1(b) (right)
and Fig. 2 (right) is capable of replicating the original mag-
nitude directivity with much less deviation at any frequency.
Potentially more importantly, the proposed representation does

not exhibit a high-frequency roll-off because the sound source
inherently appears in the coordinate center.

The concept of source centering was proposed in [9],
[41], [40] to concentrate energy in the lower SH orders and
avoid the high-frequency roll-off discussed above. It consists
in identifying the acoustic centers of the elementary sound
sources that the source comprises, whereby one is assumed for
each frequency bin, and placing the coordinate origin in which
the decomposition (3) is performed for the given frequency bin
into the acoustic center. Note that this requires modifying the
definitions of the matrices Y and W̊ in (4) and (5) as detailed
in [22].

We do not apply explicit source centering as our proposed
representation (10) performs it inherently.

B. Other Considerations

Eq. (7) and consequently also the proposed representa-
tion (10) requires the source to be small compared to the
observer distance r and the order L of the expansion to be
sufficiently high. We demonstrated in [26] that these require-
ments are indeed fulfilled for the directivity of a reasonably
compact loudspeaker that is well-centered in the microphone
array during measurement. The resulting conventional and
proposed directivity magnitudes can hardly be distinguished
at order L = 6. We define the relative magnitude error (RME)
as

E(ω) = 20 log10

N∑
n=1

1

N

∣∣∣|Ŵn(ω)| − |Wn(ω)|
∣∣∣

|Wn(ω)|
, (12)

whereby n are the indices of the N measurement locations,
Ŵ (·) is either the conventional or the proposed directivity rep-
resentation, and W (·) is the measured directivity. For both the
conventional and for the proposed directivity representation of
the loudspeaker from [26], which we will revisit in Sec. V-B,
the RME is approx. −20 dB below 5 kHz and −10 dB above
5 kHz.

For sources that are not spatially compact or not located in
the center of the microphone array with which their directivity
is measured, the error of the conventional representation
will actually be much larger than the error of the proposed
representation. The RME of the conventional representation
of the displaced monopole from Fig. 1 is lower than −100 dB
below 1 kHz but approx. 0 dB above 1 kHz whereas the
RME of the proposed representation is constant over the entire
frequency range at approx. −200 dB.

The proposed approximation modifies the distance depen-
dency of the directivity and makes the magnitude decay
indirectly proportional to the distance r from the nominal
source position as

|W ′(r,γ, ω)| = |W (R,γ, ω)|
r

R . (13)

This alteration of the decay distance may be significant at short
distances from a radiating surface that has a spatial extent that
is considerable. The deviation of the decay distance vanishes
at distances that are much larger than the largest dimension of
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the source (where (7) holds) and solely a general amplitude
offset may remain.

We evaluate (13) for the monopole from Fig. 1, which is
located at (xs, ys, zs) = (0.3, 0, 0) m and R = 1 m. All consid-
erations apply to positions outside of the measurement sphere,
i.e., r ≥ R. The worst case occurs at (x, y, z) = (R, 0, 0)
where |W ′(r,γ, ω)| exhibits a magnitude error of 3.1 dB. The
error drops to 1.4 dB at (2R, 0, 0). The error is −2.3 dB at
(−R, 0, 0) and drops to −1.2 dB at (2R, 0, 0). The error is
never larger than −0.12 dB along the y and z axes.

The distance dependency of the proposed representation –
as for any exterior sound field – is represented by the ratio of
spherical Hankel functions h(1)

l (·) in (10). Fig. 3 illustrates this
ratio for a change in distance by a factor of 100. Besides the
overall reduction of the amplitude, higher orders are attenuated
progressively at low frequencies. The phase of the directivity
is affected only at very low frequencies. For general exterior
sound fields, the reduction of the amplitude of higher orders
makes the wavefronts progressively more spherical (note that
a spherical wave from the coordinate origin has 0th order). For
the proposed directivity representation, it smooths the angular
dependency. We did not find an effect on the overall spectral
envelope for the proposed representation even for very far
distances.

