

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

The 4D evolution of the Teutonic Bore Camp VHMS deposits, Yilgarn Craton, Western Australia

Citation for published version:

Barrote, VR, Mcnaughton, NJ, Tessalina, SG, Evans, NJ, Talavera, C, Zi, J & Mcdonald, BJ 2020, 'The 4D evolution of the Teutonic Bore Camp VHMS deposits, Yilgarn Craton, Western Australia', *Ore Geology Reviews*, vol. 120, pp. 103448. https://doi.org/10.1016/j.oregeorev.2020.103448

Digital Object Identifier (DOI):

10.1016/j.oregeorev.2020.103448

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Ore Geology Reviews

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Manuscript Details

Manuscript number	ORGEO_2019_778_R1
Title	The 4D evolution of the Teutonic Bore Camp VHMS deposits, Yilgarn Craton, Western Australia
Article type	Research paper

Abstract

The Teutonic Bore Camp, comprised of the Teutonic Bore, Jaguar and Bentley deposits, is one of the most significant volcanic-hosted massive sulphide (VHMS) camps in Western Australia. Despite being extensively studied, only recently there have been advances in the understanding of the mechanism that drove the formation of mineralisation. It has been recognized by recent studies that the volcanic-hosted deposits from the Teutonic Bore Camp represent replacement-type VHMS systems, with significant input of fluids and metals from a magmatic source. This paper tests the existing hypothesis that the nearby Penzance granite acted as the metals source and/or thermal engine driving the development of these ore deposits. New age constraints on the formation of the host volcanic sequence at the Bentley deposit and the crystallization of the Penzance granite allows for the construction of a 4D evolutionary model for the ore system. A new U-Pb SHRIMP monazite age of 2681.9 ± 4.5 Ma indicates that the Penzance granite post-dates the host stratigraphy at Bentley (ca. 2693 Ma) and is probably coeval with mineralisation. All zircons (Penzance, Bentley units I and III) have very similar EHf(i), with most values between -1 and +6, slightly higher than the EHf(i) of zircons from other granites and volcanics within the Kurnalpi Terrain, and indicative of juvenile sources. The mean Th/U ratios are ~0.7 and ~0.6 for the Penzance and Bentley zircons, respectively. All zircons have similar Ce/Nd(CN) ratios. The chemical similarities between the zircons from the granite and the volcanic rocks at Bentley support a shared magmatic source between the Penzance and the Teutonic Bore Camp sequence. The Penzance granite is the likely source of heat, and potentially metals, which drove the VHMS mineralisation at the Teutonic Bore Camp.

Keywords	Penzance; Teutonic Bore; Volcanic-hosted massive sulphide; Archean; Geochronology; 4D modelling
Corresponding Author	Vitor Rodrigues Barrote
Corresponding Author's Institution	Curtin University
Order of Authors	Vitor Rodrigues Barrote, Neal McNaughton, Svetlana Tessalina, Noreen Evans, Cristina Talavera, Jian-Wei Zi, Bradley McDonald
Suggested reviewers	Susan Belford, John Percival, Haoyang Zhou, Christopher Yeats

Submission Files Included in this PDF

File Name [File Type]
Cover letter.docx [Cover Letter]
Reply to reviwers.docx [Response to Reviewers]
MS with changes marked.docx [Revised Manuscript with Changes Marked]
Highlights.docx [Highlights]
GraphicAbstract.tif [Graphical Abstract]
MS with no changes marked.docx [Manuscript File]
Figure Captions.docx [Figure]
Fig1.jpg [Figure]
Fig2.jpg [Figure]
Fig3.jpg [Figure]
Fig4.jpg [Figure]
Fig5.jpg [Figure]
Fig6.jpg [Figure]
Fig7.jpg [Figure]
Fig8.jpg [Figure]
Fig9.jpg [Figure]
Fig10.jpg [Figure]
Fig11.jpg [Figure]
declaration-of-conflict of-interests.docx [Conflict of Interest]
Sup1_Methods.docx [e-Component]

Submission Files Not Included in this PDF

File Name [File Type]

Table 1.xlsx [Table]

Sup2_SHRIMP_Zircon.xlsx [e-Component]

Sup3_Hf_Zircon.xlsx [e-Component]

Sup4_TE_Zircon.xlsx [e-Component]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE Homepage, then click 'Download zip file'.

Research Data Related to this Submission

Data set

https://data.mendeley.com/datasets/jpwjnwcnv2/draft?a=97413372af5a-4ce3-96d8-180bf090118b

Data for: The magmatic 4D evolution of the Teutonic Bore Camp VHMS deposits, Yilgarn Craton, Western Australia

Eletronic Supplementary Material for "The 4D evolution of the Teutonic Bore Camp VHMS deposits, Yilgarn Craton, Western Australia" The Teutonic Bore Camp, comprised of the Teutonic Bore, Jaguar and Bentley deposits, is one of the most significant volcanic-hosted massive sulphide (VHMS) camps in Western Australia. Despite being extensively studied, only recently there have been advances in the understanding of the mechanism that drove the formation of mineralisation. It has been recognized by recent studies that the volcanic-hosted deposits from the Teutonic Bore Camp represent replacement-type VHMS systems, with significant input of fluids and metals from a magmatic source. This paper tests the existing hypothesis that the nearby Penzance granite acted as the metals source and/or thermal engine driving the development of these ore deposits. New age constraints on the formation of the host volcanic sequence at the Bentley deposit and the crystallization of the Penzance granite allows for the construction of a 4D evolutionary model for the ore system. A new U-Pb SHRIMP monazite age of 2681.9 ± 4.5 Ma indicates that the Penzance granite post-dates the host stratigraphy at Bentley (ca. 2693 Ma) and is probably coeval with mineralisation. All zircons (Penzance, Bentley units I and III) have very similar EHf(i), with most values between -1 and +6, slightly higher than the EHf(i) of zircons from other granites and volcanics within the Kurnalpi Terrain, and indicative of juvenile sources. The mean Th/U ratios are ~0.7 and ~0.6 for the Penzance and Bentley zircons, respectively. All zircons have similar Ce/Nd(CN) ratios. The chemical similarities between the zircons from the granite and the volcanic rocks at Bentley support a shared magmatic source between the Penzance and the Teutonic Bore Camp sequence. The Penzance granite is the likely source of heat, and potentially metals, which drove the VHMS mineralisation at the Teutonic Bore Camp.

