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Abstract 1 

Background: The underlying etiology of colorectal cancer (CRC) includes both 2 

genetic variation and environmental exposures. The main aim of this study was to 3 

search for interaction effects between well-established environmental CRC risk factors 4 

and published common genetic variants exerting main effects on CRC risk. 5 

Methods: We used a two-phase approach: (i) Discovery phase (2,652 incident CRC 6 

cases and 10,608 controls from UK Biobank) and (ii) Validation phase (1,656 cases and 7 

2,497 controls from the Study of Colorectal Cancer in Scotland). Interactions with 8 

nominal P<0.05 in phase I were taken forward for validation in phase II. Furthermore, 9 

we constructed a weighted genetic risk score (GRS) of CRC risk for each individual 10 

and studied interactions between the GRS and all the environmental risk factors.   11 

Results: Seventy of the 1,500 tested interactions were found to be nominally significant 12 

in phase I. After testing these 70 interactions in phase II, the interaction between 13 

rs11903757 (2q32.3/NABP1) and body mass index (BMI) was nominally significant 14 

(P=0.02) with the same direction of effects. After performing fixed-effect meta-15 

analyses to combine the results from both phases, the rs11903757*BMI interaction was 16 

also found to be statistically significant (OR=1.26; 95% CI, 1.10-1.44; 17 

Pinteraction=6.03×10-4; Pheterogeneity=0.63). No interactions involving the GRS were 18 

statistically significant in either of the two datasets. 19 

Conclusions: Limited evidence of gene-environment interactions in CRC risk was 20 

observed. There are potential modifications of the rs11903757 effect by BMI on CRC 21 

risk. 22 

Impact: Our findings might contribute to identifying subpopulations with different 23 

susceptibility to the effect of BMI on CRC risk. 24 
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Introduction  1 

Worldwide, colorectal cancer (CRC) is the third most common cancer by incidence and 2 

second by mortality, with over 1.8 million new cases and 881,000 deaths in 2018 (1). 3 

The underlying etiology of CRC includes both genetic variation and environmental 4 

exposures (2). It has been suggested that the interplay between genetic variants and 5 

environmental risk factors, known as gene-environment (G×E) interaction, may also 6 

contribute to “missing heritability” of CRC risk (3). Thus, identification of G×E in CRC 7 

risk should help to explain the undiscovered heritability of CRC, provide insights into 8 

CRC etiology, and identify subpopulations with high CRC risk and potential to benefit 9 

most from early intervention for CRC.  10 

To date, few studies have explored G×E interactions on CRC risk (2, 4), partly because 11 

assembling comprehensive datasets with both risk factor exposures and genotyping data 12 

is a major challenge. We recently evaluated the evidence across the meta-analyses of 13 

candidate gene studies and genome-wide G×E interaction analyses that investigated 14 

G×E interactions in CRC (2). Notably, moderate strength of evidence was found for 15 

some G×E interactions between several single-nucleotide polymorphisms (SNPs) and 16 

alcohol drinking, processed meat intake, estrogen plus progestogen therapy use and 17 

nonsteroidal anti-inflammatory drug (NSAID) use (2). 18 

Two recently published genome-wide association studies (GWAS) (5, 6) have identified 19 

several new genetic variants associated with CRC risk. However, the role of G×E 20 
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interactions involving these GWAS-identified common genetic variants underlying 1 

CRC susceptibility remains largely unknown. In this study, we searched for interaction 2 

effects between 100 GWAS-identified independent genetic variants (linkage 3 

disequilibrium r2 < 0.2) exerting main effects on CRC risk and well-established 4 

environmental CRC risk factors, including standing height, body mass index (BMI), 5 

smoking (status and pack-years of smoking), NSAID (aspirin and others) use, hormonal 6 

replacement therapy (HRT) use, physical activity, alcohol use, and dietary intakes of 7 

processed meat, red meat, vegetables, fruit, fiber and calcium. These environmental risk 8 

factors were selected based on the results of meta-analyses and systematic reviews from 9 

the World Cancer Research Fund International/American Institute for Cancer Research 10 

Third Expert Report (7) and the subsequent Continuous Update Project Report (8). In 11 

particular, it has been reported that diet low in calcium (20.5%), alcohol use (15.2%), 12 

smoking (13.3%), BMI (8.6%) and diet low in fiber (11.6%) were the risk factors that 13 

contributed most to disability-adjusted life-year estimates of CRC at the global level in 14 

2017 (9).  15 

Here, we utilize a two-phase approach to test for the interactions between common 16 

genetic risk factors associated with CRC at genome-wide levels of significance and 17 

environmental risk factors supported by sufficient evidence for association with CRC 18 

risk from the reports (7, 8), including: (i) Discovery phase using UK Biobank data and 19 

