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Abstract—Non–negative signals form an important class of
sparse signals. Many algorithms have already been proposed
to recover such non-negative representations, where greedy and
convex relaxed algorithms are among the most popular methods.
The greedy techniques are low computational cost algorithms,
which have also been modified to incorporate the non-negativity
of the representations. One such modification has been pro-
posed for Matching Pursuit (MP) based algorithms, which first
chooses positive coefficients and uses a non-negative optimisation
technique that guarantees the non–negativity of the coefficients.
The performance of greedy algorithms, like all non–exhaustive
search methods, suffer from high coherence with the linear
generative model, called the dictionary. We here first reformulate
the non–negative matching pursuit algorithm in the form of a
deep neural network. We then show that the proposed model
after training yields a significant improvement in terms of exact
recovery performance, compared to other non–trained greedy
algorithms, while keeping the complexity low.

Index Terms: Matching Pursuit, Non-negative Sparse

Approximations, , Multilabel Classification, Deep Neural

Networks

I. INTRODUCTION

Sparse coding is the problem of reconstructing input vectors

using a linear combination of an overcomplete family basis

vectors with sparse coefficients. It has become extremely pop-

ular for extracting features from raw data, particularly when

the dictionary of basis vectors is learned from unlabeled data.

There exist several unsupervised learning methods that have

been proposed to learn the dictionary. Applications of sparse

coding may be found in fields such as visual neuroscience [1],

[2] and image restoration [3], [4]. A major problem with these

methodologies is that the inference algorithm is somewhat

expensive, prohibiting real–time applications.

Let the signal of interest be y ∈ R
M and a dictionary of el-

ements Φ ∈ R
M×N be given. The linear sparse approximation

can be formulated as finding the sparsest x ∈ R
N , M < N , i.e

having the minimum number of non–zero elements, as follows:

y ≈ Φx (1)

The greedy sparse approximation algorithms are in general

known for low computational costs, suitable for real–time and

large scale sparse approximations. The Matching Pursuit (MP)

[5], algorithm is introduced, which approximately solve the

following problem:

x̃ := argminxs

||y −Φsxs||2, (2)

where s is a subset of all atoms with cardinality k.

There are many applications for which the coefficient vec-

tors are not only sparse, but also non–negative. Spectral and

multi–spectral unmixing, [6], [7], microarray analysis [8] and

Raman spectral deconvolution [9] are a few examples.

The original implementation of MP has been modified in

order to adopt the algorithm to the non–negativity setting.

Essentially the original minimization problem introduced in

(2) is reformulated by adding a constraint that guarantees

the non–negativity of the coefficients and takes the following

form:
x̃ := argminx≥0||y −Φx||2

||x||0 ≤ j
(3)

where || · ||0 measures the number of non–zero elements.

MP incrementally builds up x with respect to the set of

columns of Φ, sa. A known fact about MP algorithms is that

the obtained solution can be an approximation of the input

signal y. The acquired support set sa = {i : φi ∈ Φ} is then

different to the ground truth support set sg. Hence, given a

k–sparse signal x, it is quite frequent to have |sa ∩ sg| < k,

particularly when the atoms in the dictionary are correlated,

i.e coherent dictionary.

The authors in [10] introduced the Learned Iterative and

Thresholding Algorithm (LISTA). Under the assumption that

the basis vectors have been trained and are being fixed, the

core idea is to train a parameterized encoder function to

predict the optimal sparse code. A key advantage of this

physical–model based framework is that it has a predeter-

mined–complexity and can be used to approximate sparse

codes with a fixed computational cost and a prescribed ex-

pected error that makes it appealing for real–time applications

which is the main focus of this study. Recent advances in the

LISTA framework [11] introduced the theoretical conditions

upon the convergence of the algorithm, while in [12] the

authors demonstrated that by following an analytical approach,

rather than a learned approach, the network retains its opti-

mal linear convergence. They later introduce an acceleration

technique in the training procedure, given that the number of

training parameters is significantly reduced.