1	Vitor Barrote
2	School of Earth and Planetary Sciences
3	Curtin University
4	Kent St, Bentley WA 6102
5	Phone: +6145 1929556
6	Email: vitorbarrote@hotmail.com
7 8 9	28.01.2020
10 11	Dear Editor,
12 13 14	I am pleased to re-submit the manuscript "The magmatic 4D evolution of the Teutonic Bore Camp VHMS deposits, Yilgarn Craton, Western Australia", on behalf of myself, Vitor Barrote and my co-authors.
15 16 17 18	We have greatly appreciated the helpful and constructive revisions to this important work and continue to appreciate your consideration. We have addressed the concerns raised by the reviewers and editors and believe that the manuscript should be now suitable for publication.
19 20	We attach a rebuttal letter that indicates how we have addressed the comments as well as a version of the manuscript
21	with tracked changes.
22	
23	
24	Sincerely,
25	
26	
21	1. Rts
20 20	11 A and a
29	\mathcal{O}
31	Vitor Barrote
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
4Z 42	
43	
45	
46	
47	
48	
49	
50	
51	
52	
53	
04 55	
56	
50	

Authors' response to reviewers' comments

Manuscript title: ¬The 4D evolution of the Teutonic Bore Camp VHMS deposits, Yilgarn Craton, Western Australia

Authors: Vitor Barrote, Neal McNaughton, Svetlana Tessalina, Noreen Evans, Cristina Talavera, Jian-Wei Zi, Bradley McDonald

Manuscript number: ORGEO_2019_778

Date: 28th January 2020

Dear editor,

The authors would like to thank you for your positive reviews, advice, and critiques in how to further correct and improve this manuscript. We have addressed comments below; editor and reviewer's comments are indicated in red font, whereas our response is indicated in black font, for easy reading. In addition to the main comments presented below we have also accepted and appropriately modified the manuscript based on all the comments made by reviewer 1 in the tracked version of the revised manuscript. Our response to these comments can be seen in the tracked version that we have re-submitted.

Comments from the editors and reviewers:

-Editor

In addition to the reviewers comment, I think that you should try to frame your study within a broader context. As it stands your paper is very much a local study which should be better integrated within the broader context of VHMS in Precambrian time. Also you should limit the use of acronyms to the minimum.

We have attempted to better clarify the broader impact of our observations to VHMS systems in the Precambrian, as suggested. We have re-phrased the last paragraph of the introduction to present to the reader our intention to reflect upon this broader subject aided by the upcoming study presented. We have also re-shaped our final paragraph of section 5.5 where we expose how the observations presented in this study could potentially impact the exploration of Precambrian VHMS.

Apart from well established acronyms such as VHMS, HFSE and MSWD we have altered the text and limited our use of acronyms (e.g. Teutonic Bore and Eastern Goldfields Superterrane).

-Reviewer 1

This work reports original geochronological data on the volcanic stratigraphy of the Teutonic Bore Camp, it adds important constraints on the evolution of the associated VHMS deposits, and is therefore worthy of publication on Ore Geology Review.

I have attached a track change version of the manuscript with some recommendations, but, in particular, I'd like to emphasise some aspects that should be considered by the authors with care.

1- The first section of the geological background (paragraph 1.1) needs to be revised to improve its clarity. This is a pivotal part of the manuscript that should be crystal clear to the readers, otherwise the following parts will miss of a solid base of understanding.

We have addressed the Geological Background section and based on the additional comments from this reviewer we have modified it to improve its clarity. We believe that this modified version will be much easier for the readers to understand.

2- All the tables, apart from table 3, should be moved to the ESMs in a spreadsheet form, in order to be more accessible and to avoid large text gaps within the final manuscript.

We intend to do this, if agreed upon by the Editors and we submit the revised version of the manuscript with tables 1, 2, 4 and 5 as supplementary material. Also as suggested by the reviewer within the text we have re-shaped the Methods section and added much of the information to the ESM.

3- There is bold claim in the discussion that needs to be further discussed or modified. I am referring to the end of paragraph 4.4 where it is suggested that "the Penzance granite is a strong candidate to have acted as the probable magmatic source of sulphur to the mineralisation, and consequently, metals." Whereas the suggestion that the Penzance granite could have acted as a sulfur source is coherent with the isotopic data discussed in Chen et al. (2015), the assumption that metals were sourced from the granite magma is unsupported.

We have modified this part of the text as not to extrapolate on the proposed discussions and present to the reader unsupported arguments. We have limited ourselves to affirm that Chen et al. (2015) presents evidence for sulphur supply from magmatic sources only. The supply of metals remains a possibility, although there is no evidence at this point that this is the case.

-Reviewer 2

The manuscript provides geochronological constraints on the granite and host sequences for the Teutonic Bore (TB) camp. The authors suggest the involvement of granite in the VHMS mineralization. The topic of the study is suitable for Ore Geology Reviews. However, two important points require attention in preparing your revision so that the resulting manuscript can be evaluated for publication.

1. I am confused with the term "magmatic 4D evolution". I read the manuscript several times and haven't found it out. In my view, magmatic evolution should involve the geochemical evolution and dynamical processes, rather than solely providing age data. I think the authors should clarify what the 4D evolution really means.

We have refrained from using the term "magmatic 4D evolution" and instead consistently use "4D evolution", including modification of the title. The concept of 4D evolution or 4D evolutionary model in this article refers to the addition of time constrains to previously known processes involving magmatism and volcanism, which include geochemical evolution, development of the stratigraphical sequence and development of mineralisation as a consequence of these processes. We have added our definition of the concept to the introduction in order to clarify to the reader the meaning of 4D evolutionary model in this context.

2. The authors also declare that they constructed a 4D evolutionary model for the ore system (lines 24-26 and section 5.4). I definitely do not see this point in the text. Actually, in this manuscript, the authors just conduct geochronological study on the host rock and a granite in the deposits. They even do not obtain the direct ages for mineralization. How do this reveal the 4D evolution of ore systems?