(ii) Validation phase using study samples from the Study of Colorectal Cancer in 20 

Scotland (SOCCS). Furthermore, we constructed a weighted genetic risk score (GRS) 21 

of CRC risk for each individual by incorporating information of the 100 independent 22 
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genetic variants and studied interactions between the GRS and all the environmental 1 

risk factors.  2 

Materials and methods 3 

Study population 4 

We used individual-level data from the UK Biobank cohort and SOCCS in our analysis 5 

(Table 1). 6 

Case-control study from the UK Biobank cohort 7 

The UK Biobank is a large cohort study that has recruited more than half a million 8 

people aged 40 to 69 years throughout the UK between 2006 and 2010. Questionnaire 9 

data, physical measurements, blood and urine samples were collected at the baseline 10 

assessment of UK Biobank (10). The web-based 24-hour dietary assessment was 11 

applied to collect information on the intakes of foods and beverages consumed during 12 

the 24-hour period before the assessment (11). Data abstracted from the UK Biobank 13 

study consisted of 4,800 incident and prevalent CRC cases and 20,289 population-14 

based controls after the process of genotyping quality control (6). Of all the CRC cases, 15 

2,652 (55.3%) were incident and 2,119 (44.1%) were prevalent cases. However, 1,907 16 

(90.0%) prevalent CRC cases were diagnosed more than one year before recruitment, 17 

which can be a source of bias. Therefore, we only included a total of 2,652 incident 18 

CRC cases and 10,608 controls in the discovery phase of the study (Table 1). 19 
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Research ethics approval for UK Biobank to collect participant data was obtained from 1 

the National Information Governance Board for Health and Social Care and the North 2 

West Multicentre Research Ethics Committee. Genotypic and phenotypic data used in 3 

this study were obtained from UK Biobank under an approved data request application 4 

(application ID: 7441). 5 

Study of Colorectal Cancer in Scotland (SOCCS) 6 

SOCCS is a large population-based case-control study of CRC. Details of SOCCS have 7 

been described previously (12). Briefly, SOCCS has recruited cases of adenocarcinoma 8 

of colorectum who were aged 16-79 years in Scotland (12). Population-based controls 9 

who were identified through the Community Health Index were randomly invited to 10 

participate in SOCCS (12). In this study, we included a total of 1,656 CRC cases and 11 

2,497 controls who had available phenotype and genetic data (Table 1).   12 

SOCCS received research ethics approval from the MultiCentre Research Ethics 13 

Committee for Scotland and relevant Local Research Ethics committees (12). All 14 

participants provided written informed consent (12).  15 

Genotyping and quality control 16 

A total of 100 GWAS-identified independent genetic variants (linkage disequilibrium 17 

r2 < 0.2) were examined, those identified in two recently published GWAS studies (5, 18 

6). For the SNPs that were located at the same locus and in linkage disequilibrium, we 19 

selected the ones that were described in Law PJ, et al. (6). For the UK Biobank genotype 20 
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data, biological samples of the participants were genotyped using two closely related 1 

arrays from Affymetrix: the custom-designed Affymetrix UK BiLEVE Axiom array on 2 

an initial 50,000 participants and Affymetrix UK Biobank Axiom array on the 3 

remaining 450,000 participants. The procedure of genotyping and quality control was 4 

previously reported (13). Details of phasing and imputation were previously described 5 

by Bycroft et al., 2018 (13). In brief, prediction of un-genotyped variants was done 6 

using IMPUTE4 software with a combination of reference panels including: (i) the 7 

Haplotype Reference Consortium panel; and (ii) the merged UK10K and 1000 Genome 8 

phase 3 reference panel.  9 

For SOCCS, samples were genotyped using Illumina HumanHap300, HumanHap240S 10 

arrays (14) and OmniExpressExome BeadChip 8v1.1, 8v1.250 or 8v1.3 (Illumina Inc., 11 

San Diego, CA) (15). Un-genotyped variants were imputed using SHAPEIT v2.837 and 12 

IMPUTE v2.3.2. We used two reference panels for imputation: the 1000 Genome 13 

reference panel, phase 1, December 2013 release and the UK10K reference panel 14 

(release April 2014). For the X chromosome, genotypes were phased and imputed as 15 

for the autosomal chromosome, with the inclusion of the “chrX” flag. X chromosome 16 

variants were coded as 0 and 2 for men, assuming complete inactivation of one allele 17 

in females and equal effect-size between males and females. Details of imputation and 18 

subsequent quality control of imputed genotypes are given elsewhere (6). 19 

Phenotype data 20 

Cancer cases of UK Biobank were identified through data linkage to national cancer 21 
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and death registries and Hospital Episode Statistics. CRC cases in UK Biobank were 1 

defined using two different revisions of the International Classification of Diseases 2 

