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Orbits tracked by ellipsoids immersed in inviscid and viscous environments are
studied by means of Kirchhoff’s equations and high resolution numerical sim-
ulations using a variant of the immersed boundary method. We explore the
consequences of Kozlov & OnishchenkoKozlov & Onishchenko (19821982)’s theorem of non-integrability of
Kirchhoff’s equations to show how the fraction of phase space in chaotic orbits
is sensitively determined by the body shape, fluid/ solid density ratio and the
fraction of initial energy in rotational motion. We show how the added mass
tensor of the system is an important player in both viscous and inviscid flow, in
causing chaos in a triaxial ellipsoid while acting to suppress it in a spheroid. We
identify a new integral of motion for a spheroid in inviscid fluid: one component of
the generalised angular momentum. A spheroid, which can never execute chaotic
dynamics in inviscid flow, is shown to display chaos in viscous flow due to irregular
vortex shedding. But the dynamics of the spheroid is restricted whether in viscous
or in inviscid flow, unlike in the triaxial ellipsoid, due to our extra integral of
motion.

1. Introduction
Solid objects immersed in fluid demonstrate highly complex dynamics both

spatially and temporally and are central to a wide-range of applications in nature
and industry. For example, ice particles in clouds, tsunamis [one instance was the
unusually large earthquakes inferred from tsunami deposits along the Kuril trench
(Nanayama et al.Nanayama et al. 20032003)], sediment transport near river beds (Masella et al.Masella et al. 19981998),
in fluidised beds (Crapper et al.Crapper et al. 20072007), ore refining with slurry flow (Dysthe et al.Dysthe et al.

† Email address for correspondence: prashant.valluri@ed.ac.uk
‡ Email address for correspondence: rama@icts.res.in
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20022002) and hydrate transport in petroleum pipelines (Drake & CalantoniDrake & Calantoni 20012001).
In all these applications, the solid-fluid motion is a strong function of the shape
of the solid, and the complex two-way coupling between the solid and the nearby
environment, which can result in either hydrodynamic clustering of solids -
eventually leading to chemical agglomeration or physical adhesion - or replusion.
It is still unclear what physics is precursor to such clustering/ repulsion, and there
is some evidence that the wakes generated as a solid particle moves have a role
(Drake & CalantoniDrake & Calantoni 20012001). It is also unclear how shape influences the physics.
Thus, it is vital to understand orbits tracked by immersed solids.

Gustav Kirchhoff in the mid 19th century (KirchhoffKirchhoff 18761876) was probably the
first to study the motion of an immersed solid moving through an ideal fluid.
He showed that the motion of a body through an incompressible, inviscid and
irrotational fluid can be described by a set of ordinary differential equations.
These equations may be seen to be a generalisation of Euler’s equation for the
motion of a body through a vacuum (Milne-ThomsonMilne-Thomson 19681968). Later, LambLamb (19451945)
showed that for spheres and general ellipsoids a closed form expression exists for
the hydraulic force and torque in the Kirchhoff equations. The reduction of the
problem to a set of ordinary differential equations is a dramatic simplification
of the problem, which otherwise has only very recently entered the realm of
feasibility to simulate directly.

Kozlov & OnishchenkoKozlov & Onishchenko (19821982) re-investigated these equations using dynamical
systems theory for the specific case of the motion of a rigid body, with three mu-
tually perpendicular axes of symmetry, in inviscid fluid. They found a condition
under which the required number of integrals for integrability will not exist, and
so the system will be non-integrable. An ellipsoid is a good example of such a
body, and we will focus on an ellipsoidal body in this paper. Later Aref & JonesAref & Jones
(19931993) demonstrated by choosing a particular ellipsoid which satisfied the Kozlov-
Onishchenko condition, that it can indeed display chaotic motion in an inviscid
fluid.

In the above, a triaxial ellipsoid is placed in an otherwise quiescent inviscid
environment. In the other extreme limit of zero inertia (Stokes flow), a triaxial
ellipsoid has been shown to exhibit chaos in the presence of a background shear
flow (Yarin et al.Yarin et al. 19971997). The effects of viscosity on the motion of single prolate
ellipsoid under a background shear flow, Rep 6 200 have been studied by RosénRosén
(20172017). Under those conditions, they found that the geometry strongly affected
the stability of these orbits. Nevertheless, neither the parameter space nor the
effects of fluid inertia under viscous conditions have been explored in much detail.

Quantifying chaos and periodic/ quasiperiodic behaviour for any non-linear
dynamical system including that of an immersed solid body in a fluid is a
challenge in its own right. An orbit tracked by a solid is chaotic if and only
if it satisfies three signatures: a) incredible sensitivity to initial conditions, the
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so-called butterfly effect; b) demonstrates overlap of any region of phase-space
with any other region, the so-called topological mixing principle and c) exhibits
dense periodic orbits. First introduced by Eckmann et al.Eckmann et al. (19871987), recurrence
quantification analysis (RQA) is one of the methods of non-linear data analysis
for identifying and characterising behaviour. RQA measures the frequency and
duration of recurrences in the phase space of a system within a small error called
the recurrence threshold.

We are motivated by the non-integrability theorem of Kozlov & OnishchenkoKozlov & Onishchenko
(19821982) which states that the dynamics in inviscid fluid, of ellipsoids which satisfy a
particular geometry condition, is not integrable. We find that spheroids, which are
ellipsoids with two of their axes equal, automatically do not satisfy this condition,
and can therefore only display periodic or quasiperiodic dynamics on the surface
of a torus in phase-space. We show explicitly that a new integral of the motion
exists in this case: namely the component of the generalised angular momentum l1
in the unequal direction of the spheroid. This means that interesting variations in
angular momentum can only occur in two-dimensions (in the body-fixed frame)
in a spheroid. In an inviscid fluid, when the axes of an ellipsoid are fixed, we
may define two parameters which characterise the system: the ratio ρ of the
densities of fluid and solid, and the ratio E of initial kinetic energy in translation
to rotational motion. A triaxial ellipsoid, by which we mean an ellipsoid where
all three axes are different, always displays chaos in some region of the phase
space, but we show that the propensity for chaos depends on the values of ρ
and E. We also show that a triaxial ellipsoid immersed in a viscous fluid at high
particle Reynolds number displays chaotic dynamics as well. Though viscosity
is often thought of an a dampener, we hypothesise that the irregular vortex
shedding afforded by a tumbling ellipsoid in viscous fluid can be a generator of
chaotic motion, even in the case of spheroids, whose dynamics is integrable under
inviscid conditions. We show this to be the case, with an important difference,
dictated by the conservation under inviscid conditions of l1. All the interesting
physics we find is a consequence of added mass, as we discuss.

2. Problem Statement
Consider a solid shaped as a general ellipsoid of axes a, b and c, immersed in a

cubical fluid domain of size L � (a, b, c) as shown in figure 11. We define a density
ratio ρ = ρf/ρs, where ρf and ρs are densities, and the subscripts s and f stand
for solid and fluid respectively. The kinetic energy of the solid is given by

Ks =
1

2
[v · Msv +Ω · IsΩ] . (2.1)

Ms is a diagonal 3 × 3 matrix whose non-zero elements are the mass m of the
ellipsoid, while Is is its moment of inertia tensor. v is the translational velocity
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Figure 1: Problem definition. (a) A general ellipsoid with aspect ratio a : b :
c immersed in a fluid with initial energy ratio E, and (b) schematic of nine
initial conditions formed by basic configurations of the linear momentum and
angular momentum vectors. The axes are defined as shown, in a frame of reference
fixed with the body. A general initial condition can be constructed by a linear
combination of these conditions.

vector of the solid, Ω is its angular velocity vector and the superscript T indicates
the transpose. The fluid in the direct numerical simulations is initially at rest, so
Ks comprises the total kinetic energy of the system. In an inviscid flow the kinetic
energy is maintained constant through time, but gets interchanged between fluid
and solid in interesting ways for a triaxial ellipsoid, as we shall see. Note that
there is no gravity or any other body force in this problem. This enables the
kinetic energy to be treated as the Hamiltonian of the system.

We emphasise here the difference between a body held fixed, with a flow going
past it, and one which is free to tumble and move. Auguste et al.Auguste et al. (20132013) have
shown, for example, that the minimum Reynolds number for lateral motion in
a freely falling thin disk is about a half the Reynolds at which a fixed disk
would display wake instability. Although capable of far richer dynamic, there are
far fewer studies on bodies free to move in fluids than those held fixed. It is
hoped that the numerical method presented here will help to fill the gap, and
enables viscous and inviscid studies on moving bodies. The code will soon be
made publicly available.