As addressed in the first comment, the 4D evolutionary model refers to the constrain of processes in time, which was achieved by combining extensive new original geochronological observations with previous studies that focused on geochemistry, stratigraphy and other techniques. We have added our definition of the concept to the introduction in order to clarify to the reader the meaning of 4D evolutionary model in this context. We have also added an explanation of the concept in section 5.4 in order not to confuse the reader and to clarify the outcome of the study.

Additionally, do not overstate the temporal association between granite intrusion and mineralization.

We understand the reviewers concern and share his view. We have replaced likely coeval to possibly coeval. We have evidence that the mineralisation is younger than the host rocks that are dated in this study based on stratigraphic observation presented in Belford et al. (2015). However the lack of a reliable age for the Teutonic Bore mineralisation prevents us from demonstrating the association between granite and ore formation.

Some minor comments are:

Q1 Lines 483-484: Why do similar Th/U ratios of zircon suggest a magma consanguinity? Any reference?

According to Kirkland et al. (2015), parental magma composition is one of four factors that may contribute to variations in the Th/U of a zircon crystal.

We have added that information to the main text and included the reference in our Bibliography.

Q2 Lines 499-506: The authors argue the possible involvement of granite in VHMS mineralization. What do you mean for "interaction" (line 499)? I do not see the speciality of granitoid veins within the volcanics as well as volcanic xenoliths within the granite. In my view, it just indicates that granite postdate the volcanics.

We have re-phrased this passage to clarify the ideas presented. The argument presented here absolutely indicates only that the granite postdates the volcanics. The reason why we demonstrate that these rocks interact is to refute the idea that granite and volcanics are part of separate systems that were tectonically placed in contact.

Q3 Conclusion section: "The age of the TB camp mineralisation is likely coeval to the intrusion of the Penzance granite at ca. 2682 Ma." How do you draw the synchronicity for the mineralization and granite intrusion? Do not overstate their association before you can offer a reliable age for the TB mineralization.

We understand the reviewers concern and share his view. We have replaced likely coeval to possibly coeval. We have evidence that the mineralisation is younger than the host rocks that are dated in this study based on stratigraphic observation presented in Belford et al. (2015). However the lack of a reliable age for the Teutonic Bore mineralisation prevents us from demonstrating the association between granite and ore formation.

The magmatic 4D evolution of the Teutonic Bore Camp VHMS deposits, Yilgarn Craton, Western Australia

Vitor R. Barrote^{1,2,3}, Neal J. McNaughton¹, Svetlana G. Tessalina¹, Noreen J. Evans^{1,2},

5 Cristina Talavera^{1,43}, Jian-Wei Zi^{1,54}, Bradley J. McDonald^{1,2}

- John de Laeter Centre and The Institute for Geoscience Research (TIGeR), Curtin University, Kent St, Bentley, WA 6102, Australia
- 2- School of Earth and Planetary Sciences, Curtin University, Kent St, Bentley, WA 6102,
- Australia
- 2-3- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria 3800, Australia
- 3-4- School of Geosciences, University of Edinburgh, The King's Building, James Hutton Road, EH9 3FE, Edinburgh, UK
- 4-<u>5-</u>State Key Lab of Geological Processes and Mineral Resources, China University of Geosciences
- Declarations of interest: none

ABSTRACT

The Teutonic Bore (TB) eCamp, comprised of the Teutonic Bore, Jaguar and Bentley deposits, is one of the most significant volcanic-hosted massive sulphide (VHMS) camps in Western Australia. Despite being extensively studied in the past, only recently there have been advances in the understanding of the mechanism that drove the formation of mineralisation. It has been recognized by recent studies that the volcanic-hosted deposits from the TBTeutonic Bore Camp represent replacement-type VHMS systems, with significant input of fluids and metals from a magmatic source. This paper tests the existing hypothesis that the nearby

Commented [1]: Be consistent with the capital letter. Personally I do not have any preference, but keep it uniform throughout the text.

Commented [2R2]: We made sure to keep it consistently capital throughout the text.

Penzance granite acted as the metals source and/or thermal engine driving the development ofthese ore deposits.

New age constraints on the formation of the host volcanic sequence at the Bentley deposit and the crystallization of the Penzance granite allows for the construction of a 4D evolutionary model for the ore system. A new U-Pb SHRIMP monazite age of 2681.9 ± 4.5 Ma indicates that the Penzance granite post-dates the host stratigraphy at Bentley (ca. 2693 Ma) and is probably coeval with mineralisation. All zircons (Penzance, Bentley units I and III) have very similar \Box Hf_(i), with most values between -1 and +6, slightly higher than the \Box Hf_(i) of zircons from other granites and volcanics within the Kurnalpi Terrain, and indicative of juvenile sources. The mean Th/U ratios are ~0.7 and ~0.6 for the Penzance and Bentley zircons, respectively. All zircons have similar Ce/Nd_(CN) ratios. The chemical similarities between the zircons from the granite and the volcanic rocks at Bentley support a shared magmatic source between the Penzance and the **TBTeutonic Bore** Camp sequence. The Penzance granite is the likely source of heat, and potentially metals, which drove the VHMS mineralisation at the **TB**Teutonic Bore Camp.

40 Keywords: Penzance; Teutonic Bore; Volcanic-hosted massive sulphide; Archean;
41 Geochronology; 4D modelling

42 1 INTRODUCTION

Using an extensive database of compiled whole-rock geochemistry and U-Pb geochronology, Hollis et al (2015) proposed a link between VHMS mineralisation and the emplacement of HFSE-enriched syn-volcanic intrusions, throughout the Archean Yilgarn Craton, including the Eastern Goldfield Superterrane (EGS). Despite the apparent geographical and broadly coeval association between VHMS ores and HFSE-enriched intrusions, <u>the</u> <u>identification of a genetic link link requires would benefit from</u> further geochronological and isotopic evidencedemonstration by detailed geochronology and isotopic geochemistry.