(ICD), ICD-10 or ICD-9 (6). Height (standing and sitting) and weight were measured 3 

during the baseline physical measurement of UK Biobank (10). Information on lifestyle 4 

factors and food intakes was gathered using a self-reported touchscreen questionnaire 5 

at recruitment. Information on daily intakes of nutrients was collected using a web-6 

based 24-hour dietary assessment tool about four years after the baseline assessment. 7 

The 24-hour dietary assessments were performed in one-third of the UK Biobank 8 

participants and was available for 947 CRC cases and 4,160 controls in our dataset. The 9 

derivation of each environmental variable in the UK Biobank dataset is described in 10 

Supplementary Methods. The environmental data were harmonized between the UK 11 

Biobank dataset and the SOCCS dataset whenever possible.  12 

The CRC cases of SOCCS were defined based on histologically confirmed 13 

adenocarcinoma of the colon or rectum (codes 153 or 154 in ICD, 9th revision or ICD10 14 

C18, C19 or C20 codes) (15). SOCCS study participants that were recruited before 15 

2009 had completed two questionnaires: The Lifestyle and Cancer Questionnaire and 16 

The Scottish Collaborative Group Food Frequency Questionnaire (12). The derivation 17 

of each environmental variable in the SOCCS dataset has been described previously 18 

(12).  19 

Statistical methods 20 

The association between each genetic variant, each environmental risk factor and CRC 21 
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risk was examined by using logistic regression models. Within the UK Biobank dataset, 1 

models were adjusted for age (age of CRC diagnosis for cases and age at recruitment 2 

for controls), sex and assessment center, and analyses involving genetic variants were 3 

further adjusted for the first 10 genetic principal components. Within the SOCCS 4 

dataset, models were adjusted for age (age of CRC diagnosis for cases and age at 5 

recruitment for controls) and sex. In addition, models of the analysis of dietary nutrients 6 

were further adjusted for total energy intake.  7 

To test for the interactions, the two-phase approach was applied. Interactions with 8 

nominal P values < 0.05 in phase I were further tested in phase II. Case-control logistic 9 

regression analyses including G×E interaction term(s) were applied to test for the 10 

multiplicative interactions. Models were adjusted for age, sex, assessment center and 11 

the first 10 genetic principal components in phase I (the UK Biobank dataset), whereas 12 

models were adjusted for age and sex in phase II (the SOCCS dataset). In addition, 13 

models of the interaction analysis involving dietary nutrients were further adjusted for 14 

total energy intake. Furthermore, for interactions with nominal P values < 0.05 in phase 15 

II, we performed fixed-effect meta-analyses to combine phase I and phase II results, 16 

and obtained summary odds ratios (ORs) and 95% confidence intervals (CIs), with 17 

estimation of heterogeneity measured by Cochran Q test (I2) and its P value (16).   18 

False Discovery Rate (17) was used to account for multiple testing in phase II. P values 19 

unadjusted before multiple testing were termed nominal P values, whereas P values 20 

after adjustment for multiple testing were termed adjusted P values and were used to 21 
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evaluate the statistical significance of a given interaction at the 0.05 level. 1 

For interactions with nominal P values < 0.05 in phase II, we further examined (i) the 2 

main effect of the environmental risk factor stratified by the SNP, (ii) the main effect of 3 

the SNP stratified by the environmental risk factor and (iii) the combined association 4 

stratified by both the environmental risk factor and the SNP. Also, we used an extension 5 

of the Human Genome Epidemiology Network’s Venice criteria (3, 18) to evaluate the 6 

strength of the evidence for the G×E interactions with nominal P values < 0.05 in phase 7 

II. The detailed evaluation process has been described elsewhere (2, 3).   8 

To calculate the weighted GRS of CRC risk for each individual, a meta-analysis 9 

excluding the UK Biobank and SOCCS study samples was first performed in order to 10 

obtain unbiased regression coefficients (β-estimates) of CRC risk associated with the 11 

genetic variants. Directly genotyped SNPs were coded as 0, 1 or 2 copies of the variant 12 

allele. For imputed SNPs, we used the estimated number of copies of the count allele 13 

(the ‘dosage’) with values between 0-2. Both genotyped and imputed SNPs were treated 14 

as continuous variables (i.e. log-additive model). The weighted GRS was then 15 

calculated by summing up the dosages of effect alleles weighted by their effect 16 

estimates retrieved from the meta-analysis of GWAS and were Z-transformed to 17 

normalize the distributions. Models were adjusted for the same covariates as the 18 

examination of interactions between the individual SNPs and the environmental risk 19 

factors. 20 

Analyses were conducted using R 3.4.4 (https://www.R-project.org/). Power 21 
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calculations were performed using the Quanto software (19, 20). All statistical tests 1 

were two-sided. 2 

Results 3 

Study characteristics are presented in Table 1. Briefly, 2,652 incident CRC cases and 4 