Inspired by the unfolding idea introduced by the LISTA

framework to reformulate the convex optimization algorithms

with deep neural networks (DNN), we here introduce a vari-

ation of the original NNMP, as introduced in Algorithm 1,

called DeepMP 1 as a data adaptive and bounded complexity

1code available in: https://github.com/dinosvoul/Deep-Matching-Pursuit

http://arxiv.org/abs/2007.14281v1
https://github.com/dinosvoul/Deep-Matching-Pursuit


1: initialisation: s = ∅, k = 0 and r0 = y

2: while k < K & max(ΦT rk) > 0 do
3: sk = 0

4: (ζ, ι)← max(ΦT rk)
5: sk[ι] = ζ
6: rk+1 ← P{rk − ζφι}
7: k ← k + 1
8: end while
9: x←

∑
k sk

Algorithm 1: Non-Negative Matching Pursuit algorithm

(NNMP)

algorithm. Our preliminary goal is to introduce a novel frame-

work for non–negative sparse approximation which outper-

forms the existing ones in terms of accuracy, maintaining the

computational cost. Nevertheless the canonical linear approach

followed at the selection step of NNMP even though it is

simple computationally is not data adaptive and therefore

not flexible. The DeepMP approach has more flexible nature

introducing a higher degree of freedom at the selection step

representation underlying complex nature of data i.e human

handwriting.

II. DEEP MATCHING PURSUIT

In this section we introduce the modification in the standard

NNMP structure which is introduced in Algorithm 1. Starting

with the measurement y as the current residual signal rk|k=0,

the main steps are: a) finding the best matched atom φk

to rk, and 2) updating the residual rk by subtracting the

contribution of selected atom. The operator P can be identity

or the projection onto the positive orthant which is done

such that the framework is consistent with the non–negative

setting. A flowchart diagram of each NNMP iteration has been

shown in Figure 1, where ”max” operator simply keep the

largest component of the input and zero out the rest, and sk
is the 1-sparse vector with the appropriate coefficient on its

support. The ”max” operator is called ”hard-max” operation

here, which is the projection onto the best one-sparse set, also

known as the 1-sparse hard-thresholding [13].

The NNMP steps are reformulated and the dictionary is

replaced with the weight matrices of the same size W
(k)
f and

W
(k)
b at iteration k. We then get the following (non-linear)

system of equations,

(

rk+1

xk+1

)

= gb





−W
(k)
b gf(W

(k)
f

T

rk) + rk

gf (W
(k)
f

T

rk) + xk



 , (4)

where gf and gb are respectively forward and backward

functions which are hard-max and P . Such a model can be

represented as two layers of a neural network model per single

iteration of the algorithm. By concatenation of K blocks of

Figure 2. The depth of the network then varies depending

on the sparsity of the signal k, and can be represented as the

concatenation of k blocks of Figure 3. The network takes then

the form of a DNN of 2K layers. x can then be reconstructed

by superposition of sks.

-

+

Fig. 1: One step of non-negative matching pursuit algorithm. rk and
sk are respectively the residual and the selected index at the kth step
of algorithm.

Fig. 2: Representation of one step of NNMP algorithm in the form
of a two layer neural network with a skip connection. gf and gb are
respectively hard-max and linear/ReLU activation functions.

This structure provides a framework for sparse approxima-

tions, if we train the weight matrices using the backpropaga-

tion algorithm. Such a variational learning method with non-

differentiable activations is possible using a surrogate function

optimization method, e.g. [14] for ReLU. As one candidate

solution is W
(k)
f = W

(k)
b = Φ, ∀k, the network will at least

work as good as NNMP, if the learning is successful. Within

our work we modify step 4 of NNMP by replacing the original

library Φ with W
(k)
b while in step 6 W

(k)
f = Φ. At the

particular step we introduce the non–linear activation function

P with the aim to project the residual vector r on the positive

orthant.

Essentially the key change in the NNMP structure is the

more flexible approach in step 4 of the algorithm. A successful

decomposition of the input signal y depends on the proper

selection of the candidate atom. A wrong selection can have a

direct impact on the minimization problem introduced in (2).