Fig. 3. Magnitude in dB (top) and unwrapped phase in multiples of π (bottom)
of h(1)l

(
100ωR

c

)
/h

(1)
l

(
ωR
c

)
for R = 1 m as a function of frequency for

0 ≤ l ≤ 5. We removed the linear slope from the phase that represents the
time delay for convenience. Note the different scalings of the frequency axis.

Other modifications that the proposed approximation applies
to a directivity like changing the apparent position of source,
its spatial extent, as well as the phase of the directivity are less
tangible than the magnitude so that they need to be considered
based on the particular application scenario.

Finally, all scenarios that we consider in this article assume
that a sound source is small enough to fit within a spherical ar-
ray of microphones. The size of the sources therefore has to be
moderate for practical reasons. The radii of the corresponding
arrays is in the order of 1.0 m–2.1 m [15], [21], [42]. There are
indeed sound sources of interest such as trains, railway tracks,
or machinery that do not fulfil this requirement. The deviation
of the proposed representation from the actual directivity can
indeed be considerable in such cases. It is likely to be less
favorable to represent the radiation of such sources based on
a spherical wave. Other wave front models such as that of a

cylinder of finite length [43] seem more appropriate, and (9)
and (10) need to be reformulated accordingly. Such scenarios
are beyond the scope of this article.

V. RESULTS

Geometric acoustics algorithms are able to incorporate SH-
based sound source directivity data, even when incomplete
(sparse and available over selected bands) [7], [6], [8], [3].
Wave-based methods such as, e.g., the finite difference time
domain (FDTD) method [44], [45], [46], require more care in
the incorporation of source directivity [47], [48], [49]. See,
e.g., recent work allowing for the incorporation of measured
directivity into an FDTD method, assuming a complete set
of directivity data [12]. In this methodology, a measured
directivity is used in order to construct a point-like multipole
driving term in the model at the nominal source position which
coincides with the origin of the coordinate system in (1).
Such a point-like model is a natural fit to wave-based methods
such as FDTD—see Appendix C for more details. We choose
this most challenging application to validate our proposed
directivity representation.

In all numerical examples presented in this section, the basic
FDTD scheme given in (22) is used. The time step is chosen as
T = 1/44100 s, and the scheme is run over a cubic region of
side length 2 m, with second order Engquist Majda absorbing
boundary conditions [50] on all faces.

Strictly speaking, (1) and (10) are so-called exterior repre-
sentations that are only valid outside of a sphere that contains
the sound source in its entire extent [29, p. 206]. By extrapo-
lating the directivity to the center of the coordinate system, we
actually penetrate the sound source whose directivity we are
considering. This is particularly true when using the conven-
tional representation (1). The actual virtual spatial extent of
the source in the proposed representation (10) is not obvious.
The consequence is that the directivity will not be meaningful
when evaluated at such interior positions. However, (1) is a
physically viable solution to the wave equation even in the
interior domain so that we are not facing fundamental physical
limitations here. The following subsection sheds some light on
this aspect.

A. Numerical Conditioning

The numerical conditioning of the involved quantities de-
serves attention particularly in view of the fact that FDTD
simulations extrapolate source directivities to positions inside
the source and that source directivities have a singularity at
the source position (the directivity of a point source (a 0th-
order directivity) is ∝ 1/r, and that of a dipole (a 1st-order
directivity) is ∝ ω2/r2 [29, p. 198, 200]; cf. also [51, p. 40]).

We here investigate the numerical conditioning of the sig-
nals through which the sound source directivity is injected into
the simulation framework. It is shown in [12] that a directivity
that is available as a set of SH coefficients W̊l,m(R,ω)
(cf. (1)) over a sphere of finite radius R centered around the
source can be directly substituted into an FDTD simulation
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with appropriately defined SH driving functions al,m(t)—see
Appendix C. Their Fourier transforms âl,m(ω) can be set as

âl,m(ω) =
4πc (−1)l il

(iω)l+1h
(1)
l

(
ωRc
) W̊l,m(R,ω) . (14)

Each such signal âl,m(ω) determines the contribution of a
single SH component, of indices l,m to the directivity.