In our direct numerical simulations, the solid is subjected to an initial condition
with a specified ratio E of the initial translational kinetic energy, kt to the the
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initial rotational kinetic energy kr:

E =
kt
kr

=
m ‖v‖2

Ω · IsΩ
. (2.2)

Once placed in an inviscid fluid, kt and kr are the respective energies in fluid and
solid together. Higher energy ratios indicate the dominance of initial translational
kinetic energy over rotational. It is important to note that a range of initial
conditions can be imposed for the same E, some basis combinations are shown
in Fig. 1b1b. We study immersed solids ranging from far heavier to much lighter
than the fluid, and investigate their orbital behaviour under both inviscid and
viscous conditions. In the viscous case, we define a particle Reynolds number,
Rep = DpU0/ν, based on the solid length-scale Dp and a fluid velocity-scale,
U0. In our simulations, we have chosen Dp as the longest axis a of the ellipsoid.
We have developed an in-house solver, termed the Gerris Immersed Solid Solver
(GISS) Shui et al.Shui et al. (20152015) for our Direct Numerical Simulations (DNS). For solids
immersed in inviscid fluids we cross-validate our DNS results against theoretical
solutions of the Kirchhoff equations for inviscid fluids. Our DNS and theoretical
methodologies are detailed in Section 33 and Section 4.14.1, respectively.

3. Direct Numerical Simulations using GISS
The GISS numerical solver developed here comprises two sub-solvers: i) The

Gerris flow solver and ii) the Immersed Solid Solver. A two-step solution strategy
is used. First, the 3D flow equations around the body are solved using the Gerris
Engine (PopinetPopinet 20032003) to obtain velocity and pressure fields. These are then used
to calculate the hydrodynamic force field on the surface of the immersed solid.
Second, the calculated forces are passed on to the solid solver which calculates the
new position of the immersed body using rigid body equations for translation and
rotation. These steps allow for two-way solid-fluid coupling at every time step.
The solver allows for arbitrary number of solids with arbitrary geometric features
in six degree of freedom (6DOF) motion. The solver can perform dynamical
quad/octree mesh optimisation in a Cartesian framework, which greatly simplifies
the procedure for mesh generation.

3.1. Fluid Solver: Governing Equations and Solution Methodology
The fluid physics are solved using Gerris (PopinetPopinet 20032003) which is based on

a fractional-step projection method originally suggested by ChorinChorin (19671967). We
consider the fluid to be incompressible and Newtonian and the immersed solid
to be rigid and non-porous. Thus, the governing equations for the flow in the
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presence of such an immersed solid are:

∇ · u = 0, (3.1)
∂u

∂t
+ u ·∇u = − 1

ρf
∇p+ ν∇2u+ δfS . (3.2)

Here, ν is the kinematic viscosity of the fluid. In our inviscid direct numerical
simulations, we set ν = 0 which amounts to solving the Euler equations. Here,
p is the pressure, fS is a general body force characterising the influence of the
immersed solid and δ = |∇c| is the so-called interface delta function whose value
is unity at the surface of the immersed body and zero elsewhere, with c signifying
the volume fraction of the fluid. Periodic boundary conditions are applied on the
fluid domain and a no-slip non-penetration boundary condition is enforced on
the immersed solid-fluid interface in viscous flow. Thus,

u = uΓ = v +Ω × (rM − rC), (3.3)
∇p · nΓ = 0. (3.4)

Here, Γ indicates the immersed solid region and nΓ indicates the normal to the
solid. The projection method is based on Helmholtz-Hodge decomposition by
which the velocity field u is uniquely decomposed into a solenoidal (divergence-
free) part and an irrotational part. We rewrite the Eq. 3.13.1 and Eq. 3.23.2 in second-
order, time-discrete semi-implicit forms, to get:

∇ · un+1 = 0, (3.5)
un+1 − un

∆t
+ [(u ·∇)u]n = − 1

ρf
∇pn+1/2 + ν∇2un + δfn

S . (3.6)

Here, the superscript n denotes the variable at the time point of t = n∆t. (The
coupling force, fS , from the solid dynamics is treated in Section 3.23.2.) With the
help of an intermediate velocity field u?, Eq. 3.63.6 can be divided into:

u? − un

∆t
+ [(u ·∇)u]n = ν∇2un + δfn

S , (3.7)

un+1 − u?

∆t
= − 1

ρf
∇pn+1/2. (3.8)

It is possible to calculate the value of u? explicitly through Eq. 3.73.7 with the known
velocity field un, and with the help of Eq. 3.53.5, and by taking the divergence on
both sides of the Eq. 3.83.8, we obtain

∇2pn+1/2 =
ρf
∆t

∇ · u?. (3.9)

Eq. 3.93.9 is a typical Poisson equation, the solution of which will reveal the pressure
field at n+1/2 time step. Substituting u? and pn+1/2 back into Eq. 3.83.8, we then
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obtain the velocity field at the next time step as follows.

un+1 = u? − ∆t

ρf
∇pn+1/2. (3.10)

3.2. Solid Motion Solver in GISS and Coupling with Fluid Solver
At the outset, the reader is pointed to the extensive review by WachsWachs (20192019)

on numerical techniques used for immersed non-spherical immersed rigid bodies
subject to various fluid environments. The methods used for GISS are similar to
those mentioned in references therein.

The governing equations for the solid are Newton’s second law built on the
global coordinate system which will remain stationary during the simulation.
The solid is free to perform full 6 degrees-of-freedom (6DOF) motion. While
any number of solids can be immersed in the framework, computational effort
rises with increasing number of solids. The calculation is powered by the Open
Dynamics Engine (ODE, developed by SmithSmith (20052005)), which uses the following
force and moment balance equations:

m
dv

dt
=

∫∫
A

ρffS · rdA, (3.11)

Is
dΩ

dt
=

∫∫
A

(rM − rC)× ρffSdA, (3.12)

Vs is the volume of the solid.Note that fS is the hydrodynamic force applied by
the fluid on the solid-fluid interface (i.e. the solid surface). For any point on the
surface of the solid, r is the relative location of that surface point to the mass
centre of the solid, r⊥ is the positional vector of the surface point perpendicular
to the axis of rotation of the solid, x is the instantaneous translational position
of the centroid of the body and α is the instantaneous set of Euler angles of the
surface point with reference to the global coordinate system. Evidently, fS is a key
coupling parameter between the flow and solid solvers. Eq. 3.123.12 is built on a local
coordinate system associated with the solid with the origin at its centre of mass
and moves synchronously during the simulation. Though the orientation of the
solid is represented by Eulerian angles at each timestep, the internal calculations
on the rotation are based on quaternions to avoid the so called Gimbal lock
singularity (KuipersKuipers 19991999). The conversion between them are as follows:

q0
q1
q2
q3

 =


cos(αx/2) cos(αy/2) cos(αz/2) + sin(αx/2) sin(αy/2) sin(αz/2)
sin(αx/2) cos(αy/2) cos(αz/2)− cos(αx/2) sin(αy/2) sin(αz/2)
cos(αx/2) sin(αy/2) cos(αz/2) + sin(αx/2) cos(αy/2) sin(αz/2)
cos(αx/2) cos(αy/2) sin(αz/2)− sin(αx/2) sin(αy/2) cos(αz/2)

 ,

(3.13)
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αy

αz

 =

 atan2[2(q0q1 + q2q3), 1− 2(q21 + q22)]
asin[2(q0q2 − q3q1)]

atan2[2(q0q3 + q1q2), 1− 2(q22 + q32)]

 . (3.14)

Here αi denotes the rotation angle around i axis of the instantaneous solid
coordinate system and q denotes the set of resulting quarternions.

On the boundary, the solid is represented by the volume fluid fraction (a)
and surface fluid fraction (sd, where d is the direction of the face) of the fluid
together. Both a and sd are set to the value of 1 in pure fluid, 0 in the pure
solid, and any number between 0 and 1 means a mixed cell on the solid-fluid
interface. This variant of immersed boundary method is usually referred as the
“Cartesian grid method” or the “embedded solid method” (DeZeeuw & PowellDeZeeuw & Powell
19931993; Udaykumar et al.Udaykumar et al. 19961996).