10,608 controls from the UK Biobank cohort were included in phase I, whereas 1,656 5 

cases and 2,497 controls from SOCCS were included in phase II. The summary 6 

statistics of the environmental risk factors for these two datasets are presented in 7 

Supplementary Table S1. The associations between the environmental risk factors, the 8 

100 SNPs and CRC risk are presented in Supplementary Tables S2 and S3, separately. 9 

After testing 1,500 G×E in phase I, a total of 70 G×E interactions showed nominal P 10 

values < 0.05 (Supplementary Table S4). These interactions were further tested in 11 

phase II, in which two interactions showed nominal P values < 0.05, including the 12 

interactions between rs11903757 (2q32.3/NABP1) and BMI (nominal P = 0.02), and 13 

rs2735940 (5p15.33/TERT) and smoking status (nominal P = 0.04) (Table 2). In 14 

particular, the rs11903757*BMI interaction was found with the same direction of 15 

effects. However, neither of the two interactions reached statistical significance after 16 

accounting for multiple testing based on the 70 tests performed in phase II. After 17 

performing fixed-effect meta-analyses for these two interactions, statistical significance 18 

was observed for the interaction between rs11903757 and per 10 kg/m2 increase in BMI 19 

(OR = 1.26; 95% CI, 1.10-1.44; Pinteraction = 6.03×10-4; Pheterogeneity = 0.63) (Table 2). 20 

Furthermore, the rs11903757*BMI interaction was observed with statistical 21 
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significance in men after performing meta-analyses in stratified subgroups according 1 

to sex (OR = 1.32; 95% CI, 1.08-1.60; Pinteraction = 5.53×10-3; Pheterogeneity = 0.78) (Table 2 

2).  3 

Stratification analyses were performed for the rs11903757*BMI interaction and the 4 

rs2735940*smoking status interaction in the UK Biobank dataset and the SOCCS 5 

dataset, respectively (Supplementary Tables S5 to S8). For the rs11903757*BMI 6 

interaction, above median BMI significantly increased CRC risk in individuals with TC 7 

genotype (OR = 1.27; 95% CI, 1.07-1.50; P = 5.69×10-3) and non-significantly in 8 

individuals with CC genotype (OR = 1.32; 95% CI, 0.70-2.52; P = 0.393) but not in 9 

those with TT genotype (P = 0.352) in the UK Biobank dataset when stratified by 10 

genotypes of rs11903757 (Supplementary Table S5). Also, the effect of BMI on CRC 11 

risk stratified by genotypes of rs11903757 was limited to men in the UK Biobank 12 

dataset (Supplementary Table S5). For the rs2735940*smoking status interaction, 13 

ever smokers (compared to non-smokers) significantly increased CRC risk in 14 

individuals with AA genotype (OR = 1.32; 95% CI, 1.10-1.57; P = 2.77×10-3) but not 15 

in those with AG genotype (P = 0.060) or GG genotype (P = 0.972) in the UK Biobank 16 

dataset when stratified by genotypes of rs2735940 (Supplementary Table S7).  17 

Table 3 presents the evaluation of evidence for the rs11903757*BMI interaction and 18 

the rs2735940*smoking status interaction by using an extension of the Venice criteria 19 

(3, 18). The environmental effects of BMI on CRC risk was graded as class III 20 

(suggestive) (2) (Supplementary Table S9). The main effect of rs11903757 21 
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(2q32.3/NABP1) on CRC risk was graded as strong (AAA, based on the Venice criteria 1 

(18, 21)) in a meta-analysis of 12,696 cases and 15,113 controls of European descent 2 

(OR = 1.16; 95% CI, 1.10-1.22; P = 3.71×10-8; Pheterogeneity = 0.27) (Supplementary 3 

Table S10). Consequently, the interaction between rs11903757 (2q32.3/NABP1) and 4 

BMI was given a moderate prior score (Moderate-2) and a weak overall credibility 5 

score (Table 3). No evidence was found for the interaction between rs2735940 6 

(5p15.33/TERT) and smoking (Table 3).  7 

Table 4 presents the interaction effects between the weighted GRS and the 8 

environmental risk factors on CRC risk in the UK Biobank dataset and the SOCCS 9 

dataset. The distributions of the weighted GRS among the participants in the two 10 

datasets are shown in Supplementary Figure 1 (A) and (B), respectively. The OR of 11 

the GRS was 1.64 (95% CI, 1.57-1.72; P < 2×10-16) in the UK Biobank dataset and 1.64 12 

(95% CI, 1.52-1.78; P < 2×10-16) in the SOCCS dataset, separately. No interactions 13 

involving the GRS were statistically significant in either of the two datasets (Table 4).   14 