Eq. (16) in Appendix B proves that (14) is numerically
well-conditioned at high frequencies, and (17) proves that (14)
is numerically well-conditioned at low frequencies. Note that
we use (17) in this article to compute âl,m(ω) at very low
frequencies.

B. Measured Directivity of a Loudspeaker

This section employs the measurement data on the IEM
Loudspeaker Cube, a compact loudspeaker with a cube-shaped
enclosure, provided in [52], [53]. The directivity is available
as impulse responses measured on 648 equi-angularly spaced
points with a spacing of 10◦ on a spherical surface of radius
R = 0.75 m. They therefore allow for the computation of
a complete ground-truth conventional representation of the
directivity against which we can verify the proposed one.

The propagation delay from the loudspeakers to the mea-
surement surface is not contained in the impulse responses. We
therefore pre-padded a sufficient amount of silence to maintain
causality of the ground truth data. The IEM Loudspeaker Cube
comprises four identical drivers. We used the data of driver 1.
As we demonstrated in [26], the deviation of the magnitude
of the proposed representation from the conventional one is
minuscule for the employed unregularized least-squares fit.
We arbitrarily chose an order of L = 6. Either representation
exhibits an RME (cf. Eq. (12)) between −20 dB and −10 dB
for the vast part of the frequency range. Fig. 4 shows example
data at two representative frequencies. No high-frequency roll-
off is apparent due to the fact that the loudspeaker is compact
and centered. The loudspeaker becomes very directional at
high frequencies which is reflected by the very narrow lobe
in the balloon plot in the bottom left plot. The chosen order
limit of L = 6 in the SH representations is too low to reflect
this, which results in slightly wider lobes (bottom center and
bottom right), which means in turn that the directivity exhibits
stronger high-frequency components in directions just off the
main lobe. It also has to be taken into account that the data
suffer from spatial aliasing, which occurs mainly above the
frequency [54]

fA =
Lgridc

2πR
, (15)

where Lgrid is the maximum order that the angular sampling
grid supports (Lgrid = 15 in the present case [51, Eq. (4.26)]).
This leads to fA ≈ 1.2 kHz. Spatial aliasing constitutes
ambiguities in the spatial information and prevents extraction
of the wave front curvature from the measurement data.

As an application example, Fig. 5 illustrates the time evolu-
tion of the acoustic field in an FDTD simulation using both the
conventional and the proposed representations, whereby the
latter employs a minimum phase φ(γ, ω) in (8). A Gaussian
pulse is used as input signal. The zone corresponding to the

driving distribution is indicated by a white circle. The spherical
curvature of the wave fronts of the proposed representation is
evident in the right subplot in Fig. 5. We refer the reader
to [26] for more simulations employing the same data.

Fig. 4. Normalized balloon plots (in arbitrary units, a. u.) for the FDTD output
of the data from Fig. 5 taken over a sphere of radius 0.75 m at a frequency of
818 Hz (top) and 5513 Hz (bottom). Left: measured directivity. Middle: 6th-
order conventional representation. Right: 6th-order proposed representation.

Fig. 5. Snapshot at t = 3.6 ms of a cross-section through the horizontal
plane of the simulated acoustic field emitted by the IEM loudspeaker cube
(cf. 4) using a Gaussian pulse of variance 1 × 10−4 as input signal. Here,
we use the directivity data of driver 1, with the conventional representation
(left) and the proposed one (right), both of 6th order.