The number of significant VHMS occurrences in the Yilgarn Craton is small compared to other Archean terrains with similar characteristics such as the Superior Province of Canada (Hollis et al., 2015). Previous studies suggested that this is could be due to under-exploration and the use of techniques inappropriate for mineral prospecting in the Yilgarn Craton (Butt et al., 2017; Ellis, 2004; Hollis et al., 2017, 2015; McConachy et al., 2004). Unlike classic VHMS systems, replacement-type VHMS systems, such as those in the EGSEastern Goldfield Superterrane, do not precipitate onto the seafloor and, but rather replace slightly older host stratigraphy. As a consequence, although some stratigraphic control can be observed within replacement-type mineralisation, it is not an inevitable feature (Doyle and Allen, 2003). Historically, the searchexploration for VHMS occurrences within the Teutonic Bore (TB)

area was focused on key stratigraphic horizons. However, the known deposits formed at different stratigraphic positions and show significant differences in the geometry of mineralisation, compared to <u>TBTeutonic Bore</u> (Chen et al., 2015; Parker et al., 2017). This led to a significant time gap between the discoveries of the <u>TBTeutonic Bore</u> deposit in 1976, and the Jaguar and Bentley deposits (in 2004 and 2008, respectively) (Ellis, 2004; Independence <u>Group NL (IGO), 2015</u>; Parker et al., 2017).

To better understand thise inconsistent lack of stratigraphic control on the position of orebodies within the stratigraphy at the TBTeutonic Bore eCamp, and a possible link between high-field-strength-elements (HFSE)-enriched granite emplacement and ore precipitation, this work re-examines and expands the database of geochronology and isotopic/geochemical fingerprints for the igneous rock units. This includes re-assessment of the geochronological data from the nearby HFSE-enriched granite, the Penzance granite (Champion and Cassidy, 2002; Geoscience Australia (GA), 2019), and the volcanic sequence from the TBTeutonic Bore eCamp (Nelson, 1995), with additional U-Pb Sensitive High-Resolution Ion Microprobe (SHRIMP) dating of zircon and monazites

Commented [3]: Such as... please mention an example.
Commented [4R4]: We have provided an example.

Commented [5]: I recommend to rephrase this sentence. The main clause depends on the subordinate, it should be the opposite. It might be difficult to understand to those readers which are not familiar with the topic.

Commented [6R6]: We have merged the information from the subordinate to the main clause.

Commented [7]: Brackets are not necessary Commented [8R8]: Change accepted

Commented [9]: I recommend to minimise the use of unpublished references when it is not indispensable, as they are a not transparent means by nature.

Commented [10R10]: Reference removed

Commented [11]: I recommend to clarify to the reader the nature of the inconsistency. It is mentioned above that the VHMS being of a replacive nature are expected to form in the same stratigrafic position, but it is not clear enough, I believe this is an important point that should be emphasised more.

Commented [12R12]: We have modified the sentence to clarify the inconsistency (i.e. lack of stratigraphic control).

Commented [13]: This acronym is never utilised I the text, so it can be deleted.

Commented [14R14]: Ok

Commented [15]: The acronym needs to be resolved once at the beginning, but being a known technique it can be omitted in the abstract.

Commented [16R16]: Ok

Commented [17]: Mineral names are uncountable. Commented [18R18]: We have modified the text to adhere to this rule.

These geochronological studies are complemented by zircon Hf-isotopieg and trace element analyseis on zircons_ ofrom the Bentley volcanic sequence and Penzance granite, and compilation of detailed stratigraphy, whole-rock geochemistry and sulphur isotope data from previous studies (Belford et al., 2015; Chen et al., 2015; Das, 2018; Isaac, 2015; Sedgmen et al., 2007). The present work combines the improved geochronological constrains presented here to the current 3D understanding of the geological processes at place, to develop a 4D evolutionary model of the deposits at the Teutonic Bore Camp.

Reliable and precise ages for magmatism and ore-hosting volcanism, combined with traditional and isotopic geochemistry, allows testing of the hypothesis of a genetic relationship between the HFSE-rich Penzance granite and the <u>TBTeutonic Bore</u> Camp deposits. The results <u>could</u> have implications for future exploration for <u>Precambrian</u> VHMS deposits, not only in the well-established <u>TBTeutonic Bore</u> <u>eC</u>amp, but also in greenfields throughout the <u>EGSEastern</u> <u>Goldfield Superterrane</u> and, potentially, <u>other terraneselsewhere</u> in the Yilgarn Craton.

88 12_GEOLOGICAL BACKGROUND

1.12.1 Geology of the Teutonic Bore Camp

The Teutonic Bore, Jaguar and Bentley VHMS deposits, along with several other smaller occurrences, form the TBTeutonic Bore Camp (Independence Group NL (x-IGO), 2015). The TBTeutonic Bore Camp is located near the town of Leonora, within the Kurnalpi Terrane of the EGSEastern Goldfield Superterrane, Yilgarn Craton (Figure 1). The deposits fromin the TBTeutonic Bore eCamp are hosted by the TBTeutonic Bore volcanic complex, which comprises pillow basalt, overlain and interlayered with volcanoclastic units, coherent rhyolite, andesite and thin sedimentary units (Belford et al., 2015; Parker et al., 2017 and references therein). The prefix "meta" is assumed but omitted when addressing the Archean **Commented [19]:** Elsewhere in the Yilgarn or specifically in certain terrenes? Please specify.

Commented [20R20]: The other Terranes within the Yilgarn are understudied, so studies similar to this if conducted in such regions could impact the understanding and consequently exploration strategies for these locations. Due to the unavailability of such constrains we refrain from specifying which Terranes.

"More data is required in the South West, Burtville and Yamarna terranes, and a number of greenstone belts of the Youanmi Terrane (e.g. Twin Peaks, Tallering) in order to clearly delineate regions of prospectivity and establish temporal, geochemical and stratigraphic associations to mineralization. Localized studies are required in order to establish volcanological settings for a number of deposits and their controlling factors."Hollis et al 2015

Commented [21]: If you want to provide a geographical reference, the location of town of Leonara should be included in the geological map.

Commented [22R22]: We have included the town of Leonora in the geological map and have described the symbology in the caption.

