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EXTRACTING AUDIO-VISUAL FEATURES FOR EMOTION RECOGNITION THROUGH
ACTIVE FEATURE SELECTION

Fasih Haider, Senja Pollak, Pierre Albert and Saturnino Luz

Usher Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK

ABSTRACT
Research in automatic emotion recognition has seldom ad-
dressed the issue of computational resource utilisation. With
the advent of ambient technology, which employs a variety
of low-power, resource constrained devices, this issue is
increasingly gaining interest. This is especially the case in
the context of health and elderly care technologies, where
interventions aim at maintaining the user’s independence
as unobtrusively as possible. In this context, efforts are
being made to model human social signals such as affects
using low-cost technologies, which can aid health mon-
itoring. This paper presents an Active Feature Selection
(AFS) method using self-organized maps neural networks
for emotion recognition in the wild. The AFS is used for
feature subsets selection from three different feature sets:
62 out of 88 features were selected for eGeMAPs, 21 out of
988 for emobase, and 140 out of 2832 for LBPTOP features.
The results show that the features subsets selected by AFS
provide better results than the entire feature set and PCA
dimensionality reduction method. The best improvement is
observed on emobase features, followed by eGeMAPs. For
visual features, nearly the same results are obtained with a
significant reduction in dimensionality (only 5% of the full
feature set is required for the same level of accuracy). The
weighted score fusion results in an improvement, leading
to 43.40% and 40.12% accuracies on the EmotiW 2018
validation and test datasets respectively.

Index Terms— Feature Engineering, Feature Transforma-
tion, Feature Extraction, Feature selection, Emotion Recog-
nition, Affective Computing

I. INTRODUCTION

The emerging fields of social signal processing and af-
fective computing seek to build models to automatically
characterise human behaviours in interactive situations. This
includes the detection of emotions and attitudes which can,
among other things, influence communication effectiveness
both in dialogue and in presentations. Methods developed
in these fields have found applications in the analysis of

This research has received funding from the European Union’s Horizon
2020 research and innovation program under grant agreement No 769661,
SAAM project.

clinician-patient communication [26], education [22], enter-
tainment [4] and cognitive health monitoring [6]. In the
SAAM project [6], we are employing Ambient Assisted
Living (AAL) technologies to analyse activities and health
status, and provide personalised multimodal coaching to
elderly persons living on their own or in assisted care
settings. Such activities and status include mobility, sleep,
social activity, air quality, cardiovascular health, diet [15]
and attitudes [10].

Audio-visual signals are used in a number of automatic
prediction tasks, including cognitive state detection [3], pre-
sentation skills assessment [11, 13] and emotion recognition
[10, 12, 8, 9, 14], the latter being also the topic of the audio-
video challenge of the Emotion Recognition in the Wild
Challenge (EmotiW 2018) [5] that we address in this paper.
The approaches to the audio-visual signal analysis have
employed very high-dimensional feature-space consisting of
large numbers of potentially relevant acoustic/visual features.
For audio signal, these features are usually obtained by
applying statistical functionals to basic, energy, spectral
and voicing related acoustic descriptors [9] extracted from
speech intervals lasting a few seconds [27]. Although there
is no general consensus on what the ideal set of descriptors
should be, this “brute-force” approach of employing a large
set of acoustic descriptors seems to outperform alternative
(Markovian) approaches of modeling temporal dynamics
on the classifier level [32]. On the other hand, the use
of such high-dimensional datasets poses serious challenges
for prediction (one of the facets of the so called “curse
of dimensionality”). Higher-order statistical-functionals with
typically a high degree of redundancy on the feature set, as
well as features of poor descriptive value. Dimensionality
reduction is therefore a vital part of automatic classification
in these types of datasets. Moreover, such high-dimensional
approaches are not suitable for designing an embodied
emotion recognition system with low power, cost, memory
and computational resources such as using Raspberry Pi
Zero1.

This study extends our previous work [15, 16] and the
main contribution of this paper is to demonstrate the perfor-
mance of ‘Active Feature Selection (AFS)’ method (which

1https://www.raspberrypi.org/products/raspberry-pi-zero/ (last accessed
June 2019)
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is recently proposed and tested only on speech features for
eating conditions recognition [15] and emotion recognition
[16]) along with Principle Component Analyses (PCA) on
speech and visual features. We also propose an ensemble
method for fusion and demonstrate its results for emotion
recognition in the wild. This study is the first demonstration
of AFS method on visual features and on a larger corpora
in-terms of number of subjects than previous studies [15, 16].