To calculate the force applied on each cell, it is essential to know the area and
direction of the interface which can be calculated approximately by:

A = (sx− − sx+, sy− − sy+, sz− − sz+) ·∆x2. (3.15)

As shown by the example in Fig. 22, the area vector of the interface cutting the
cell is (−1,−1) ·∆x, |A| is the area of the numerical interface with the direction
of inward-pointing normal. Therefore, the body force tensor interpreted by the
solid solver, F is:

F =

∫∫
A

ρffS · rdA, (3.16)

=
[
Ax Ay Az

]
· E , (3.17)

where E ≡ p− µ(∇u+∇uT ).
The accuracy of F improves with mesh refinement, as shown in Fig. 22. The

Gerris fluid solver uses an adaptive mesh projection method (PopinetPopinet 20032003). Mesh
adaption is governed by a vorticity criterion, ∆x |∇× u| / |umax| > ζ, where ζ
is mesh tolerance. A unique feature in GISS is that the computational domain
is discretised by quad-tree (in 2D) or oct-tree (in 3D) cell (c.f. (Samet & HananSamet & Hanan
19901990; Ingram et al.Ingram et al. 20032003)). This allows GISS to exploit the advantages from both
conventional dynamic mesh adaptation and immersed solid methods. A cell in
the mesh will be automatically adapted by dividing the root cell to 4 (in 2D) or 8
(in 3D) leaf cells under the criterion of vorticity, whilst all cells remain Cartesian.
This “tree-structure adaptation” of the mesh is simpler than the commonly used
body-conformal unstructured mesh adaption (Fig. 22b to d).

For a mesh refinement level N , the smallest mesh size, ∆xMIN = L/2N

surrounds the solid. In dimensionless terms, ∆x∗
MIN = ∆xMIN/Dp. We define

mesh resolution as inverse of mesh size i.e. Rm = 1/∆x∗
MIN = Dp/∆xMIN . In

order to ensure the continuity of numerical error between the fluid and the solid
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Figure 2: (a) Calculating surface area using fluid fraction and mesh refinement at
fluid-interface elements. (b) Typical dynamic mesh adaption, (c) typical immersed
boundary mesh, (d) Quadtree mesh in GISS.

domains, ∆x∗
MIN |f = ∆x∗|s where ∆x∗|s is the the mesh defining the immersed

solid. This also ensures enforcement of the no-slip, no-penetration boundary
condition on the walls of the solid. This also minimises error in calculation of
the stress tensor around the solid and hence the drag and lift forces. During the
simulation, the timestep is set to fulfil both Courant and viscous criteria such
that ∆t∗ 5 min

(
∆xMIN

U0

U0

D ,
∆x2

MIN

ν
U0

D

)
=⇒ ∆t∗ 5 min

(
1

MR
,
Rep
M2

R

)
.

We can now apply Gauss’s theorem on Eq. 3.93.9 and rewrite it to its spatial
discrete equivalent with consideration of the fluid fraction:∫∫

A

∇p · ndA =
ρf
∆t

∫∫∫
V

∇ · u?dV , (3.18)

∑
d

sd∇dp =
ρfhc

∆t
∇ · u?. (3.19)

Here, h is the local mesh size. Eq. 3.193.19 is a general form of the Poisson equations
solved by Gerris (PopinetPopinet 20032003). We now perform some validation studies for the
immersed solid solver.

3.3. Validating GISS for Simple Solid Motion at Finite Reynolds Number
3.3.1. Bodies Falling Under Gravity

The initial transient and the terminal velocity of a sphere settling in a fluid was
validated against the experiments of Mordant & PintonMordant & Pinton (20002000) where beads were
gently released in water, and against the theoretical calculations of Clift et al.Clift et al.
(19781978). The experiments were simulated using a sufficiently spacious domain, to
eliminate the effect of the side boundaries (L/Dp = 32). Our previous rigorous
studies (Shui et al.Shui et al. 20152015) suggested that a sixteenfold mesh refinement, defined
as Rm = 1/16 was dense enough around the body to accurately simulate settling.

While we have simulated all experimental cases of Mordant & PintonMordant & Pinton (20002000)
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Figure 3: Settling of a sphere at Rep = DU0/ν = 430, comparison against
experiments of Mordant & PintonMordant & Pinton (20002000).

in the range 41 6 Rep 6 430, we present one of them in Fig.33. The 3D GISS
solver shows good agreement with both the theoretical predictions for terminal
velocity, and with experiments. The maximum relative error is around 2% for the
case of Rep = 430, similar to that of other cases. Our simulations show that the
rotation of the solid is negligible (< 5◦).

The solver was also compared against the work of Auguste et al.Auguste et al. (20132013) con-
cerning disks falling under gravity, see Fig. 44. We approximated the disk by a
thin oblate spheroid and made two simulations at different Archimedes numbers
and inertia ratios, defined by Auguste et al.Auguste et al. (20132013) respectively as Ar = (3|1 −
ρ|ga/16ρ)1/2b/ν and I∗ = πb/64aρ, where ρ is the fluid to solid density ratio, g
is acceleration due to gravity and ν is the kinematic viscosity of the surrounding
fluid. In each case we found that a body starting from rest spontaneously
exhibited the motion as described by them.

3.3.2. Rotational Motion describing Jeffery’s Orbits
In the Stokes limit of Re = 0, JefferyJeffery (19221922) analytically showed that a

single neutrally buoyant ellipsoid in shear flow performs rotary motion. The orbit
tracked is the so called Jeffery’s orbit. At low Reynolds numbers when the effects
of inertia are negligible, the solution was confirmed in several experiments by
TaylorTaylor (19231923).

Here we validate the performance of GISS for the classical Jeffery’s orbit
solution. Our set-up contains a neutrally-buoyant spheroid subjected to Couette
flow at constant shear rate (ξ) in a channel. The channel is bounded by walls at the



Tumbling Ellipsoids 11

- 0 . 2 - 0 . 1 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 0 0
0 . 1 5

0 . 3 0
0 . 4 5

0 . 6 0
0 . 7 5- 1 0 0

- 9 0

- 8 0

- 7 0

- 6 0

- 5 0

- 4 0

Y

Z

X

- 0 . 8- 0 . 6- 0 . 4- 0 . 20 . 00 . 20 . 40 . 60 . 81 . 0
0 . 1 50 . 3 00 . 4 50 . 6 00 . 7 50 . 9 01 . 0 5

- 1 0 4

- 9 1

- 7 8

- 6 5

- 5 2

Y

Z

X

Figure 4: Falling styles of thin oblate spheroids (a = 1, b = 10, c = 10) calculated
by GISS corresponding to the work of Auguste et al.Auguste et al. (20132013) on falling disks. a)
Auto-rotation trajectory observed at an Archimedes number of Ar = 30 and a
dimensionless inertia ratio of I∗ = 3 × 10−2 and b) Zig-zag trajectory observed
at Ar = 40 and I∗ = 2 × 10−2. These behaviours agree with the regime plots
presented in Figure 2 of Auguste et al.Auguste et al. (20132013).

top and bottom, both moving with constant velocity but in opposite directions.
The boundaries in the stream-wise and span-wise directions are periodic, as shown
in Fig. 55a. The rotation of the solid is then compared against the theoretical result
of JefferyJeffery (19221922).

Fig. 55b shows the rotation of prolate spheroids with different aspect ratio ε =
a/b. The angle and time shown are scaled by their values for one cycle. We
may conclude that our simulated rotations are in very good agreement with
theory (both spatially and temporally), thereby proving the ability of GISS to
predict solid body rotation using the full Navier-Stokes equations at low Rep.
In Fig. 55 the Reynolds number based on the body’s longest axis is 0.1, and we
have checked, using the theory of Einarsson et al.Einarsson et al. (20152015) that the finite Reynolds
number corrections to Jeffery’s orbits for our biggest aspect ratio are three orders
of magnitude smaller than the effects we retain. Note that only a sample from
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Figure 5: Neutrally buoyant prolate spheroids executing classical Jeffery’s orbits.
(a) schematic. (b) Angle versus time of spheroids of aspect ratio ε stated in
the legend, under shear flow defined by Rep = 4ξa2/ν = 0.1. For comparison
theoretical solutions are shown. Here M = 16, L∗ = 4.

an exhaustive validation study available in Shui et al.Shui et al. (20152015) has been presented
here.

Good agreements between the our DNS and earlier theory/ experiments in the
classical settling and rotation problems give us confidence in the ability of the
GISS solver to tackle simple solid motion in viscous fluid. We now consider the
more difficult case of an immersed solid in inviscid fluid presenting complex 6DoF
motion.

4. Solid body immersed in an inviscid fluid
Under inviscid conditions this dynamics is described by the Kirchhoff equations.