> stratigraphic sequence of the Yilgarn Craton, because all rocks are metamorphosed to some extent (Czarnota et al., 2010). The volcanic stratigraphy and the distribution of the three deposits, as well as other known

101 uneconomic ore bodies, have a NW-SE trend (Figure 1). <u>Tthis trend coincides with the general</u> 102 alignment of regional structures, such as the fault that bounds the <u>TBTeutonic Bore volcanic</u> 103 complex to the west (Hallberg and Thompson, 1985; Parker et al., 2017). <u>The TB-volcanic</u>/ 104 sequence is bounded by a syenogranite to the east. Although the nature of the contact with the 105 volcanics is unclear, its attitude follows the general trend of stratigraphy and orebody 106 distribution. Additionally, this trend coincides with the general alignment of regional/ 107 structures, such as the fault that bounds the TB volcanic complex to the west (Hallberg and

8 Thompson, 1985; Parker et al., 2017).

The stratigraphy at the <u>TBTeutonic Bore</u> e<u>C</u>amp comprises a predominantly laterally continuous lithofacies association between the three deposits (Figure 2A). Disruption of the stratigraphic sequence by later dolerite intrusions causes inconsistencies in the stratigraphic continuity between deposits (Belford et al., 2015; Das, 2018), although individual deposits can occur in locally restricted facies (Das, 2018). The prefix "meta" is assumed but omitted when addressing the Archean stratigraphic sequence of the Yilgarn Craton, because all rocks are metamorphosed to some extent (Czarnota et al., 2010).

Disruption of the stratigraphic sequence by later dolerite intrusions causes inconsistencies
in the stratigraphic continuity between deposits (Belford et al., 2015; Das, 2018).
Nonetheless Therefore, the volcanic sequence that hosts the mineralisation can be broadly
subdivided in six units as follow from bottom to top (Figure 2B; Belford et al., 2015; Parker et

- al., 2017), as depicted in Figure 2B, and comprises six units, from bottom to top:
 - I. Footwall Rhyolite: from 200 m to over 1 km thick. Mainly coherent, either massive or flow-banded, with minor breccia (Parker et al., 2017), and with calc-alkaline to

Commented [23]: I recommend to anticipate this at L91 when you first mention the rocks within the TB complex. Here this sentence creates a logic gap between the sentence that precedes and the one that follows.

Commented [24R24]: We repositioned the passage.

Commented [25]: This sentence continues the regional analysis started in L92-93. I recommend to avoid logic gaps and to keep this sentence close and connected with the one in L92-93.

Commented [26R26]: We have re-shaped the paragraph to satisfy that.

Commented [27]: This sentence is unclear. Please rephrase trying to be more specific and avoiding the use of generic terminology such as "the attitude of the contact".

Commented [28R28]: We have erased this sentence and focused on describing the interaction between granite and volcanics further down. It was repetitive as well.

Commented [29]: This sentence continues the regional analysis started in L92-93. I recommend to avoid logic gaps and to keep this sentence close and connected with the one in L92-93.

Commented [30R30]: We have re-shaped the paragraph to satisfy that.

Commented [31]: This sentence is redundant, I recommend to simplify it.

Commented [32R32]: We removed this information from this section, we agree with the reviewer that it was unclear. Furthermore it was not necessary to the understanding of the stratigraphy.

Commented [33]: This part of the sentence is unclear. Please rephrase in a way in which the spatial relationships can be clearer, in particular in respect to the VHMS deposits.

Commented [34R34]: We removed this information from this section, we agree with the reviewer that it was unclear. Furthermore it was not necessary to the understanding of the stratigraphy and relationship between deposits.

Commented [35]: I recommend to anticipate this at L91 when you first mention the rocks within the TB complex. Here this sentence creates a logic gap between the sentence that precedes and the one that follows.

Commented [36R36]: We have moved this part to the first paragraph of this section.

Commented [37]: This sentence is redundant, I recommend to simplify it.

Commented [38R38]: We removed this information from this section, we agree with the reviewer that it was unclear. Furthermore it was not necessary to the understanding of the stratigraphy and relationship between deposits.

Commented [39]: Citation should always be located at the end of the sentence before punctuation.

Commented [40R40]: Ok

Commented [41]: Of the six units listed, for only the first is reported the thickness. I recommend to be consistent **Commented [42R42]:** We have added the requested information to the text.

- 298
299
300123transitionalThe magmatic affinity is calc-alkaline to transitional(Belford et al.,300
3011242015). This package is footwall to all three deposits.
- 302
303125II.Sedimentary rocks partly derived from the rhyolite, locally coarse but grading to304305126arenite, siltstone and shale. This is the host unit to the Bentley deposit. The thickness306307127range from 0 to 70 m according to Parker et al. (2017)308308309
- III. Transitional to tholeiitic basalt/ transitional andesite with thickness between 30 and 170 m, with: display massive or pillowed habit, commonly intercalated with shale rich sediments (Parker et al., 2017). This package is host to the **TBTeutonic Bore** deposit and upper lens at Bentley (e.g.: Flying Spur, Brooklands, Comet: Independence Group NL (IGO), 2015) and overlays the lower orebody at the Bentley deposit (Arnage: Independence Group NL (IGO), 2015). Belford et al. (2015) names this unit Footwall Andesite (FA) and Footwall Basalt (FB), relative to their position to the mineralised zone at Jaguar.
- IV. Upper sedimentary horizon (mineralised package from Belford et al., 2015)-consistings of a -C complex assemblage of intercalated dacite (called MPD by Belford et al., 2015), conglomerate, pumice-rich breccia, laminated sediment, laminated chert and massive sulphide (Belford et al., 2015). Unit IV marks a geochemical break in magmatic affinity, from tholeiitic/transitional of the underlying basalts/andesites to calc-alkaline in the overlying lavas. The thickness is typically within 20 to 40 m (Parker et al., 2017).
- Upper basalt and andesite of calc-alkaline affinity: consistings of massive and V. pillowed basalt and andesite lavas with minor volcanic breccias, and- Intercalated with mostly carbonaceous shales (Belford et al., 2015). The total thickness of this unit ranges between about 200 to 700 m (Parker et al., 2017).

- 357
358147VI.Hangingwall rhyolite: uppermost stratigraphic unit, described by Belford et al.359
360148(2015) from a single drillhole. The thickness of this unit is estimated to be between361
362149100 to 500m according to Parker et al. (2017).
- 364 150

¥Ŀ.