II. BACKGROUND AND RELATED WORK

The emotion recognition in the wild data set [5] have been
extensively used in the literature and the best performing
approaches achieve the accuracy around 60% [18, 24]. For
example, Hu et al. [18] proposes a deep CNN architecture,
where a Supervised Scoring Ensemble (SSE) method is used
for dense supervision to diverse feature layers (not only
deep layers, but also to intermediate layers and shallow
layers). The visual models are mainly based on ResNet,
DenseNet and HoloNet, where their SSE learning contributes
to achieving much higher accuracy compared to standard
training; in addition they add a baseline hand-crafted model
by Yao et al. [34]. For audio model, they use openSMILE [9]
features for SVM classifier. When setting the focus on audio
models only, some studies do not report separate mono-
modal results. Numerous participants [28, 18] extract audio
features with OpenSMILE using de facto standard presets:
IS10, GeMAPS, eGeMAPS. Vielzeuf et al. achieve 36.5%
accuracy [28]. They use a two-layer perceptron to predict
classes as well as compact descriptors from these features
[28]. Wang et al. [31] used both IS10 and MFCC features,
achieving respectively 38% and 39.5% accuracy.

Based on the above literature we have concluded that the
feature dimensionality is very high (in some cases it is near
10k) for the classification task. Although the accuracy is
promising (around 60%) no effort is spent on dimensionality
reduction (removing noisy/redundant features) to reduce
the ‘curse of dimensionality’ and computational resources
(i.e. extraction of a subset of feature set instead of whole
feature set results in reduction of usage of machine memory,
cost, computational resources and power). There are many
dimensionality reduction methods: supervised methods, such
as correlation based feature selection [17], require labelled
data, while unsupervised approaches, such as PCA [1] and
independent component analysis (ICA) [29], do not require
labeled datasets. Recently, the efforts have been spent to
reduce the dimensionality using PCA to improve the results
for emotion recognition from speech [20, 2, 30] in different
settings such as noisy setting [2] but not in the wild setting.
In this study, we demonstrated the PCA performance over
three different feature sets (i.e. emobase, eGeMAPs and
LBPTOP) and compare the results to our recently developed
AFS [15] and fusion method.
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C1

Selection of 

best Cluster 

(Features)

Validation

Validation

ValidationC2

CN

Fig. 1. Active feature selection method: D(m,n) represents
the data where m is the total number of training instances
(773 training data instances in EMOTIW challenge) and n
is the total number of dimensions (988 emobase, 88 for
eGeMAPs and 2832 for LBPTOP).

III. THE ACTIVE FEATURE SELECTION METHOD

In this section, we describe our ‘Active Feature Selection’
(AFS) method which divides a feature set into subsets.
It involves clustering the data-set into N (where N =
5, 10, 15, ..., 100) clusters using self-organizing maps (with
200 iterations and batch training) [21], and then evaluating
discrimination power of features present in each cluster CN

using validation dataset, as depicted in Figure 1, and select-
ing the cluster with the highest validation accuracy. Here, we
are not clustering the number of instances but the dimensions
and not evaluating each feature separately but evaluating all
the features in one cluster together. Our hypothesis is that
the noisy features have different characteristics than infor-
mative features, and that clustering the features will divide
the features into many subsets according to their common
characteristics. An example of self-organizing clustering is
depicted in Figure 2, where 2832 features (LBPTOP ) are
clustered into 10 clusters, where the features present in
cluster number 9 (140 out of 2832) provide better results
(accuracy on the validation dataset) than features in other
clusters. The distance between these clusters is depicted in
Figure 3.

IV. EXPERIMENTATION

IV-A. Data Set

The EmotiW6 AFEW data set [5] consists of video
abstracts from movies and TV shows, labelled with the
traditional set of 6+1 emotions formalized by Ekman [7]:
Angry, Disgust, Fear, Happy, Neutral, Sad and Surprise.
Both training and validation sets are imbalanced between
emotions with respectively 133, 74, 81, 150, 144, 117, 74
and 64, 40, 46, 63, 63, 61, 46 sequences each. Detailed
statistics for sequences and meta-data are summarized in
Table I. The test set contains 653 videos.
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Table I. Statistics of the data set
Training set
#sequences 773
#persons 229 female: 89 male: 140

min max mean median
age 5 76 35 34
length 320 5882 2458 2287
Validation set
#sequences 383
#persons 135 female: 55 male: 80

min max mean median
age 10 70 35 35
length 500 6121 2263 2082

IV-B. Feature Extraction
We use the openSMILE [9] toolkit for acoustic feature

extraction: in total we extract 988 emobase and 88 eGeMAPS
features (using emobase.config and eGeMAPSv01a.conf
configuration files), which have been widely used for emo-
tion recognition in the past [23, 9]. In addition, we used the
visual features, namely the 2832 LBPTOP features [5].