These are often termed the Kirchhoff-Clebsch equations, in recognition of the
integrable cases found by Clebsch, and we refer to them most often by the latter
name. These equations and our solutions are discussed below.

4.1. Kirchhoff-Clebsch equations and their solution
Provided that the ellipsoid is completely submerged by fluid which is inviscid,

irrotational, incompressible, and stationary at infinity, the fluid-solid system may
be studied as a whole as follows, offering considerable simplification. The total
kinetic energy Ktot for the combined fluid-solid system may be written as

Ktot =
1

2
v · Mv +

1

2
Ω · JΩ, (4.1)
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where

M ≡ Mf +Ms, J ≡ If + Is, and A =

[
Mf S
ST If

]
. (4.2)

A is the added mass tensor of the fluid, which includes both linear and rotational
effects, and is dependent on the body shape and the fluid density. For any body
which is symmetric about three mutually perpendicular axes, we have a desirable
simplification, in that S = 0, and further, for a triaxial ellipsoid, Mf and If are
given in closed form [LambLamb (19451945), see also KorotkinKorotkin (20092009)] by

Mf = Vsρf


α

2−α 0 0

0 β
2−β 0

0 0 γ
2−γ

 , (4.3)

If =
Vsρf
5


(b2−c2)2(γ−β)

2(b2−c2)+(β−γ)(b2+c2) 0 0

0 (a2−c2)2(γ−α)
2(a2−c2)+(α−γ)(a2+c2) 0

0 0 (a2−b2)2(β−α)
2(a2−b2)+(α−β)(a2+b2)

 .

(4.4)
In these expressions,

α = abc

∞∫
0

dλ

(a2 + λ)kλ
, β = abc

∞∫
0

dλ

(b2 + λ)kλ
, γ = abc

∞∫
0

dλ

(c2 + λ)kλ
, (4.5)

where k2λ = (a2 + λ)(b2 + λ)(c2 + λ). (4.6)
The added mass terms are obtained by fourth-order Runge-Kutta integration
of Eq.(4.54.5), and the resolution is kept sufficient to obtain at least eight decimal
place accuracy. In terms of the generalised momentum P = (Mf +Ms)v and the
generalised angular momentum L = (If + Is)Ω the Kirchhoff-Clebsch equations
take the form (Aref & JonesAref & Jones 19931993)

Ṗ +Ω × P = 0, L̇+Ω ×L+ v × P = 0. (4.7)

Our coordinate frame moves and is oriented with the body, and v and Ω are
its instantaneous velocity and angular velocity. This is a Hamiltonian system
(Aref & JonesAref & Jones 19931993), where −Ktot is the Hamiltonian. An examination of the
Kirchhoff-Clebsch equations make it evident that there are two other integrals of
the motion apart from Ktot, namely: P ·P and L ·P . Solutions for the ordinary
differential equations (4.74.7) are obtained by a Runge-Kutta fourth-order scheme,
and it is ensured that the three integrals of motion are maintained constant
throughout the solution to at least six significant decimal places. The results of
Aref & JonesAref & Jones (19931993) were recovered excellently (not shown).
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4.2. Symmetry and the limits of integrability
Eq.4.74.7 represents a six degree of freedom system, and three integrals of the

motion have been identified. Using the degeneracy properties of the relevant
Poisson bracket, Kozlov & OnishchenkoKozlov & Onishchenko (19821982) were able to show, for a general
ellipsoid, that if just one more integral of the motion is supported, the system
is completely integrable. They did not obtain such an integral explictly for
any ellipsoid, but proved that the system is non-integrable when the ellipsoid’s
geometry satisfies the following condition:

j−1
a (mb −mc) + j−1

b (mc −ma) + j−1
c (ma −mb) 6= 0, (4.8)

where ma,b,c and ja,b,c are the elements of the diagonal matrices M and J
along the a, b and c semi-axes of the ellipsoid. We notice immediately that
if the ellipsoid has an axis of rotation, namely two of the axes, say b and c
are equal, then jb = jc and mb = mc, and it is trivial to see that the above
inequality is never satisfied, i.e., the dynamics is integrable. Several authors,
such as Holmes et al.Holmes et al. (19981998) and Dragović & GajićDragović & Gajić (20122012) have identified this
property. Such ellipsoids are referred to as ellipsoids of revolution, or as prolate
spheroids where a > b and oblate spheroids where a < b. The system must
exhibit periodic or quasiperiodic behavior in this case. The dynamics of such a
body of revolution, if there is no surrounding fluid, reduces to the Lagrange case
of a symmetric top (Landau & LifshitzLandau & Lifshitz 19691969). In the general case of a triaxial
ellipsoid, which we define as one where a 6= b 6= c, our numerical search revealed,
as we expected, no ratio of semiaxes where 4.84.8 was violated. So for practically any
triaxial ellipsoid, the dynamics is non-integrable, and we should be able to obtain
chaotic trajectories in at least some part of the phase space. Aref & JonesAref & Jones (19931993)
identified one such ellipsoid as satisfying the above condition, with semiaxes in
the ratio 1.0, 0.8 and 0.6 and demonstrated the existence of chaotic trajectories.

For a sphere, α = β = γ = 1/2, so we recover its well known added mass.
Moreover If in this case is just 0, so a sphere will not be rotated by an inviscid
fluid. We thus have L̇ = 0, with which the conditions for integrability are trivially
satisfied. For a spheroid, we explicitly identify another integral of the motion
below, and show physically how it considerably simplifies the dynamics.

4.3. Validating our Numerical Approach for 6DoF Motion in Inviscid
Environments

The Kirchhoff-Clebsch system, being inviscid, and in addition offering a rich
tapestry of complex behaviour, provides a rigorous benchmark for validating any
numerical approach. Our inviscid direct numerical simulation is set up as shown in
Fig. 1a1a. The domain size is L = 512a where 2a is the major axis of the ellipsoid.
All sides of the domain are periodic. Such a large domain is chosen to ensure
that the solid has enough space to track chaotic orbits without interference from
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residual wakes (in the viscous case) due to the periodic boundary conditions.
The highest mesh resolution was set as 128 grid points on the solid surface, and
adaptive mesh refinement ensures that the flow around it is adequately resolved.
The ellipsoid is given an initial velocity U0 and angular velocity Ω0 which are
perpendicular to each other and shown in some of the schematics in Fig. 1b1b.
Note that the dot product of the momentum and angular momentum in this case
is zero, and, since it is an integral of the motion, will remain zero throughout
the simulation. We recommend this, to reduce the time needed for the ellipsoid
to explore a statistically significant region of the system’s phase space, but any
angle between the two may be used, and will not change the results qualitatively,
as we have shown above. In our Kirchhoff-Clebsch solutions we have used a far
wider range of initial conditions as will be discussed below. We wish to obtain the
trajectory executed by a marker point, M, located on the surface of the ellipsoid.
The relative location of M is

rM = xM − xC , (4.9)

where xM is the positional vector of M in the global frame and xC is the positional
vector of the solid centre in the global frame. Hence, plotting xC shows the
trajectory of the solid centre moving in the fluid, and plotting rM shows the orbit
of the marker point relative to the solid centre itself, representing the orientation
of the solid. These vectors as solutions of the equations give an immediate view
of how the orientation and position of the ellipsoid changes as it moves through
the fluid.

4.3.1. Periodic and Quasiperiodic Dynamics
We consider an ellipsoid of revolution, with a : b : c = 1 : 0.7 : 0.7. The initial

energy ratio is specified as E = 1. Fig. 6a6a shows an orbit described by the marker
point, rM , about the centre of mass of the ellipsoid using GISS simulations. Is is
seen that rM describes a near-circular orbit in the x − y plane. Every time the
orbit is described, the location on the z axis is slightly different, and we cannot
yet distinguish whether this is due to numerical errors or due to the quasiperiodic
nature of the orbit. We shall return to this point below. It is obvious however, that
the dynamics is not chaotic. This conclusion agrees well with our own solution of
the Kirchhoff-Clebsch equations, example shown in Fig. 6b6b. The initial conditions
are the same in both the cases.