 151 <u>The Teutonic Bore volcanic sequence is bounded to the east The area east of TB is occupied</u> 152 by a large composite batholith (Figure 1) named the Kent Complex by Champion and Cassidy 153 (2002) and part of the Penzance Supersuite (Hollis et al., 2015). The Penzance Supersuite 154 consists of HFSE-enriched granites with biotite and/or amphibole in quartz and feldspar rich 155 rocks. These granites are characterised by variably elevated total Fe, MgO, Y, LREE, Zr, 156 coupled with low to moderate Al₂O₃, K₂O, Rb, Sr and moderate Na₂O (Champion and Cassidy, 157 2002).

The relationship between the Penzance granite and the volcanic sequence in the **TB**Teutonic Bore Camp area remains unclear. Earlier studies (e.g.: Hallberg and Thompson, 1985) suggest an irregular contact between the granite and the volcanic rocks, with anastomosing veins of granitoid extending into adjacent extrusive rocks and a number of xenoliths of volcanic rocks within the intrusive granite. The Penzance granite is one of several HFSE-enriched intrusions in the Yilgarn Craton that occurs in close proximity to VHMS deposits or occurrences hosted by equally HFSE-enriched volcanics (Hollis et al., 2015).

The Jaguar deposit was classified as a replacement-type VHMS deposit by Belford (2010). This classification relied on evidence including replacement front texture, absence of chimney structures, and rapid emplacement of the host volcanic sequence, according to the criteria proposed by Doyle and Allen (2003). Later studies (Chen et al., 2015; Das, 2018; Parker et al., 2017) have identified similar textures in Bentley and other smaller occurrences and, consequently, the replacement-type VHMS model is accepted within the TBTeutonic Bore Camp.

remains unpublished.

Despite the predominance of sub-seafloor replacement processes, Belford (2010) observed features that indicate possible above seafloor activity. The development of thin beds of translucent chert with colloform intergrowths of chert and sulphide is interpreted as products of a waning hydrothermal system that had vented fluid to the sediment-water interface and deposited precipitates onto the seafloor (Belford et al., 2015). Massive sulphides conformably overlain by, and gradational upwards into, these narrow beds of laminated chert intercalated with finely-bedded sulphide-rich mudstone, support the idea of a progressive disruption of the mineral activity and indicate that some sulphide precipitation might have taken place very near or at seafloor (Belford et al., 2015).

The occurrence of massive sulphide clasts in the surrounding breccias and conglomerates, which were the result of rapid erosion and mass flow, indicates that the sulphide body was formed contemporaneously with the deposition of the upper sedimentary horizon (IV) (Belford et al., 2015). Similar features have not been observed in either the Bentley or the TBTeutonic Bore deposits.

1.22.2 Geochronology of the TBTeutonic Bore sequence and the Penzance granite

The SHRIMP zircon age of 2692 ± 4 Ma (Nelson, 1995) is the only published age for the volcanic sequence at the TBTeutonic Bore eCamp and comes from a porphyric dacite with unclear stratigraphic position (Belford et al., 2015). Detailed geochronology was attempted by Additionally, Das (2018), reported an ID-TIMS U-Pb age of 2692 ± 1.5 Ma for a sample of coherent Footwall Rhyolite (unit IV) from Jaguar. These analysis remain unpublished and no data table or sample characterization is provided by Das (2018).in felsic rocks well constrained within the stratigraphic sequence, however only one ID-TIMS U-Pb zircon age was reported. The age of 2692 ± 1.5 Ma for a sample of coherent Footwall Rhyolite (unit IV) from Jaguar

Commented [43]: Here you are referring to the content of a Master's thesis not accessible to the readers Please provide more details as its content is very relevant to this study. Also, I recommend to reword the sentences as it appears that Das has "attempted" (try??) to acquire detailed geochronology, but has managed to obtain a single analysis Is this true? How is such information relevant to this study?

Commented [44R44]: We have reworded the sentence as suggested

I wish I could provide more details. The only reference in the thesis to this data is "The rarity of dateable minerals in the mafic succession is a major difficulty in the process of lithostratigraphic correlation. Therefore, the best way to obtain the age of a mafic succession is by dating the crosscutting felsic rocks that have dateable minerals in abundance. Until now, the age of the Teutonic Bore Volcanic Complex was constrained from a porphyritic dacite from north of Teutonic Bore deposit at SHRIMP zircon age of 2962±4 Ma (Nelson, 1995). The footwall rhyolite samples for dating were selected from the drill core at Teutonic Bore, Jaguar and Bentley after removing the weathered surface and inclusions. A sample of the coherent footwall rhyolite from Jaguar (Sample # 13JUDD002) was dated using the ID-TIMS U-Pb analysis of Zircon and gave the age of 2692.6±1.5 Ma.

 The reported ages for the Penzance granite are 2679 ± 8 Ma (Champion and Cassidy, 2002) and 2686 ± 9 Ma (Geoscience Australia (GA)₅₂ 2019, <u>sample ID 96969076</u>). The two ages are derived from the same analyses and ₅ calculated from the same a single dataset from for sample ID 96969076. No explanation is provided by either references as to the reason behind the difference in age calculation from a single set of analysis.

23 SAMPLES AND METHODS

2.13.1 Penzance samples

Samples from the Penzance granite were collected from three different positions within the same quarry (Lat. -28.264050, Long. 121.077888, Penzance Quarry in Figure 1). They were collected from the same quarry as sample ID 96969076 from the Geochron Delivery database of Geoscience Australia (2019), according to those records Each one of the three samples was processed separately and treated as different samples, the analysics were combined only in the data processing phase of each technique.

2.23.2 Bentley samples

Two samples were collected from different positions within the footwall rhyolite (unit I) in the Bentley deposit. Sample 15BUDD78 – 111.60 m was collected from drillhole 15BUDD78 at 111.60 meters depth, from a distal position to the ore. Sample 15BUDD137 – 398.60 m was collected from a <u>youngerhigher stratigraphic</u> position within the sequence, a stringer zone to the lower massive sulphide lens (Arnage), from a different drillhole (15BUDD137).