C. Measured Directivity of a Musical Instrument
The measurement of the directivities of musical instruments

is a significant challenge as the instruments cannot be driven
with arbitrary dedicated measurement signals like sweeps. This
section incorporates the data set of recordings of 41 different
musical instruments made with an enclosing spherical array of
32 microphones and with radius R = 2.1 m that was presented
in [21]. This leads to fA ≈ 100 Hz (cf. Eq. (15)). Professional
musicians played single notes as well as scales at two dynamic
levels (pianissimo and fortissimo). It was proposed in [21] to
identify the stable partial oscillations for each tone and define
the observed magnitudes and phases at the corresponding
frequencies as the directivity of the instrument at the according
frequency of the oscillation. Fig. 6(a) depicts the signal
recorded by microphone 1 of an oboe playing the note c5
(f0 = 523 Hz), which is in the middle of the pitch range of an
oboe, at fortissimo. Fig. 6(b) depicts the magnitude spectrum
of the first segment that is marked by the blue horizontal bar
in Fig. 6(a) with the stable partial oscillations marked.
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We determined the magnitude and phase directivity ac-
cording to above definition for all three segments marked
in Fig. 6(a). The result is depicted in Fig. 7(a) and (b).
It can be seen that the magnitudes are reasonably similar
between the segments (cf. Fig. 7(a)) while the phases vary
greatly (cf. Fig. 7(b)). This shows that the articulation has
significant influence on the measured phase of the directivity
even within such a short segment that was being played as
stationary as the player was able to do it. Note that we did
not apply interpolation of the spectral peaks when determining
the frequency, magnitude, and phase. This was because the
peaks did not appear to be so clean that a simple curve like
the quadratic one used in [55] could be fitted onto the bins
surrounding a peak.

We found comparable results in the data from [21] for
instruments including the acoustic guitar where the sustain
and decay of the tones are autonomous and are not affected
by the player.

Fig. 6. Signal recorded by microphone 1 for the oboe playing c5 (f0 =
523 Hz) at fortissimo. Top: time domain signal with 3 segments marked by
the horizontal bars. Bottom: magnitude spectrum of segment 1 with all stable
harmonics below 10 kHz marked

Fig. 7. Magnitude (top) and phase relative to the fundamental oscillation
(bottom) of the directivity of the oboe playing the note c5 (f0 = 523 Hz) at
fortissimo derived based on the 3 segments marked in Fig. 6. The data points
are connected with straight lines for legibility.

Another important observation that was made in [9], [15]
is that the magnitude and phase of the directivity change
substantially with the played note and dynamic level. Fig. 8

depicts the magnitudes of the harmonic oscillations of the oboe
relative to the direction straight ahead for three notes at third-
octave intervals at fortissimo level. Differences of up to 10 dB
are apparent.

Fig. 8. Magnitudes of the harmonic oscillations of the oboe in direction
(α, β) = (144◦, 101◦) for three notes normalized to the direction straight
ahead. The corresponding fundamental frequencies are 440 Hz, 554 Hz, and
659 Hz. The data points of each note are connected with straight lines for
legibility.

Fig. 9 depicts the directivity of the oboe for one specific
played note over the entire frequency range of interest. The
data were obtained via linear interpolation of the magnitudes
of the measured directivity at the frequencies where measure-
ment data were available (blue line), separate interpolation of
the magnitude and of the phase2 of the measured directivity
together with an unregularized fit of a conventional repre-
sentation according to (1) (orange line), and the proposed
representation according to (10) (yellow line). The interpo-
lation of the measured magnitudes is required for being able
to evaluate the different representations in directions between
the measurement points. The proposed representation was
computed by complementing the interpolated magnitudes of
the measured directivity with a minimum phase factor φ(γ, ω)
in (8) and an unregularized SH fit. The SH representations are
of 4th order.

Note that no high-frequency roll-off like in Fig. 1(b) is
apparent even with the conventional representation in Fig. 9.
A possible explanation may be ambiguities in the measured
phases that obscure the actual wave front. Spatial aliasing is
apparent above fA ≈ 100 Hz (Eq. (15)), and the phases were
extracted from a steady-state deterministic signal so that the
actual propagation time of the sound wave from the source to
the array cannot be deduced, only the relative phase between
the harmonic oscillations.