The power to detect a G×E interaction was estimated for the phase I data at a 0.05 15 

significance level, assuming a main effect of 1.10 for log-additive SNPs 16 

(Supplementary Figures S2 to S4). We only calculated the power for binary 17 

environmental variables because statistical power would be higher for continuous 18 

exposure variables (10). The prevalence of binary environmental exposures and the 19 

environmental ORs were chosen according to the dataset used in phase I 20 

(Supplementary Tables S1 and S2). With a sample size of 2,652 cases and 10,608 21 
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controls in the whole dataset, we had sufficient power (80%) to detect moderate (OR > 1 

1.30) and strong (OR > 2.00) G×E interaction effects if the SNP was at least moderately 2 

polymorphic [minor allele frequency (MAF) = 0.20]. Similarly, the analysis of HRT use 3 

was restricted to women (1,098 cases and 4,608 controls) and the analysis of dietary 4 

nutrients was limited to the participants who had taken part in the web-based 24-hour 5 

dietary assessment of UK Biobank (947 cases and 4,160 controls in our study), we 6 

therefore had sufficient power (80%) to detect strong (OR > 2.00) G×E interaction 7 

effects for a moderately polymorphic (MAF = 0.20).  8 

Discussion 9 

Using a two-phase approach, followed by a fixed-effect meta-analysis, we searched for 10 

G×E interaction effects between 100 published common genetic variants and 15 11 

environmental variables. Two of the 70 G×E interactions with nominal significance in 12 

phase I showed nominal P values < 0.05 in phase II, including the interactions between 13 

rs11903757 (2q32.3/NABP1) and BMI (P = 0.02), and rs2735940 (5p15.33/TERT) and 14 

smoking status (P = 0.04). In particular, the rs11903757*BMI interaction was found 15 

with the same direction of effects and showed statistical significance in the meta-16 

analysis. No statistically significant interactions were found between the weighted GRS 17 

for CRC and the environmental risk factors in either of the two datasets.  18 

The interaction between rs11903757 (2q32.3/NABP1) and BMI was nominally 19 

significant with the same direction of effects in our study. The individual effects of 20 

rs11903757 (2q32.3/NABP1) and BMI on CRC risk have been previously explored, but 21 
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the biological mechanisms behind this interaction remains unclear. Rs11903757 is an 1 

intergenic SNP at 2q32.3 with closest proximity to the gene nucleic acid binding 2 

protein 1 (NABP1) (44 kb centromeric) and the gene serum deprivation response 3 

(SDPR) (112 kb telomeric), which encodes the serum-deprivation response 4 

phosphatidylserine-binding protein (22). Also, rs11903757 is expression quantitative 5 

trait loci for NABP1 expression in whole blood (P = 2.1×10-15) and non-sun exposed 6 

skin (P = 3.2×10-6) based on the results from the Genotype-Tissue Expression (GTEx) 7 

project (23). Previously, the SNP rs11903757 was found to be associated with CRC risk 8 

in a GWAS of European and Asian case-control studies (OR = 1.15 per risk allele; P = 9 

3.7×10-8) (22). Additionally, no statistically significant associations were observed 10 

between this genotype and CRC survival in a population-based study of 5,675 patients 11 

after CRC diagnosis in Scotland (24). The NABP1 gene binds single-stranded DNA via 12 

the oligonucleotide/oligosaccharide binding fold domain (25). Single-stranded DNA 13 

binding proteins are essential for diverse DNA processes (22). Evidence from previous 14 

biologic data also suggests that NABP1 plays a critical role in genomic stability, which 15 

could explain the development of cancer (26). BMI was used as a proxy variable of 16 

body fatness in our analysis because it has been reported to be strongly correlated with 17 

percentage body fat according to results from laboratory methods (10). Greater body 18 

fatness, which can be measured by BMI, waist circumference and waist-to-hip ratio, 19 

has been reported as a risk factor for CRC (8).    20 

Hutter et al., 2012 (27) and Kantor et al., 2014 (28) performed two meta-analyses of 21 

G×E interactions between a total of 26 GWAS-identified CRC risk loci and a number 22 
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of environmental factors. Only the interaction between rs16892766 (8q23.3/EIF3H) 1 

and vegetable consumption showed statistically significance after accounting for 2 

multiple testing in the meta-analysis with a sample size of 7,016 CRC cases and 9,723 3 

controls (OR = 1.88; 95% CI, 1.36-2.59; nominal Pinteraction = 1.34×10-4; adjusted 4 