By training DeepMP we generate different copies of W
(k)
b

over the k layers of the network. We aim to have an approach

that prevents misclassifications and potentially results in zero

error for a fixed number of iterations and no noise in the

input. Our expectation relies on the fact that DeepMP utilizes a

higher degree of freedom in the selection step of the algorithm.

In particular, the canonical approach of NNMP represents a

model that consists of a fixed number of MN parameters. This

kind of approach may be simple, but not flexible. On the other

hand the DeepMP model consists of a number of parameters

which scales linearly over the network layers and results in the

total to a number of KMN parameters at the selection step. In

practice this means that the higher the sparsity of the signal K

the higher degree of flexibility introduced in the framework,

i.e the capacity of the DNN, which improves the performance

compared to canonical NNMP overall.

From classification point of view the DeepMP framework

actually performs a multilabel classification task by decom-

posing the input signal y with respect to the corresponding



classes, and using the categorical cross–entropy loss function,

H(p, q) = −

|Φ|
∑

j=1

1sa(j)log p(j, i) (5)

where i corresponds to the i–th sample, j to the index of the

atom and 1sa : I → {0, 1} is the indicator function, defined

as:

1sa(j) =

{

1 if j ∈ sa
0 if j 6∈ sa

A. Sparse Signal Decomposition

The main motivation for introducing deep learning approach

is to introduce more flexibility approach in the selection rule

of the MP type algorithms. We aim to improve the prediction

rate on the support set and eventually reduce the residual error

compared to the standard MP framework.

Considering the set of sparse signals which are the main

focus of the current work. The main goal of the decomposition

algorithm is to identify the atoms which build up the input

signal y with non–negative weights as follows:

y =

k
∑

l=1

awφi. (6)

with aw ∼ U [0, 1], where U [0, 1] stands for the uniform

distribution with 0 mean and unit variance.

The overall process can then be represented as an iterative

algorithm. A common phenomenon that frequently takes place

during the decomposition is the selection of unrelated atoms

in the support set sa, over the iterations of the algorithm.

A reason for this phenomenon occurs, is related to the

similarity between the atoms φφφi. In cases where the algorithm

operates over a point cloud where the constituent atoms are

highly coherent with each other, the algorithm may select a

neighboring atom instead of the ground truth atoms in sg,

i.e i ∈ sa while i 6∈ sg . Coherence measures the maximum

similarity between two distinctive atoms of Φ. Given a pair

of points φφφi,φφφj ∈ Φ where i 6= j, the coherence can be

formulated as follows:

µ(Φ) = max
i6=j

|〈φφφi,φφφj〉|

||φφφi||2 · ||φφφj ||2
(7)

where || · ||2 indicates the Euclidean norm. By introducing

the matrix W
(k)
b at the selection step of the algorithm, we

are aiming for the points to be represented in a way that the

mutual coherence of the points will decrease. In that sense

by training the network we are expecting that the coherence

of the corresponding representation W
(k)
b yields an outcome

where ideally µ(Φ) ≥ µ(W
(k)
b ), where µ(Φ) and µ(W

(k)
b )

are respectively the coherence in Φ and W
(k)
b .

N M lr final lr epochs

Synthetic data 30 200 1e− 3 0.1 20

Raman library 503 2521 1e− 3 0.1 30

TABLE I

III. EXPERIMENTS

Within the current section we evaluate the performance

of DeepMP by some simulations. In order to evaluate the

performance of DeepMP we are considering two datasets; a

synthetic dataset Φ ∈ R
d×N
+ . The dictionary was randomly

generated with an i.i.d. normal distribution and then projected

onto the positive orthant and column normalised. A real dataset

of Raman spectra, where each of the spectras consists of 503

wavenumbers that lay within the range of 306 to 1249 cm−1,

provided by [15] . We perform a number of 150000 trials for

each dataset where only W
(k)
f s were trained in the M -space

while W
(k)
b = Φ. This essentially means that we only train the

weights that correspond to the selection step of the algorithm

while the weights that correspond to the update step are kept

fixed. This is done because we address DeepMP as a solver for

the standard non–negative least squares problem as introduced

in (3). In case where the weights in the update step are also

trained the cost function of the problem is reformulated as

follows: argmin
xs≥0||y −Wb,s(k)xs||2.