4.3.2. Chaotic Dynamics
We next study the dynamics of a triaxial ellipsoid, with a : b : c = 1 : 0.8 : 0.6.

This was the shape studied by Aref & JonesAref & Jones (19931993) whose sample result indicated
that increasing the ratio ρ of fluid density to solid density increases the propensity
for chaotic orbits.
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(a) Inviscid DNS solution

- 1 . 0
- 0 . 8

- 0 . 6
- 0 . 4

- 0 . 2 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 - 1 . 0
- 0 . 8

- 0 . 6
- 0 . 4

- 0 . 2
0 . 0

0 . 2
0 . 4

0 . 6
0 . 8

1 . 0- 1 . 0
- 0 . 8
- 0 . 6
- 0 . 4
- 0 . 2
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Y

Z

X

(b) Kirchhoff-Clebsch solution

Figure 6: Periodic orbits tracked by a marker point M on an ellipsoid of revolution
with a : b : c = 1 : 0.7 : 0.7 at E = 1 and ρ = 1. The orbit (locus of points defined
by rM ) is represented in red, with its projections on the XY, XZ and YZ planes
in grey, blue and green, respectively. The initial conditions are the same in both
solutions.

The initial condition is quantified at E = 20. Fig. 77a shows clearly that the
orbit tracked by the marker point using GISS simulations is chaotic. This also
agrees well with our own solution of the Kirchhoff-Clebsch equations, shown in
Fig. 77b. Apart from the marker point it is instructive to obtain the trajectories
tracked by the centroids xC of the periodic and chaotic ellipsoids in DNS. These
are shown in Fig. 8b8b. After an initial transient during which the fluid gains kinetic
energy the centroid of the ellipsoid of rotation settles into motion on a line, and
we have seen earlier that it is in steady rotation about its centroid. The triaxial
ellipsoid on the other hand executes irregular motion.

Thus our numerical approach not only works well in inviscid environments as
well, but is able to demonstrate the Kozlov-Onishchenko theorem by showing
chaotic trajectories in the case of a triaxial ellipsoid, and a reduction to simple
dynamics for an ellipsoid of revolution. We next present a method to quantify
orbital behaviour.

4.4. Understanding Orbital Behaviour Using Recurrence Quantification Analysis
We use recurrence quantification analysis (RQA) to quantify orbits tracked by

solid bodies. A recurrence plot (RP) is the foundation of RQA. Eckmann et al.Eckmann et al.
(19871987) introduced recurrence plots, as a way to visualise the dynamics of a system
through its phase space, marking all time points when a said event recurs. The
main advantage of recurrence plots is that they provide a means to investigate
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(a) Inviscid DNS Solution
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Figure 7: Chaotic orbits tracked by a marker point M on a triaxial ellipsoid
a : b : c = 1 : 0.8 : 0.6 at E = 20 and ρ = 1. The initial conditions are the same
in both solutions.
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Figure 8: Trajectories of the centroids of the ellipsoids (locus of points defined by
xC) for (a) the simulation of the ellipsoid of revolution shown in Fig. 66a and (b)
that of the triaxial ellipsoid of Fig. 77a. These are results from inviscid DNS.

behaviour of N-dimensional dynamics using a two-dimensional plot. Recurrence
is defined by Eq. 4.104.10.

R(i, j) =

{
1 if ‖ xM (i)− xM (j) ‖∞6 ε

0 otherwise,
(4.10)
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where R(i, j) is an N-by-N matrix, N being the number of samples in the time
series, xM (i) is the position of the marker point M in the phase space of the body
at time i and xM (j) is the position of the marker point in the phase space of
the body at time j. A thought experiment will tell us that a perfectly periodic
system will only have solid diagonal lines in the recurrence plot, and the spacing
of the diagonal lines will be periodic. A quasiperiodic system will have only
diagonal lines, but these could be broken into segments. Deterministic chaos of
a small number of degrees of freedom presents visually interesting patterns in
the recurrence plot. On the other hand, white noise would display a recurrence
plot composed of randomly spaced single dots. At a given time j, our RQA steps
through the array i to check for recurrence of the position of the marker point for
each timestep. In the case of our solution of the Kirchhoff-Clebsch equations, we
use about 100000 timesteps and in our DNS it is about 200000 timesteps, with
each timestep recording the spatial location of the marker point. Since perfect
recurrence is nearly impossible due to numerical noise, ε is the heuristic threshold
distance which determines where two given states are sufficiently close to count as
a recurrence. In this work, we set ε = 5% of the maximum phase-space diameter
i.e., the maximum displacement presented by the solid in any simulation, in line
with the recommendations of MarwanMarwan (20082008). We make use of three statistical
measures to quantify chaos, as defined below.

We define RR as the recurrence rate of the system, representing the probability
of the solid’s orientation to recur in the orbit.

RR =
1

N2

N∑
i,j=1

R(i, j), (4.11)

We next define DET as the determinism exhibited by the system, which is a
measure of the predictability of any dynamical system, as follows:

DET =

∑N
`=`min

`P (`)∑N
i,j=1 R(i, j)

, (4.12)

where P (`) is the frequency distribution of the lengths of the diagonal lines in
a recurrence plot, ` is the length of those lines and `min is the criterion used to
indicate the presence of a line. This is set to 2 in our work, which means that a
minimum of 2 points (pixels) are needed to lay diagonally next to each other. We
also define

p(`) =
P (`)∑N

`=`min
P (`)

, (4.13)

as the probability of a diagonal line giving exactly length `. The Shannon entropy
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(ENTR) of the recurrence plot, given by

ENTR = −
N∑

`=`min

p(`) ln(p(`)), (4.14)

can be calculated by this distribution. The entropy corresponds to the complexity
of the deterministic structure in the system (Marwan et al.Marwan et al. 20072007).

These statistics can be made time-dependent through computing over small
time windows. The windows can be moved over the recurrence plot along the line
of identity. These time-dependent measures can be useful to detect periodic-chaos
regime transitions (MarwanMarwan 20082008). We define a moving time window, tw over
simulation time. Thus the number of simulation timesteps within the prescribed
window is

Nw =
tw
∆t

, (4.15)

where ∆t is the simulation timestep size. Using such a moving window, we can
then compute the RQA statistics at any time t, corresponding to a timestep
n = t/∆t as below:

RR(t) =
1

Nw
2

Nw∑
i,j=n

R(i, j), DET (t) =

∑Nw

`=`min
`Pt,tw(`)∑Nw

i,j=n R(i, j)
, (4.16)

pt(`) =
Pt,tw(`)∑Nw

`=`min
Pt,tw(`)

, ENTR(t) = −
Nw∑

`=`min

pt(`) ln(pt(`)).

(4.17)

Here, Pt,tw(`) is the instantaneous frequency distribution of the lengths of the
diagonal lines in a recurrence plot with respect to a window size of tw, and pt(`) is
the instantaneous probability of a diagonal line giving exactly length ` calculated
over a moving time window tw. In order to quantify which case is chaotic, DET
is a very useful metric, (Eckmann et al.Eckmann et al. 19871987). As can be seen in Eq. 4.124.12, it
is a measure of the fraction of points in the recurrence plot that form diagonal
lines. A purely stochastic system would have a recurrent plot comprising scattered
points, whereas a periodic or quasiperiodic system shows long running diagonal
lines (MarwanMarwan 20082008).

We identify orbital behaviour based on the recurrence plots and time dependent
RQA statistics. Since periodic and quasiperiodic behaviour will consist only of
diagonal lines or line segments, if we choose an Nw long enough to cover an
orbital time, RR will remain constant, and DET will stay at a value of 1. On the
other hand RR will not be constant, and DET must be less than 1 in a chaotic
system. Similarly, the entropy remains constant in a periodic or quasiperiodic
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Figure 9: Recurrence plots, (a) Parameters as in Fig. 66. The regular diagonal
bands are a signature of nonchaotic behaviour and (b) chaotic system, case as in
Fig. 77. The complex structures are signature of chaotic behaviour. These results
were produced by solving the Kirchhoff-Clebsch equations.

system but varies with time in a chaotic system. Features in these statistics can
reveal further information about the behaviour of the system.

Fig. 99 shows recurrence plots corresponding to the nonchaotic orbital behaviour
corresponding to the parameters used in in Fig. 66, and chaotic orbital behaviour
of the case in Fig. 77. In Fig. 99a, the fact that the diagonal lines are often
broken is indicative of quasiperiodic rather than strictly periodic motion of
the marker point, similar patterns for quasiperiodic systems has been studied
by Marwan et al.Marwan et al. (20072007). Whereas, in the case of chaotic orbital motion, Fig.
99b demonstrates a complex structure indicating irregular and unpredictable
recurrence. At first sight the recurrence rate pattern seems to repeat itself in
a regular manner. We recall that the high departure from a diagonal structure
is already indicative of strongly chaotic dynamics. But we further ensured that
there is no periodic pattern in the recurrence rate plot as well, by generating a
residual recurrence plot by taking the difference between the original recurrence
time-series and a time-shifted copy. The time shift was selected to minimises the
error between the two series, and it was obvious that there was no overlap (not
shown).