Pinteraction = 0.02; Pheterogeneity = 0.68) (27). However, this interaction was not replicated 5 

in phase I of our study (OR = 1.00; 95% CI, 0.85-1.17; P = 0.996). Additionally, the 6 

rs11903757*BMI (per 10 kg/m2) interaction was found with nominal statistical 7 

significance in phase II of our study and with statistical significance in the meta-8 

analysis, was not detected by Kantor, et al. (per 10 kg/m2 increase; OR = 1.07; 95% CI, 9 

0.94-1.22; Pinteraction = 0.28; Pheterogeneity = 0.45) (28). There may be multiple reasons 10 

behind these observations. One of the possible reasons is that Hutter et al. (27) and 11 

Kantor et al. (28) included both nested case-control studies and case-control studies in 12 

their meta-analysis, while we only used a prospective study (including 2,652 incident 13 

CRC cases and 10,608 controls) in phase I and therefore will be less affected by recall 14 

bias or reverse causality, when weight was already affected by the presence of cancer 15 

disease.   16 

The strengths of this study are that first, we examined for the first time the presence of 17 

potential effect-modifications for the SNPs newly identified from the two recently 18 

published meta-analyses of GWAS (5, 6). Second, we evaluated G×E interactions for a 19 

wide range of environmental CRC risk factors, for which valid information was 20 

collected across the studies. For the dataset used in phase I, we only used incident CRC 21 

cases and controls from the UK Biobank cohort. Therefore, the information on lifestyle 22 
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factors and dietary habits was collected before cancer diagnosis, which minimized 1 

recall bias and differential misclassifications. Though SOCCS is a case-control study, 2 

participants were asked to provide information about general lifestyle and the 3 

consumption of each food item one year prior to diagnosis for cases and one year prior 4 

to recruitment for controls (12). Third, we critically evaluated the cumulative evidence 5 

for the identified interactions using predetermined guidelines (3, 18), which have been 6 

used to assess the cumulative evidence of G×E interaction effects on cancer risk (2, 4, 7 

29). Lastly, for the first time we examined the interaction effects between the weighted 8 

GRS for CRC and a wide variety of environmental CRC risk factors. One study has 9 

examined joint effects between GRSs and plasma 25-hydroxyvitamin D (25(OH)D) on 10 

CRC risk (30). However, no evidence for the modification of genetic susceptibility for 11 

CRC according to vitamin D status was observed (30). 12 

However, there are several limitations. First, our study had limited power to detect weak 13 

(OR < 1.30) or moderate (1.30 < OR < 2.00) interactions for SNPs with MAF less than 14 

0.20 even if we used the whole dataset in phase I. Furthermore, the analysis of HRT use 15 

was restricted to women [hence has a reduced sample size and power] and information 16 

on dietary nutrient intakes in the UK Biobank cohort was collected from the web-based 17 

24-hour dietary recall assessments [found in only one-third of all UK Biobank 18 

participant which again restricted sample size and power]. Therefore, further studies 19 

with larger sample sizes are needed to examine the interaction effects. Second, we used 20 

a prospective cohort study in phase I and a case-control study in phase II. Both types of 21 

these studies have different sources of error. For case-control studies, recall bias and 22 



19 

 

differential misclassifications can bias estimates and may lead to false negatives. For 1 

our study, cases may recall their exposure better than controls because information on 2 

general lifestyle and food intakes was collected using self-reported questionnaires in 3 

SOCCS. Prospective studies can minimize differential misclassification because the 4 

information of lifestyle factors and dietary habits was collected for all participants at 5 

recruitment. However, they may have variable time period between baseline data 6 

collection and cancer diagnosis (28). In addition, we attempted to harmonize the 7 

environmental variables in the UK Biobank cohort and the SOCCS, though the two 8 

studies used different methods for data collection. Despite these concerns, the 9 

associations between the environmental risk factors and CRC risk in the prospective 10 

dataset of UK Biobank were consistent with previous observations (7, 8). Third, there 11 

is a “healthy volunteer” selection bias in UK Biobank, which means that the participants 12 

of UK Biobank are probably more aware of health issues than non-participants (31). 13 

Therefore, the UK Biobank cohort is not fully representative of the UK general 14 

population (31).   15 

Conclusion 16 

In conclusion, using a two-phase approach, we were able to observe a statistically 17 

significant G×E interaction between rs11903757 (2q32.3/NABP1) and BMI in CRC 18 

risk. Functional studies and further replications are needed to confirm our findings and 19 

uncover the mechanisms of the interactions between BMI and genetic variants. Also, 20 

larger studies incorporating information from consortia are needed to fully examine the 21 
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impact of genetic variation on the effect of BMI on CRC risk, thus to provide insights 1 

into CRC etiology, and identity subpopulations who will benefit most from early 2 

intervention for CRC. 3 

 4 

Acknowledgments 5 

Acknowledgments for UK Biobank: This research has been conducted using the UK 6 

Biobank resource (approval number: 7441). We wish to kindly thank all participants 7 