Two samples (15BUDD120 - 228.42 and 15BUDD120 - 226.04) of the transitional andesite (unit III), were collected from a single drillhole (15BUDD120), within two meters of each other. The transitional andesite at the sampled point is hangingwall to the lower lens (Arnage), but <u>it</u> is in the stringer zone for the upper lens, marked by the occurrence of disseminated sulphides. **Commented [45]:** It is unclear whether these two ages are derived from the same analyses, or from distinct analyses from zircon extracted from the same sample. Please explain better. Also, include the sample ID in the citation as it as not been contextualised in the text.

Commented [46R46]: We have modified the text to clarify that the two ages were calculated from the same single dataset. How these two authors have obtained different ages is not clear and there is no detailed information available. That is one of the reasons why we have decided to attempt dating this rock from newly collected samples from the same location. We accepted the insertion of the sample number to the citation.

Commented [47]: Information regarding the sample is redundant as drillcore names and depths are repeated. The coordinate of the samples is available only for sample 96969076. I recommend to simplify this part by summarising the sample info in a table, it would be clearer and shorter.

Commented [48R48]: The description of the sampling procedure for the Penzance is necessary to understanding the significance of the new age determination and how it compared to the previous data available. We have moved the rest of the methods to the ESM

Commented [49]: The methods can be summarised within the manuscript and the full version moved into the ESM.

Commented [50R50]: We moved the methods to the ESM

Commented [51]: This is implied in the citation, it is not necessary to restate it. Commented [52R52]: Ok

Commented [53]: It is not clear what this is about. If it is the specific name of the lens provide the reader with a scheme that represents the locations of the different lenses. As it is, this name does not provide the reader with any useful information. Please contextualise

Commented [54R54]: We have removed that reference as it is not fundamental to the understanding of the ideas.

220 <u>3.3 Analytical techniques</u>

Zircon and Monazites were analysed on the SHRIMP II at the John de Laeter Centre,
Curtin University (JdLC). Additionally, Zircon Lu–Hf isotopes and rare earth element (REE)
abundances were measured over two analytical sessions using laser ablation split stream
inductively coupled plasma mass spectrometry (LA-SS-ICPMS). The analyses were conducted
in zircons from the same samples that were analysed by SHRIMP, but not necessarily on the
same grain or over the same spot as the SHRIMP analysis. Detailed description of the
conditions and procedures are provided in Supplementary Material 1.

2.3 SHRIMP U-Pb dating of Zircon and Monazites

229 2.3.1 Mount preparation

Zircon and monazite grains were separated from crushed rock samples using a Frantz
 magnetic separator and heavy liquids (methylene iodide). Grains were handpicked, mounted in
 epoxy resin discs and polished to expose their interiors. The zircon crystals were characterized
 by cathodoluminescence (CL) imaging, and monazite crystals by back-scattered electron
 (BSE) microscopy using the Mira3, at the Microscopy and Microanalysis Facility, John de
 Laeter Centre, Curtin University. The epoxy mounts were carbon coated for SEM imaging and
 Au-coated before each SHRIMP analytical session.

Polished thin sections prepared from samples of transitional andesite (unit III) were examined to identify suitable zircon grains for SHRIMP geochronology using the Tescan Integrated Mineral Analyzer (TIMA GM) and back-scattered electron (BSE) microscopy using the Mira3, at the Microscopy and Microanalysis Facility, John de Laeter Centre, Curtin University. Portions of the thin sections containing grains large enough (>15 µm) for ion microprobe analysis were drilled out, in ~3 mm plugs, and cast in 25 mm epoxy mounts. The reference materials were in a separate mount that was cleaned and Au-coated with the sample mounts before each SHRIMP analytical session.

2.3.2 Zircon

Selected areas of the imaged zircon were analysed on the SHRIMP II at the John de Laeter Centre, Curtin University (JdLC). The analytical procedures for the Curtin consortium SHRIMP II have been described by de Laeter and Kennedy (1998) and Kennedy and de Laeter (1994) and are similar to those described by Compston et al. (1984) and Williams (1998). For the larger zircons in grain mounts, a 20-25 µm elliptical spot was used, with a mass-filtered O₂primary beam of ~2.8-3.0 nA, whereas a 10-12 um spot of ~0.5 nA was used on the smaller zircons in polished thin sections. Data for each spot was collected in sets of six scans on the zircons through the mass range of ¹⁹⁶Zr2O⁺, ²⁰⁴Pb⁺, ²⁰⁴Pb⁺, ²⁰⁶Pb⁺, ²⁰⁷Pb⁺, ²⁰⁸Pb⁺, ²³⁸U⁺, ²⁴⁸ThO⁺ and ²⁵⁴UO⁺. The ²⁰⁶Pb/²³⁸U age standard and U-content standard used was M257 (561.3 Ma and 840 ppm U; Nasdala et al., 2008) while OGC zircon was utilized as the 207 Pb/ 206 Pb standard, to monitor instrument induced mass fractionation (3465.4 ± 0.6 Ma; Stern et al., 2009). The ²⁰⁷Pb/²⁰⁶Pb dates obtained on OGC zircons during the SHRIMP sessions matched the ²⁰⁷Pb/²⁰⁶Pb standard age within uncertainty and no fractionation correction was warranted. The common Pb correction was based on the measured ²⁰⁴Pb-content (Compston et al., 1984). The correction formula for Pb/U fractionation is ²⁰⁶Pb^{+/238}U⁺ = a (²⁵⁴UO^{+/238}U⁺)^b (Claoué-Long et al., 1995) using the parameter values of Black et al. (2003). The constant "a" is determined empirically from analyses of the standard during each analytical session. The programs SQUID II and Isoplot (Ludwig, 2011, 2009) were used for data processing.