Fig. 1010 shows the behaviour of key statistical parameters, RR, DET , ENTR,
over the period of the simulations to quantify orbital behaviour. For a periodic
system, as shown in Fig. 1010a, these statistics remain largely constant, and the
DET is 1 (or, 1−DET = 0). Whereas in a chaotic system, Fig. 1010b demonstrates
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Figure 10: Recurrence statistics, (a) for the periodic system of Fig. 66b, and (b)
for the chaotic system of Fig. 77b. These results were produced by solving the
Kirchhoff-Clebsch equations.

that none of these parameters remain constant, and DET < 1. These statistics
along with the texture of the recurrence plot are used to classify the behaviour
of the orbits generated later in the paper. We will also use Poincare sections to
distinguish chaotic from non-chaotic behaviour.

5. Dynamics in an inviscid environment
There are four non-dimensional parameters in the inviscid problem: the axis

ratios b/a and c/a, the fluid to solid density ratio ρ, and the ratio E of the initial
kinetic energy of the system in rotational motion to that in linear motion of the
body centroid.

To address the effect of the axis ratios we first ask what it is about a triaxial
ellipsoid that makes it possible to see chaos in its dynamics and not in a spheroid.
We answer that the added mass enables it. The primary difference between a
spheroid and a triaxial ellipsoid is in the added complexity of the added mass
tensor of the latter. In the case of a spheroid, two entries each of M and J in
Eq.4.24.2 become equal to each other, so the added mass tensor A has only four
independent entries rather than six as in a triaxial ellipsoid. With some algebra
we show that a spheroid as a result has an additional integral of the motion: l1,
the angular momentum component along the x-axis. Our explicit identification of
this integral of the motion helps obtain physical understanding of how a spheroid
can only display limited dynamics. The integral means the rate of rotation about
the unequal axis, i.e., the long axis of a prolate spheroid or the short axis of an
oblate spheroid, remains constant. So all changes in the angular momentum of
the system are restricted to the plane perpendicular to the x-axis. This, as we
shall see, will be an important factor for determining the dynamics spheroids
in viscous fluids as well. We ask if a triaxial ellipsoid can therefore exchange
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Figure 11: (a) Fraction of kinetic energy in the fluid as a function of time for a
triaxial ellipsoid, as compared to prolate and oblate spheroids of the same volume.
These are solutions of the Kirchhoff-Clebsch equations, with ρ = 1 and E = 1.
The energy exchange between fluid and solid is much larger in a triaxial ellipsoid.
For clarity of viewing the curve for the oblate spheroid is displaced by 0.05 in the
vertical. (b) Fraction of kinetic energy in rotational motion as a function of time
in the same run (and legend) as (a). (c) The triaxial ellipsoid in periodic motion,
ρ = 0.1, E = 1. The plot shows the fraction of kinetic energy as a function of
time in the fluid (blue solid line) and the fraction of kinetic energy in rotational
motion (purple long-dashed line).

kinetic energy more freely with the surrounding fluid than a spheroid can. Figure
1111a shows what fraction of the total kinetic energy at a given time is in the
fluid. (The kinetic energy fraction in the solid is just this quantity subtracted
from 1.) All conditions except the ratio of the axes are kept the same across
the curves. This figure is just one example of a whole range of computations
we have made, which give the same qualitative behaviour. Apart from varying ρ
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and E we have used many different orientations between the solid and its linear
momentum, and between the linear and angular momenta. We thus show that
the dynamics of prolate and the oblate spheroids are limited, in that they only
interact through minor exchanges of the kinetic energy between solid and fluid.
The triaxial ellipsoid however wildly exchanges kinetic energy between solid and
fluid. It is intuitive that this possibility of exchange provides for a rich range
of tumbling dynamics. We digress briefly here to emphasise that added mass
effects are of irrotational origin, and we therefore expect a triaxial ellipsoid to
behave differently in a qualitative way in viscous flow as well as compared to a
spheroid. Moreover, the added mass provides for an exchange of kinetic energy
between motion of the centroid and that contained in tumbling. This exchange is
shown terms of the fraction of total kinetic energy in rotational motion in figure
1111b. E = 1 implies that the initial fraction in rotation is 0.5. Again we see that
the fraction in rotational motion changes by a large amount in the case of the
triaxial ellipsoid whereas the spheroids retain a ratio close to their starting value.
We are able to get cases in the triaxial ellipsoid where the rotational energy
goes from very low to high values, thus executing a complicated self-generated
run-and-tumble dance.

Any chaotic system must have periodic windows in state-space, so we must
have initial conditions giving rise to periodic motion. For one such condition for
the triaxial ellipsoid, we plot in figure 1111c the ratios of kinetic energy in the fluid
as opposed to the solid, and in rotational as opposed to translational motion.
While the solid remains primarily in rotational motion, the sharing between fluid
and solid varies across most of the available range. This was never seen in the
spheroid in all our attempts. Thus, even for periodic motion, more variety in
dynamics is attainable with the triaxial ellipsoid than with spheroids.

This brings us to an important question. What fraction of phase space is chaos
seen in (or, given that this is a Hamiltonian system, what fraction of tori are
disintegrated) and does this, for a given body shape, depend on ρ and E? We
find that there are two limiting cases, where the motion cannot be chaotic even
in a triaxial ellipsoid. When the fluid to solid density ratio is 0, the added mass
of the fluid is zero. In this case, P and v are collinear, and by some algebra we
show that Ω ·L is an additional integral of the motion, which is another way of
saying that rotational and translational kinetic energies are not exchanged. So
the motion becomes integrable. In other words, the Kozlov-Onishchenko theorem
is applicable when there is added mass in the system. In fact at zero fluid
density, namely in vacuum, the dynamics reduces to periodic behaviour. The
“asymmetrical top” of which a triaxial ellipsoid is an example (Landau & LifshitzLandau & Lifshitz
19691969), displays an instability when spun around its intermediate axis, going into
a three-dimensional tumbling state, but remaining periodic. Secondly when the
initial linear momentum is zero, i.e., the body initially is only in rotational motion,
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or E = 0, the first of the Kirchhoff-Clebsch equations is identically zero, and
the motion reduces to one of constant rotation. We realise from the Kozlov-
Onishchenko theorem that for all other ρ and E, there will be some region of phase
space where there is chaos. For a range of these parameters over several orders
of magnitude, we estimate where the probability of attaining chaotic dynamics
from a randomly chosen set of initial conditions is higher than half. For this we
ensure that the initial phase space conditions are uniformly sampled, and perform
simulations for 20 or more initial conditions at each (ρ,E). Chaotic behaviour
may be easily distinguished from periodic or quasi-periodic behaviour visually
by examining the trajectory of the marker point, and an appealing example of a
triaxial ellipsoid’s tip covering a doughnut in quasi-periodic motion is shown in
Fig. 1212a in contrast to a chaotic orbit. The fastest way to make this distinction
for a large number of initial conditions is to obtain Poincare sections, such as
shown in Fig. 1212b. The section chosen here is when p2, the y−component of the
linear momentum P goes through a 0 while decreasing, and the plane shows
the x and z components of the angular momentum L. Each colour and symbol
here is the Poincare section corresponding to a different initial condition, with
all non-dimensional parameters in the problem kept constant. Quasi-periodic
orbits appear as single closed orbits (e.g. the black and blue symbols) or multiple
closed orbits (e.g. the purple and green symbols) whereas chaotic orbits appear
as scattered points on the plane. The parameters E and ρ are such that we are
close to the border between predominantly chaotic and predominantly periodic
behaviour, so depending on where in the sample space our initial condition lies,
we can get both types of behaviour.