from the UK Biobank. 8 

Acknowledgments for the Scottish Colorectal Cancer Study: We thank the participants 9 

in all of the studies that contributed to this piece of work and all the recruitment teams 10 

and collaborators who make such studies possible. We acknowledge the excellent 11 

technical support from Marion Walker. We are grateful to Ruth Wilson, Donna Markie 12 

and all those who continue to contribute to recruitment, data collection and data 13 

curation for the Study of Colorectal Cancer in Scotland studies. In addition to all 14 

consultant colorectal surgeons who provided data on their patients, we are also indebted 15 

to the clinical networks throughout Scotland who contributed substantially to clinic 16 

pathologic data and staging information. We acknowledge the expert support on sample 17 

preparation from the Genetics Core of the Edinburgh Wellcome Trust Clinical Research 18 

Facility.   19 

Acknowledgments for the GTEx consortium: We thank the provision of public data 20 

from the GTEx consortium. The data used for the analyses described in this article were 21 



21 

 

obtained from the GTEx Portal on 12/September/2019. 1 

Authors’ contributions 2 

Study design: MT and ET. 3 

Study concept: SMF, MGD and HC. 4 

Data analysis: TY, XL and MT. 5 

Manuscript draft and revision: TY, MT, ET, XL, SMF, MGD and HC. 6 

Article guarantor: Dr. Maria Timofeeva and Prof. Evropi Theodoratou. 7 

Ethical approval and consent to participate 8 

Ethics approval for UK Biobank to collect participant data was obtained from the 9 

National Information Governance Board for Health and Social Care and the North West 10 

Multicentre Research Ethics Committee. Genotypic and phenotypic data used in this 11 

study were obtained from UK Biobank under an approved data request application 12 

(application ID: 7441). SOCCS received research ethics approval from the MultiCentre 13 

Research Ethics Committee for Scotland and relevant Local Research Ethics 14 

committees. All participants provided written informed consent. 15 

 16 

References 17 

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer 18 

statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 19 

cancers in 185 countries. CA Cancer J Clin. 2018;68:394-424. 20 

2. Yang T, Li X, Montazeri Z, Little J, Farrington SM, Ioannidis JP, et al. Gene-21 

environment interactions and colorectal cancer risk: an umbrella review of systematic 22 



22 

 

reviews and meta-analyses of observational studies. Int J Cancer. 2018. 1 

3. Boffetta P, Winn DM, Ioannidis JP, Thomas DC, Little J, Smith GD, et al. 2 

Recommendations and proposed guidelines for assessing the cumulative evidence on 3 

joint effects of genes and environments on cancer occurrence in humans. International 4 

journal of epidemiology. 2012;41:686-704. 5 

4. Theodoratou E, Timofeeva M, Li X, Meng X, Ioannidis JPA. Nature, Nurture, and 6 

Cancer Risks: Genetic and Nutritional Contributions to Cancer. Annual review of 7 

nutrition. 2017;37:293-320. 8 

5. Huyghe JR, Bien SA, Harrison TA, Kang HM, Chen S, Schmit SL, et al. Discovery 9 

of common and rare genetic risk variants for colorectal cancer. Nature genetics. 10 

2018. 11 

6. Law PJ, Timofeeva M, Fernandez-Rozadilla C, Broderick P, Studd JB, Fernandez-12 

Tajes J, et al. Association analyses identify 31 new risk loci for colorectal cancer 13 

susceptibility. Nature Communications. 2019. 14 

7. World Cancer Research Fund/American Institute for Cancer Research. Diet, 15 

Nutrition, Physical Activity and Cancer: a Global Perspective 2018; Available from: 16 

https://www.wcrf.org/dietandcancer 17 

8. World Cancer Research Fund/American Institute for Cancer Research. Continuous 18 

Update Project Report: Diet, Nutrition, Physical Activity and Colorectal Cancer. 19 

2017; Available from: https://www.wcrf.org/sites/default/files/Colorectal-Cancer-20 

2017-Report.pdf 21 

9. Safiri S, Sepanlou SG, Ikuta KS, Bisignano C, Salimzadeh H, Delavari A, et al. 22 

The global, regional, and national burden of colorectal cancer and its attributable 23 

risk factors in 195 countries and territories, 1990&#x2013;2017: a systematic 24 

analysis for the Global Burden of Disease Study 2017. The Lancet Gastroenterology & 25 