The DeepMP framework is optimized using the AdaBound

algorithm [16]. More details about the datasets and the settings

for the AdaBound algorithm can be found in TABLE I.

As an evaluation metric for the exact recovery of the

support set we are using the normalized Hamming distance

complement [17]. The metric is defined as in (8).

H∁(sa, sg) =

N
∑

n=1

1−
|sa(n)− sg(n)|

k
(8)

where Sa is the support set acquired by the corresponding

algorithm and Sg the ground truth, k is the sparsity level and |·|
the cardinality operator. The performance on the reconstruction

error for each sparsity k is evaluated with respect to ǫ as

follows:

ǫ(k) =
1

Z

Z
∑

z=1

||y[z]−Φx[z]||2
||y[z]||2

, (9)

where Z the number of realizations.

A basic expectation while training the selection step of the

algorithm is the variation of the coherence in between wk
i ,w

k
j

columns of W
(k)
b . For the particular aspect of the problem we

use the empirical cumulative distributed function (ECDF) as

introduced in equation (10):

µECDF(t) =
1
(

|Φ|
2

)

M
∑

i=1

M
∑

j 6=i

µ(φφφi,φφφj) ≤ t. (10)

where t ∈ [0, 1].
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Fig. 3: The performance of different MP frameworks with the

Raman dictionary.

A. Results

We here perform a simulation based evaluation of the

different MP frameworks. We are particularly interested in

signals which are very sparse. Hence we consider mixtures of

signals y that consist of up to 5 atoms. From the perspective

of the DeepMP framework this corresponds to concatenation

of up to 5 different versions of the model with a varying

depth over sparsity. These versions are independent, i.e the

1st layer is different from the one model to the other. The

obtained results for the Raman data and the synthetic data are

demonstrated in figures 3 and 4 accordingly.

As it can be seen from the results, DeepMP outperforms

the NNMP and FNNOMP [18] with respect to the Hamming

distance complement, while FNNOMP significantly outper-

forms NNMP. This essentially means that the extra degrees

of freedom on the selection step of DeepMP introduces a

more flexible approach which overall, leads to a better exact

recovery performance. The advantage of DeepMP becomes

more significant over sparsity having less sparse signals, i.e

larger k. Hence, despite the fact that the performance of all
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Fig. 4: The figure demonstrates the performance of the differ-

ent MP frameworks for the Synthetic dictionary.

(a) Raman dictionary

(b) Synthetic dictionary

Fig. 5: The coherence of the Raman dictionary and the

synthetic dictionary in comparison with the coherence of the

weight matrices of DeepMP for k = 5.

the MP frameworks decays with K , the flexibility of DeepMP

leads to a slower decay over sparsity and hence getting a better

performance compared to FNNOMP and NNMP. The ǫ–error

results also indicate that the improved exact recovery, leads to

a better performance on the reconstruction of the input signal

y.

Despite demonstrated good results using DeepMP, a ques-

tion is why it outperforms NNMP and FNNOMP. While a

rigorous answer to this question is left for the future, we

demonstrate the µECDF’s of the two dictionaries and the trained

model trained for k = 5 in figure 5. As it can be seen from the

results, the network generates weight matrices with reduced

coherences compared to the original ones. In that sense, the

corresponding point clouds consist of a set of atoms which

are further apart the one to the other. This essentially means

that DeepMP alters the underlying geometry of the selection

step to avoid a misclassification. Given that the points are

further apart, i.e smaller coherence in average, the algorithm

can easier pick the right atom without confusing it with its

neighbors.



IV. CONCLUSION–FUTURE WORK

We here introduces DeepMP which is a novel framework

for non–negative sparse decomposition. The main goal of the

current work is to maintain the computational advantages of

the standard MP algorithm while improving the performance

of signal approximation. The obtained results indicate that

DeepMP outperforms the standard MP approaches in terms of

signal reconstruction. A future direction of the current work

can be the incorporation of the matrix factorization during the

training process to boost the performance of DeepMP.
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