The boundary between a majority periodic state space and majority chaotic
is shown in figure 1313. By repeating the exercise close to the boundary points,
we find that the results are robust. However we hasten to add that these are
conclusions from a randomly sampled set of the phase space. As we move away
from the boundary, the propensity for chaotic behaviour becomes predominant in
the regime covered by the red squares in the figure, while periodic or quasiperiodic
behaviour occurs with high probability in the black circled regime. Given our
arguments for zero fluid density, and the importance of added mass for chaotic
dynamics, it is intuitive that the propensity for chaos should increase with
increasing fluid density. This is evident from the figure. So a body in a very
light fluid, while technically in nonintegrable motion, is very unlikely to display
chaos. At the right of the figure, the solid density approaches zero, we have a
bubble in the shape of a triaxial ellipsoid in an inviscid fluid. The added-mass
dominates the dynamics, and the system is almost always chaotic. We discussed
earlier how E = 0 could never result in chaotic motion, and this propensity
continues into small values of E for any density ratio. So in a fluid of any
density, we see a triaxial ellipsoid will not display chaos if it was initially in
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Figure 12: Distinguishing chaotic dynamics from quasiperiodic. (a) Typical
motion of the marker point relative to the centre of mass of the body in
quasiperiodic (E = 0.001) and chaotic (E = 1) dynamics. Here ρ = 1. The
view shown is in the x-z plane. The chaotic trajectory has been shifted on the x-
axis by 1.1 for clearer viewing. (b) Typical Poincare section showing components
of the angular momentum l3 versus l1 at the time when the linear momentum
component p3 goes through a zero while decreasing. Each colour or symbol stands
for a different initial condition. Here E = 10 and ρ = 0.1. These are solutions of
the Kirchhoff-Clebsch equations.

predominantly rotational motion. We further see that at E ∼ 1, where rotational
and translational motion have comparable energy initially, is most conducive
for chaotic motion, and under such initial conditions, the ellipsoid is wont to
display chaotic motion even if it is a hundred times more dense than the fluid! At
high values of initial linear momentum, while there is the possibility offered by
the Kirchhoff-Clebsch system for converting translational to rotational motion,
the system, at moderate fluid densities tend towards periodic dynamics, but at
higher fluid densities displays chaos. We created an analogous figure (not shown)
where we used the total kinetic energy rather than the ratio E as our parameter,
and found that there was no simple boundary between chaotic and non-chaotic
motion. So E is a physically appropriate choice.

We next zoom in on a smaller portion of the ρ − E plane, namely (E, ρ) =
[(1 . . . 30) × (0.125 . . . 8)], and fix an initial condition where the ellipsoid was
initially set to rotate about the z axis, and translate along the +y direction, these
were chosen to ensure that L ·P = 0. At each point in this parameter space, for
sufficiently large time-series (around 100 000 timesteps) a recurrence plot was
generated. An RQA analysis was then performed and the criteria presented in
Section 4.44.4 were used to determine the system behaviour. The progression in the
regime space from periodic to quasiperiodic to chaotic is clearly evident in Fig.
1414. Note that while the trend in this regime window is in broad agreement with
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Figure 13: Orbital behaviour map of an ellipsoid with aspect ratio a : b : c = 1 :
0.8 : 0.6 submerged in an inviscid environment (solutions of Kirchhoff-Clebsch
equations). At least twenty trials with randomly selected initial conditions
were performed to obtain each point. Open black circles indicate periodic or
quasiperiodic behaviour for a majority of initial conditions while the filled red
squares indicate chaotic trajectories for a majority of initial conditions.

the boundaries shown in Fig. 1313, specific points may differ because the present
figure is the result of one initial condition. Since the computational requirements
of GISS are considerable, we selectively performed DNS for the parameter pairs
denoted by large circles in this figure. All cases have been run for 100000 time
steps. In each case we obtained the same result from GISS as from the Kirchhoff-
Clebsch equations. An example of the DNS results is shown in Fig. 1515, in the form
of the orbit tracked by a triaxial ellipsoid along with the resulting recurrence plot
at two different E. When E = 1, Fig. 15a15a shows quasiperiodic behaviour, which
is confirmed by the recurrence plot in Fig. 15c15c, which shows only regular diagonal
lines. Our RQA statistics confirm these conclusions. At the higher energy ratio,
here when E = 10, it can be seen in Fig. 15b15b that the orbit of the marker point
becomes irregular and Fig. 15d15d reveals its chaotic nature.

5.1. Departures from sphericity
We may create a triaxial ellipsoid, beginning with a neutrally buoyant sphere of
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Figure 14: Orbital behaviour map of an ellipsoid with aspect ratio a : b : c = 1 :
0.8 : 0.6 submerged in an inviscid environment for energy ratios 1 6 E 6 30
and density ratios 0.125 6 ρ 6 8 for a single initial condition. A support-
vector machine-learning algorithm was used to classify the regions of orbital
behaviour. All cases (filled markers) have been characterised using Kirchhoff-
Clebsch equations. Encircled points are those cases cross validated via invsicid
DNS using our GISS solver.

radius R, and stretching outwards by a length ε along one axis and inwards along
another whilst conserving volume. One would thus obtain a triaxial ellipsoid with
the following semi-axes: [

R(1 + ε), R, R

(
1− ε

1 + ε

)]
. (5.1)

It is obvious that we obtain a sphere at ε = 0, so ε may be called the departure
from sphericity parameter. We have seen that any departure from ε = 0 makes the
system nonintegrable. We vary ε in the range 10−5 to 1 going from a near-sphere
to a highly triaxial ellipsoid. We choose E = 20. Note that this part of the study
uses only one initial condition using Kirchhoff-Clebsch equations (inviscid). The
idea is to show the qualitative dependence of the dynamics on ε.

Figure 1616 shows the dependence of recurrence rate, determinism, and entropy
on ε. These RQA statistics were calculated using the entire time-series of the
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(a) E = 1 (b) E = 10

(c) E = 1 (d) E = 10

Figure 15: DNS result: (a, b) Orbits tracked and (c, d) corresponding recurrence
plots by an ellipsoid with aspect ratio a : b : c = 1 : 0.8 : 0.6 in an inviscid fluid
at energy ratios of E = 1, 10, respectively and ρ = 1.

respective simulations and they were all of the same length of time, (100 000
time-steps). In the range 10−5 6 ε 6 4×10−3, when the body is nearly spherical,
it exhibits non-chaotic behaviour, as evidenced by (1 − DET ) × 102 remaining
close to zero. Low non-zero values of ε result in periodic behaviour. In the range
10−2 6 ε 6 10−1, DET demonstrates a small drop; around ε > 10−1, an abrupt
change in the system behaviour is observed. All the RQA parameters switch
from non-chaotic to fully chaotic, as DET reduces to levels similar to other
chaotic systems (presented in the sections above). As per Kozlov & OnishchenkoKozlov & Onishchenko



Tumbling Ellipsoids 29

Figure 16: The dependency of the Recurrence Rate, Determinism and Entropy
on ε, which is the perturbation from the a spherical shape obtained by solving
the Kirchhoff-Clebsch equations. The volume of the ellipsoid is kept constant as
ε is varied, at E = 20 and ρ = 1.

(19821982), any of these triaxial ellipsoids satisfies the necessary conditions for non-
integrability. However, our results show that there is a critical departure from
sphericity below which it is easier to obtain periodic orbits. The nearly spherical
cases have a relatively high recurrence rate and high entropy, which indicates
small Lyapunov exponents (Cencini et al.Cencini et al. 20102010). It could be argued that the
abrupt change in behaviour at ε = 10−1 corresponds to Lyapunov timescales
becoming shorter.

6. Orbits in viscous environments
Our study so far has been on an inviscid fluid and it is natural to ask what

would happen in a real fluid. Viscous drag could have a dampening effect, but
more important, it could be asked if vortex shedding would introduce chaos into
the system, even rendering the inviscid study irrelevant. We show in this section
that in a viscous case as well, added mass continues to be an important player,
and insights obtained from the above study are important to understand the
behaviour. In fact it has been recently shown that is possible to extend the
notion of added mass from the ideal fluid regime to more general viscous flows
(Limacher et al.Limacher et al. 20182018). We also point out how vortex shedding indeed can change
the dynamics, and in particular give rise to chaotic orbits executed by a spheroid.
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Thus while the earlier sections elucidated the role of added mass, its combination
with viscous forces is presented here to complete the study.

We define the ellipsoid Reynolds number as Rep = aU0/ν, where a is length
of the major axis, U0 is a characteristic velocity here chosen as the magnitude of
the initial translational velocity v given to the ellipsoid, and ν is the kinematic
viscosity of the surrounding fluid. Considering that the velocity of the solid evolves
during the simulation, this Rep must be treated as an indicative value. The motion
of the solid is essentially dependent on the accurate resolution of flow (and hence,
viscous drag) immediately around the body and the exact imposition of the no-
slip boundary condition.