Hepatology. 26 

10. UK Biobank. Protocol for a large-scale prospective epidemiological resource. 27 

2007  [cited 2019; Available from: http://www.ukbiobank.ac.uk/key-documents/ 28 

11. UK Biobank. 24-hour dietary recall questionnaire (version 1.1). 2012  [cited 29 

2019; Available from: http://www.ukbiobank.ac.uk/key-documents/ 30 

12. Theodoratou E, Farrington SM, Tenesa A, McNeill G, Cetnarskyj R, Barnetson RA, 31 

et al. Dietary vitamin B6 intake and the risk of colorectal cancer. Cancer Epidemiol 32 

Biomarkers Prev. 2008;17:171-82. 33 

13. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK 34 

Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203-9. 35 

14. Houlston RS, Webb E, Broderick P, Pittman AM, Di Bernardo MC, Lubbe S, et al. 36 

Meta-analysis of genome-wide association data identifies four new susceptibility 37 

loci for colorectal cancer. Nature genetics. 2008;40:1426-35. 38 

15. Timofeeva MN, Kinnersley B, Farrington SM, Whiffin N, Palles C, Svinti V, et al. 39 

Recurrent Coding Sequence Variation Explains Only A Small Fraction of the Genetic 40 

Architecture of Colorectal Cancer. Scientific reports. 2015;5:16286. 41 

16. Cochran W. THE COMBINATION OF ESTIMATES FROM DIFFERENT EXPERIMENTS. Biometrics. 42 

1954;10:101-27. 43 

17. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and 44 



23 

 

Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: 1 

Series B (Methodological). 1995;57:289-300. 2 

18. Ioannidis JP, Boffetta P, Little J, O'Brien TR, Uitterlinden AG, Vineis P, et 3 

al. Assessment of cumulative evidence on genetic associations: interim guidelines. 4 

International journal of epidemiology. 2008;37:120-32. 5 

19. Gauderman WJ. Sample size requirements for association studies of gene-gene 6 

interaction. Am J Epidemiol. 2002;155:478-84. 7 

20. Gauderman WJ. Sample size requirements for matched case-control studies of gene-8 

environment interaction. Statistics in medicine. 2002;21:35-50. 9 

21. Khoury MJ, Bertram L, Boffetta P, Butterworth AS, Chanock SJ, Dolan SM, et al. 10 

Genome-wide association studies, field synopses, and the development of the knowledge 11 

base on genetic variation and human diseases. Am J Epidemiol. 2009;170:269-79. 12 

22. Peters U, Jiao S, Schumacher FR, Hutter CM, Aragaki AK, Baron JA, et al. 13 

Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide 14 

Meta-analysis. Gastroenterology. 2013;144:799-807.e24. 15 

23. GT C. The Genotype-Tissue Expression (GTEx) project. Nature genetics. 16 

2013;45:580-5. 17 

24. He Y, Theodoratou E, Li X, Din F, Vaughan-shaw P, Svinti MacLeod V, et al. 18 

Effects of common genetic variants associated with colorectal cancer risk on survival 19 

outcomes after diagnosis: a large population-based cohort study. International 20 

Journal of Cancer. 2019. 21 

25. Richard DJ, Bolderson E, Cubeddu L, Wadsworth RI, Savage K, Sharma GG, et al. 22 

Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature. 23 

2008;453:677-81. 24 

26. Broderick S, Rehmet K, Concannon C, Nasheuer HP. Eukaryotic single-stranded DNA 25 

binding proteins: central factors in genome stability. Sub-cellular biochemistry. 26 

2010;50:143-63. 27 

27. Hutter CM, Chang-Claude J, Slattery ML, Pflugeisen BM, Lin Y, Duggan D, et al. 28 

Characterization of gene-environment interactions for colorectal cancer 29 

susceptibility loci. Cancer Res. 2012;72:2036-44. 30 

28. Kantor ED, Hutter CM, Minnier J, Berndt SI, Brenner H, Caan BJ, et al. Gene-31 

environment interaction involving recently identified colorectal cancer 32 

susceptibility Loci. Cancer Epidemiol Biomarkers Prev. 2014;23:1824-33. 33 

29. Dimitrakopoulou VI, Travis RC, Shui IM, Mondul A, Albanes D, Virtamo J, et al. 34 

Interactions Between Genome-Wide Significant Genetic Variants and Circulating 35 

Concentrations of 25-Hydroxyvitamin D in Relation to Prostate Cancer Risk in the 36 

National Cancer Institute BPC3. Am J Epidemiol. 2017;185:452-64. 37 

30. Hiraki LT, Joshi AD, Ng K, Fuchs CS, Ma J, Hazra A, et al. Joint effects of 38 

colorectal cancer susceptibility loci, circulating 25-hydroxyvitamin D and risk of 39 

colorectal cancer. PLoS ONE [Electronic Resource]. 2014;9:e92212. 40 

31. Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, Sprosen T, et al. 41 

Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank 42 

Participants With Those of the General Population. Am J Epidemiol. 2017;186:1026-34. 43 

 44 



24 

 

 1 