In our experiments, we use three different feature set
types, of different dimensions: the entire feature sets (All),
the feature sets after the proposed AFS method (described
in Section III) and the PCA feature sets, where PCA was
chosen as an alternative dimensionality reduction method for
comparison.

Feature sets - All: Full emobase feature set (988 acoustic
features), eGeMAPS feature set (88 acoustic features) and
LBPTOP feature set (2832 visual features).

Feature sets - PCA: transformed feature set of emobase,
eGeMAPs and LBPTOP features using PCA. Then using
sequential forward selection to select the number of dimen-
sions for classification. We start with an empty feature set
and keep increasing feature set by adding PCA dimensions
one by one for classification task. We select the number of
dimensions of PCA for classification which provides the best
results on the validation set (i.e. validation accuracy is the
selection criteria).

Feature sets - AFS: Feature sub-sets selection from the
three feature sets (emobase, eGeMAPs and LBPTOP) using
AFS as detailed in Section III.

IV-C. Ensemble for Fusion
In addition, we propose the score fusion of feature sets

using an ensemble method as described below. Score Fusion
of classification output using the weighted fusion (F) method
(for an ensemble of n classifiers) as shown in Equation 1,
where wk is the assigned weight, with w1+w2+...+wn = 1,
and y(k) is the kth classifier output score. For attribut-
ing the weights, we used the Equations 2, 3 and 4 with
t = |δ| : 0.001 : 1 and −0.05 < δ < +0.05 and selected
those values for weights (wk) that provide the best validation
result. For score fusion of ensemble with two classifiers,
the y(3) = 0, δ = 0, t = t/2 and the Equation 4 is

ignored. The weights for score fusion are set in Equations 5–
13. For example, the score fusion of two classifier outputs
(FAFSEmobase+AFSLBPTOP

) has a weights of 0.714 (w1) for
AFSEmobase (LDA score of active feature selection using
emobase feature) and 0.286 (w2) for AFSLBPTOP (LDA
score of active feature selection using LBPTOP features).

IV-D. Classification Method
The classification is performed using Linear Discriminant

Analysis (LDA). This classifier is employed in MATLAB2

using the statistics and machine learning toolbox. LDA
works by assuming that the feature sets of the classes to
be discerned are drawn from different Gaussian distributions
and adopting a pseudo-linear discriminant analysis (i.e. using
the pseudo-inverse of the covariance matrix [25]).

V. RESULT AND DISCUSSION

The classification is performed in training, validation
and testing setting using the feature vectors described in
Section IV-B and validation results are depicted in Table II.
It is observed that the AFS method provides the best results
for audio feature sets. However, it is unable to outperform
the LBPTOP full feature set and results in almost of same
accuracy but using very less dimension of features. These
results also validated our hypothesis that by clustering the
features we can remove noisy/redundant features, as by
clustering the total number of features, we find a subset
of features (62 out of 88 for eGeMAPs, 21 out of 988 for
emobase and 140 out of 2832 for LBPTOP feature sets)
which provide better/almost equal results than the full feature
set and PCA feature set.

The AFS of emobase feature set (31.07% with a dimen-
sionality of 21) provides more accurate results than AFS
of eGeMAPs feature set (30.29% with a dimensionality of
62), suggesting that the combination of both features set may
improve the classification performance. The LBPTOP feature
set provides the best results for all three feature dimension-
ality (ALL (35.31%), PCA (29.11%) and AFS (35.04%))
suggesting that the visual information is more discriminative
than audio information. The weighted score fusion using
ensemble method results are depicted in Table III. Where
‘AFS score fusion’ (39.89%) of emobase, eGeMAPs and
LBPTOP features sets provides better results than ‘All score
Fusion’ (36.93%) and ‘PCA score fusion’ (31.00%). By
fusing the classifier score (ensemble method) of the features
sets (full feature set, PCA and AFS feature sets) results in
an improvement (43.40% on validation data and 40.12% on
test data). The presented work is not able to outperform
the previous methods [28, 18, 24] but the objective of this
study is not to propose an emotion recognition system but to
demonstrate the AFS and PCA methods performance over

2http://uk.mathworks.com/products/matlab/ (last accessed June 2019)
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FusionScore = w1.y(1) + w2.y(2) + ...... + wn.y(n)                                      (1) Fusion1 = y(1).(1 - 2.t) + y(2).(t - δ) + y(3).(t + δ)                               (2) 

Fusion2 = y(1).(t - δ) + y(2).(1 - 2.t) + y(3).(t + δ)                                   (3) Fusion3 = y(1).(t - δ) + y(2).(t + δ ) + y(3).(1 - 2.t)                              (4) 