6.1. Motion of a triaxial ellipsoid in viscous fluid
Fig. 1717 shows the dynamics of a triaxial ellipsoid with Rep = 10000. As in the

inviscid case, the motion is non-chaotic at small E and chaotic at larger E. This
shows that despite viscosity affording vortex shedding, the inviscid predictions
(for the same initial conditions) are a good indicator of the initial behaviour of
an ellipsoid in a real fluid in this case. However, the chaotic nature is suppressed
as time progresses, presumably because of viscous damping. First, the angular
velocities become vanishingly small while the ellipsoid continues to translate.
Eventually, we expect the ellipsoid to come to a halt.

6.2. Motion of a prolate spheroid in viscous fluid
We have seen that prolate spheroids can display no chaos in inviscid environ-

ments. Here, we consider the same ellipsoid of revolution (a : b : c = 1 : 0.7 : 0.7)
subjected to an impulse in a viscous environment characterised by Rep = 10000.
Our DNS results presented in Fig. 1818 demonstrate a complex pattern of orbital
behaviour. At E = 1, the orbit is demonstrably non-chaotic. It must be recalled
from Figs 6a6a, 99a and 1010a that in an inviscid environment under identical initial
conditions, the prolate spheroid tracks a quasiperiodic orbit. This case also
presents an opportunity for rigorous testing of the numerical convergence of
GISS, and for evaluating its performance and higher Reynolds numbers. We
considered an ellipsoid of revolution with dimensions a : b : c = 1 : 0.7 : 0.7
at a Rep = 10000 and energy ratio, E = 1. At very long times, due to frictional
losses, the system would come to a stop, but at this high Rep, for a large
number of time periods, the motion lies very close to a non-chaotic orbit. Our
simulations at mesh refinement levels of Rm = 211, 212, 213 demonstrated that the
orbits tracked were indeed practically closed, indicating periodicity. It must be
noted that these mesh resolutions correspond to 9M, 10M and 11.3M elements,
respectively with around 200000 Lagrangian elements on the ellipsoid. It must
be noted that 11.3M elements was the maximum possible resolution at which we
could run our simulations. In addition, the spatial dynamics of the orbits tracked
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(a) E = 1, Recurrence (b) E = 20, Recurrence

(c) E = 1, RQA statistics (d) E = 20, RQA statistics
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Figure 17: Motion of a triaxial ellipsoid with aspect ratio a : b : c = 1 : 0.8 : 0.6 in
viscous fluid, Rep = 10000, ρ = 1. The behaviour is similar to the inviscid case.
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also matched well with each other, indicating numerical convergence. In particular
the trajectories from Rm = 212 and Rm = 213 were practically indistinguishable.
We checked that with Rm = 212 the smallest grid within the boundary layer close
to the body was at least 16 times smaller than the boundary layer thickness, and
was often finer. Note that the boundary layer at this Reynolds number is unlikely
to be turbulent, except maybe in a small portion at the rear of the body. GISS
follows a rigorous vorticity-based criterion to increase grid refinement, and these
arguments lend support to our expectation that the resolution is sufficient. This
flow is unsteady and we need differently refined grids at time progresses in the
boundary layer and in the wake. The dynamic adaptive gridding is thus ideally
suited for this computation.

At E = 20, the prolate spheroid in viscous fluid tracks a chaotic orbit that
does not dampen completely within the simulation time. This is unlike a prolate
spheroid under any conditions in inviscid fluid. An examination of the trajectories
of the marker point in Fig. 18f18f, and the centroid in Fig. 18h18h however, reveal an
important feature: that the trajectory is practically planar, with the centroid
effectively confined to the x − z plane and the marker point nearly so. This is
an example of the restricted dynamics that a prolate spheroid can execute, given
that the extra symmetries in the added mass tensor were shown to produce an
additional integral l1 in inviscid flow. This integral effectively restricts interesting
angular momentum exchanges to the plane perpendicular to the unequal axis.
We thus see that added mass effects are strong in viscous flow as well. To isolate
the cause of chaos, we plot a picture of the instantaneous vorticity field around
the prolate spheroid obtained from our DNS in Fig. 1919. A partially detached
vortex can be seen. This vortex distorts the surface pressure field, giving rise
to asymmetric force and torque. As successive vortices are generated and shed,
the ellipsoid will be disturbed from a periodic orbit. Thus viscosity breaks the
symmetry of the system by irregular vortex shedding.

In our viscous simulations thus, we see the effects of added mass: in keeping
the dynamics periodic for smaller energy ratios, while restricting variations in the
rotational dynamics to two-dimensions (in the body-fixed frame). We also see the
effects of viscosity, in producing chaos where there was none by vortex shedding,
and by suppressing chaos at long time by dissipation. We have also conducted
simulations at lower Reynolds numbers (not shown) in which viscous damping
dominates.

7. Conclusion
To summarise, we have studied conditions under which chaotic motion is

displayed by an ellipsoid in inviscid and viscous flow. We identify five non-
dimensional numbers which affect the dynamics: the ratios b/a and c/a of the
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Figure 18: Motion of a prolate spheroid with aspect ratio a : b : c = 1 : 0.7 : 0.7 in
viscous fluid,Rep = 10000, ρ = 1. The dynamics at high E, unlike in the inviscid
case, is chaotic, but different from that seen in inviscid chaotic dynamics of a
triaxial ellipsoid.
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Figure 19: The vorticity field around a neutrally buoyant ellipsoid with aspect
ratio a : b : c = 1 : 0.7 : 0.7 at Rep = 10000 and E = 20. The colour shading is
proportional to |∇× u|. Irregular vortex shedding can be seen.

ellipsoid axes, the fluid/solid density ratio ρ, the ratio E of initial kinetic energy
in translational to rotational motion, and the particle Reynolds number. In
the inviscid case, we were aided by the Kozlov-Onishchenko theorem. We have
identified a new integral of the motion for the dynamics of a spheroid: the
component of generalised angular momentum along the unequal axis. Though
it is implicit in the Kozlov-Onishchenko theorem that there must exist such an
integral, its identification explains physics for both inviscid and viscous flow.

We solve the Kirchhoff-Clebsch equations over a very large parameter range
of ρ and E and show that the propensity for chaos (fraction of disintegrated
tori in phase space) in a triaxial ellipsoid depends strongly on these quantities.
To distinguish chaotic behaviour from periodic and quasiperiodic we use RQA,
Poincare sections and orbit maps. In the limit of zero density ratio we confirm
that the system supports an additional integral of motion, by which the dynamics
reduces to the classical problem of an ellipsoid in vacuum. Thus we clarify how
added mass is the cause of chaos. We show how the added mass tensor for a general
ellipsoid provides a vehicle for exchange of energy between fluid and solid and
between rotation and translation. The motion is also shown to be periodic in the
limit of zero initial translation. We show that high fluid densities and intermediate
values of the initial kinetic energy ratio increase chaos in the system. We thus
identify ranges in parameter space where the system is nonintegrable but chaos
is rarely attainable.

We have developed a solid-fluid solver, GISS, using the immersed boundary
methodology and the open source DNS fuild solver, Gerris. The solver can
simulate the 6DOF motion of solid bodies in both inviscid and viscous fluid and
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calculate the hydrodynamic force applied on the solid accurately. Our numerical
method passes stringent validations including displaying the same behaviour in
the ρ−E plane as the Kirchhoff-Clebsch equations. Given that problems of bodies
freely moving in fluids have been simulated far less than the flow past fixed bodies,
we hope that this solver will enable future research in this direction.

With GISS, we are able to demonstrate how added mass and viscosity affect the
dynamics of an ellipsoid. For a triaxial ellipsoid, the added mass dominates the
behaviour, with the high Reynolds number and inviscid cases behaving similarly
at early times. At later times, viscous damping simplifies chaotic dynamics to
periodic before halting it completely. We show that asymmetric vortex shedding
can cause chaotic dynamics in a spheroid, where the Kozlov-Onishchenko theorem
bans chaos in inviscid flow. However, the extra integral we identified in inviscid
flow influences the viscous flow as well, causing spheroidal orbits to be more
limited in phase space than those of a triaxial ellipsoid.

We can envisage that our study will be of relevance to practical applications
such as designing efficient magnetic stirrers of ellipsoidal shapes, and in studying
the dynamics of non-spherical particles. Auguste et al.Auguste et al. (20132013) showed how the
dynamics of a body which is free to move is far richer than that of one which is
held fixed with flow going past it. Our work has brought out many new features
and possibilities for a far richer dynamics due to the departure from spheroidal
shape of the body. Whether in viscous or in inviscid flow, this is shown to be
directly related to the increased complexity of the added mass tensor. We hope
this will encourage more studies on the many unexplored aspects of these and
even more general shaped bodies moving in fluid.
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