Pronounced deviations of the magnitude transfer function
of the conventional representation from interpolated measured
magnitudes occur. This is primarily a consequence of the
difficulties when interpolating complex data with respect to
frequency [26]. The conventional representation tends to be
close to the measured directivity at frequencies at which the
data were measured, i.e. where no interpolation was performed
(cf. Fig. 10, top row). The RME is comparable for both
conventional and proposed representation and around −20 dB
at these frequencies. The large deviations of the conventional
representation tend to occur at frequencies between measure-
ment points (cf. Fig. 10, bottom row), where no RME can be
computed as no ground truth is available.

2Note that it is currently unclear if interpolation of the complex data or of
magnitude and phase separately is more favorable. Similar observations were
made in the interpolation of head-related transfer functions were some authors
use interpolation of the complex data whereas other authors use interpolation
of the magnitude and phase [30], [56].
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The notches in the magnitude spectrum of the conventional
directivity representation that are apparent in Fig. 9 are ac-
companied by a smearing of the information in time domain.
This is reflected in the impulse-response representation of the
directivity in Fig. 11 and the time-domain FDTD snapshots in
Fig. 12. The proposed representation has a shorter support over
time. Differences in the overall magnitude are also apparent,
for example, along the positive x-axis. Finally, the curvature
of the wavefronts of the conventional representation is not
plausible. The oboe player was located in the center of the
spherical microphone array and facing into positive x-direction
which suggests that the instrument itself was displaced in
direction of the positive x-direction. The observed curvature
suggests that the source was displaced towards the negative x
axis by approx. 0.16 m. Possible causes for this implausibility
are spatial aliasing and other ambiguities of the phase data
due to the measurement setup (recall Fig. 7).

Fig. 9. Magnitude of the directivity of the oboe playing c5 (f0 = 523 Hz) at
fortissimo in two arbitrarily chosen sample directions (α, β) = (108◦, 37◦)
(top) and (36◦, 79◦) (bottom). The vertical black dotted lines mark the
frequencies of the partial oscillations. The SH representations are of 4th order.

Fig. 10. Balloon plots of the directivity of the oboe playing c5 (f0 = 523 Hz)
at fortissimo. Top: The depicted frequency coincides with the fundamental
oscillation of the played note. Bottom: The depicted frequency of f =
1873 Hz is between two harmonic oscillations. In this case, the ’measured’
data were computed from interpolating the available magnitude data points
over frequency and then over the measurement sphere using a cylindrical
projection.

Fig. 11. Impulse response representation of the data from Fig. 9 and 10 in
the horizontal plane

Fig. 12. Snapshots of a cross-section of the simulated acoustic field emitted
by source with directivity like an oboe playing the note c5, ff, 4th order,
using a Gaussian pulse of variance 1 × 10−4 as input signal. Conventional
representation (left) (center column in Fig. 10) and proposed representation
(right) (right column in Fig. 10), both of 4th order. The timing was aligned
such that the strongest parts of the signals occur at the same time.

VI. CONCLUSIONS

We have explored a spherical harmonic (SH) representation
for sound source directivity that is based on the design of a
directivity such that its magnitude matches the finite-distance
magnitude signature of the measured directivity on a spherical
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surface around the sound source. The approach is required to
mitigate the challenges that arise from the use of incomplete or
unreliable measurement data, which can usually not be avoided
when considering non-electroacoustic sources. The limitations
of the measurement data may be the following:
• The directivity data are only available at a sparse set of

frequencies.
• Only the frequency-dependent magnitude of the directiv-

ity data may be available. With musical instruments, the
phase is strongly dependent on the time instant of a steady
note that is being played. It is unclear how to determine
what data are representative. This circumstance seems to
be more pronounced with some instruments than with
others. A detailed analysis of the aspect is beyond the
scope of this article. Directivity data of machinery and
the like will most likely not contain phase data at all.