FAFSEmobase + AFSLBPTOP
= 0.714.AFSEmobase + 0.286.AFSLBPTOP                   (5) FAFSEmobase + AFSeGeMAPs= 0.734.AFSEmobase + 0.266.AFSeGeMAPs                (6) 

FALL= 0.116.ALLEmobase + 0.392.ALLeGeMAPs + 0.492.ALLLBPTOP                (7) FPCA= 0.014.PCAEmobase + 0.443.PCAeGeMAPs + 0.543.PCALBPTOP           (8)

FAFS = 0.592.AFSEmobase + 0.154.AFSeGeMAPs + 0.254.AFSLBPTOP           (9) FeGeMAPs= 0.02.ALLeGeMAPs + 0.02.PCAeGeMAPs + 0.958.AFSeGeMAPs    (10)

FEmobase= 0.016.ALLEmobase + 0.016.PCAEmobase + 0.968.AFSEmobase      (11) FLBPTOP = 0.3.ALLLBPTOP + 0.4.PCALBPTOP + 0.3.AFSLBPTOP                         (12)

FFinal = 0.171.FeGeMAPs + 0.271.FEmobase + 0.558.FLBPTOP      (13)

140

Fig. 2. Figure indicates the number of features present in
each cluster (hexagon). Where N = 10 and the cluster with
highest accuracy contain 140 LBPTOP features.

1

2

3

4

5

6

7

8

9

10

Fig. 3. Figure indicates the distance between clusters (darker
color indicates greater distance between clusters). Where
Cluster number 9 provides the best validation results for
LBPTOP features

emotion recognition in the wild. In previous study [15],
we demonstrate that the AFS method is able to select a
feature sub-set (only audio features) which provide better
results that entire feature set and PCA feature set for eating
condition recognition. This study deploys AFS method on
audio and visual features for emotion recognition task and
a step towards in demonstrating the generalizability of AFS
method. We demonstrate that the AFS method can select
a feature sub-set which improves the emotion recognition
performance over full feature set and PCA (with sequential
forward selection of PCA dimensions) feature set. The AFS
evaluates a full feature sub-set (clusters of feature set) instead
of evaluating each feature separately and can help in the
dimensionality reduction. One of the limitation of this study
is the use of only LDA classifier and with other classifiers
the results may change. That’s why, the selected sub-sets
of features using AFS should be tested with other advanced
classifiers such as extreme learning machines [19] and partial
least squares [33] along with other dimensionality reduction
methods. Another limitation of this study is the evaluation
of AFS on only two acoustic and one facial feature set. The
performance of AFS may change when applied on other

feature sets such as genetics features. The main strength
of this study is the demonstration of AFS method on a
relatively larger dataset in terms of subjects than previous
studies [15, 16].

Table II. Best results for each experiment on validation (in
%) dataset: Where Accu. is accuracy and Dim. is the number
of dimensions used for obtaining the accuracy.

Audio-eGeMAPS Audio-emobase Visual-LBPTOP
Accu. Dim. Accu. Dim. Accu. Dim.

All 28.98 88 15.40 988 35.31 2832
PCA 27.15 77 28.20 33 29.11 60
AFS 30.29 62 31.07 21 35.04 140

Table III. Results on test data for AFS and weighted score
fusion results on the validation dataset (in %).

Feature Val (Accuracy) Test (Accuracy)
Blind Guess 14.28 14.28
AFS-Emobase 31.07 26.49
AFS-LBPTOP 35.04 29.71
FAFSEmobase+AFSLBPTOP

39.08 33.84
FAFSEmobase+AFSeGeMAPS

33.94 –
FALL 36.93 –
FPCA 31.00 –
FAFS 39.89 36.14
FeGeMAPS 30.81 –
Femobase 32.11 –
FLBPTOP 39.89 –
FFinal 43.40 40.12

VI. CONCLUSION
The results of Active Feature Selection (AFS) method has

been demonstrated for emotion recognition in the wild. The
subset of selected fetures using the AFS outperformed the
full feature set and the PCA transformation (with sequential
forward selection) for audio features using Linear Discrim-
ination Analysis (LDA) classifier. However, for the visual
features the AFS feature sub-set and full feature set provides
almost the same results but with a significant reduction in
the feature set to obtained the same accuracy. By fusing
the classifier score of the features sets (full feature set, PCA
and AFS feature sets) results in an improvement (43.40% on
validation data and 40.12% on test data). In future we intend
to evaluate the performance of the AFS method against
other dimensionality reduction methods for multiple tasks
and feature sets.
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