• Even if the phase is available, interpolation of complex
spectral data over frequency does not produce favorable
results as undesired notches can occur.

Additionally, the proposed representation does not suffer from
the high-frequency roll-off that classical spherical harmonic
representations of displaced sound sources exhibit. The via-
bility of the resulting representations needs to be evaluated
in an application-specific manner in the future as no general
ground truth is available against which the results can be
compared. This will help evaluating the effect of some of
the modifications that the proposed representation applies to a
directivity that are less tangible such as changing the apparent
position of the source, its spatial extent, and its phase.

All SH representations from this article are available at [57].

APPENDIX A
CONVERGENCE OF THE SIGNALS âl,m(ω)

We study the convergence of (14) with respect to frequency
in the following. Applying the large-argument approximation
of the spherical Hankel function given by (18) to (14) yields

âl,m(ω) =
4πR

(iω)l
e−iωR

c W̊l,m(R,ω), as ω →∞ , (16)

which converges for high frequencies (assuming that the
coefficients W̊l,m(R,ω) converge).

Applying the small-argument approximation of the spherical
Hankel function given by (19) to (14) yields

âl,m(ω) =
4πc (−1)l

(2l − 1)!!

(
R

c

)l+1

W̊l,m(R,ω), as ω → 0 ,

(17)
which converges for low frequencies.

APPENDIX B
APPROXIMATIONS OF SPHERICAL HANKEL FUNCTIONS

The large argument approximation of the spherical Hankel
function is given by [29, p. 197]

h
(1)
l (x) ≈ (−i)l+1 eix

x
as x→∞ . (18)

The small argument approximation of the spherical Hankel
function is given by [29, p. 197]

h
(1)
l (x) ≈ −i

(2l − 1)!!

xl+1
as x→ 0 . (19)

APPENDIX C
SOURCE MODELING IN FDTD

Source modeling in time domain wave-based virtual acous-
tics has been covered by various authors using a variety of
techniques, as mentioned in Section V. The approach here,
following [12] is to model the source as an additional driving
term in the wave equation:

1

c2
∂2
t p−∆p =

∞∑
l=0

l∑
m=−l

cl (g ∗ al,m) (t)Dl,mδ
(3) (r) . (20)

Here, p(r, t) is the acoustic pressure, as a function of time
t and spatial coordinate r ∈ R3. c is the wave speed, ∂t
represents partial differentiation with respect to time, and
∆ is the 3D Laplacian. The wave equation is driven by a
series of terms, each of which activates a single spherical
harmonic directivity pattern. Each term includes a point source
at the coordinate origin modelled by a 3D Dirac delta function
δ(3) (r) under the action of a differential operator Dl,m defined
by

Dl,m = Yl,m (∇) (21)

in terms of the 3D gradient ∇. The system is assumed driven
by a scalar source signal g(t), with the (l,m)th channel filtered
by the functions al,m(t) given by (14) in order determine the
directivity of the source. See [12].

In the case of FDTD, the numerical solution pnq, for integer
n and q ∈ Z3 represents an approximation to p(r, t) at t = nT
and r = qX , where T is the time step, and X is the grid
spacing. Using a very basic seven-point approximation to the
Laplacian, the following scheme results:

pn+1
q = 2pnq − pn−1

q + λ2
∑
e∈Q

(
pnq+e − pnq

)
(22)

+T 2
∞∑
l=0

l∑
m=−l

cl+2 (g ∗ al,m)
n
dl,msq ,

Here, λ = cT/X ≤ 1/
√

3 is the scheme Courant number,
and Q is the set of 3-vectors of unit L1 norm, defining the
seven-point stencil. gn and anl,m are discrete time signals
derived from g(t) and al,m(t) respectively, and sq is an
approximation to the 3D Dirac delta function (in the simplest
case, a Kronecker delta at q = 0 scaled by 1/X3. dl,m is a
difference approximation to the differential operator Dl,m.
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