2.3.3 Monazite

The U–Th–Pb analyses were performed using the high spatial-resolution capability of the SHRIMP II at the JdLC. Monazite was analysed in two analytical sessions. Grains were analysed using a 30 μ m Köhler aperture, ~0.3 nA primary ion beam (O₂=) and a ~10 μ m analysis spot. Energy filtering was not applied, and the post-collector retardation lens was activated to reduce stray ion arrivals. The mass resolution (M/AM at 1% peak height) was

>5000. French (²⁰⁶Pb/²³⁸U age 514 Ma) was used as the primary Pb/U reference material, and Z2908 and Z2234 were the secondary reference materials used to monitor matrix effects (Fletcher et al., 2010). Z2908 (207 Pb/206 Pb age 1796 Ma) was also analysed to monitor and correct for instrumental mass fractionation of 207Pb from 206Pb. SQUID II software (Ludwig, 2009) was used for initial data reduction including.²⁰⁴Pb correction. Matrix effects in ²⁰⁶Pb/²³⁸U were corrected following established protocols detailed by Fletcher et al. (2010). 9 analyses of Z2908 yielded a mean $\frac{207}{Pb}$ age of 1796.7 ± 5.4 Ma (MSWD = 1.7). An insignificant fractionation correction (0.02%) was applied to sample data, with no augmentation of sample precision required based on the reproducibility of 207Pb/206Pb in the reference materials. 207 Pb/ 206 Pb dates from individual analyses are presented with 1σ internal precision, whereas weighted mean ²⁰⁷Pb/²⁰⁶Pb dates are reported at 95% confidence limits. 2.4 LA-SS-ICPMS of Zircon - Trace elements and Hf isotopes Zircon Lu-Hf isotopes and rare earth element (REE) abundances were measured over two

analytical sessions using laser ablation split stream inductively coupled plasma mass spectrometry (LA-SS-ICPMS). The analyses were conducted in zircons from the same samples that were analysed by SHRIMP, but not necessarily on the same grain or over the same spot as the SHRIMP analysis. Isotopic and elemental data were collected simultaneously using a Resonetics S-155-LR 193 nm excimer laser coupled to a Nu Plasma II multicollector and Agilent 7700s quadrupole mass spectrometer in the GeoHistory Facility, JdLC at Curtin University.

Samples 15BUDD120 228.42 and 15BUDD120 226.04 m, from the Transitional
 andesite (unit III) were analysed with a laser spot diameter of 24 µm, with 2.7 J/cm² on-sample
 laser energy, repetition rate of 10 Hz, ablation time of 25 seconds and ~30 seconds of
 background capture before and after each analysis. Two cleaning pulse preceded analysis. The
 spot size and ablation time in this case were limited by the smaller size of the zircons.

Commented [55]: This acronym should be open up once the first time it is mentioned. Commented [56R56]: Ok

The remaining samples were analysed with a laser spot diameter of 50 μ m, with 2.7 J/cm² on-sample laser energy, repetition rate of 10 Hz, ablation time of 40 seconds and ~45 seconds of total baseline acquisition.

Zircon standard P1 (Li et al., 2010; chips of Penglai zircon characterised in-house for trace
 element composition) was used as the primary standard to calculate element concentrations
 using ⁹¹Zr as the internal reference isotope and assuming 43.14% Zr in zircon, and to correct
 for instrument drift.

Lu–Hf isotopic data were measured simultaneously for ¹⁷²Yb, ¹⁷³Yb, ¹⁷⁵Lu, ¹⁷⁶Hf+Yb+Lu, ¹⁷⁷Hf, ¹⁷⁸Hf, ¹⁷⁹Hf and ¹⁸⁰Hf on the Faraday array. Time resolved data was baseline subtracted and reduced using Iolite3.5 (DRS after Woodhead et al., 2004), where ¹⁷⁶Yb and ¹⁷⁶Lu were removed from the 176 mass signal using ¹⁷⁶Yb/¹⁷³Yb = 0.7962 (Chu et al., 2002) and ¹⁷⁶Lu/¹⁷⁵Lu = 0.02655 (Chu et al., 2002) with an exponential law mass bias correction assuming $\frac{172}{Yb}$ = 1.35274 (Chu et al., 2002). The interference corrected $\frac{176}{Hf}$ Hf/ $\frac{177}{Hf}$ was normalized to ¹⁷⁹Hf/¹⁷⁷Hf = 0.7325 (Patchett and Tatsumoto, 1980) for mass bias correction. Zircons from the Mud Tank carbonatite locality were analysed together with the samples in each session to determine corrected, standard referenced ¹⁷⁶Hf/¹⁷⁷Hf (Table 1). Zircon standards with a range of REE contents (FC1 91500, Plešovice and GJ-1; references and data in Table 1) were run to verify the method. All analysed standards fell within 2⁵ error of reported ¹⁷⁶Hf/¹⁷⁷Hf values, although uncertainties on the 24 micron beam run were, understandably, significantly higher. In addition, the corrected ¹⁷⁸Hf/¹⁷⁷Hf and ¹⁸⁰Hf/¹⁷⁷Hf ratios (for the 50 micron beam run) were calculated to monitor the accuracy of the mass bias correction and vielded an average value of 1.467193 ± 12 and 1.886808 ± 11 (n=184), which is within the range of values reported by Thirlwall and Anczkiewicz (2004). Calculation of EHf values employed the decay constant of Scherer et al. (2001) and the Chondritic Uniform Reservoir (CHUR) values of Blichert-Toft and Albarède (1997).

from the for	ne sonware (1 atom et al.,	2011)	
Standard	50-µm	24 μm	Deference Velue
Material	Corrected ¹⁷⁶ Hf/ ¹⁷⁷ Hf	Corrected ¹⁷⁶ Hf/ ¹⁷⁷ Hf	Kererence value
Mud Tank	0.282505 ± 14	0.282507 ± 6 4	0.282505 ± 44
	-(MSWD = 0.70, n = 14)	(MSWD = 2.9, n = 6)	(Woodhead and Hergt, 2005)
FC1	0.282182 ± 9	0.282229 ± 150	0.282172 ± 42
	-(MSWD = 0.31, n = 9)	(MSWD = 3.9, n = 6)	(Woodhead and Hergt, 2005)
91500	0.282306 ± 11	0.282235 ± 130	0.282306 ± 40
	(MSWD = 0.71, n = 14)	-(MSWD = 2.4, n = 6)	(Woodhead et al., 2004)
Plešovice	0.282477 ± 8	0.282470 ± 51	0.282482 ± 13
	-(MSWD = 0.3, n = 10)	-(MSWD = 0.49, n = 6)	(Sláma et al., 2008)
GJ-1	0.282016 ± 12	0.281201 ± 110	0.282000 ± 5
	(MSWD = 0.69, n = 14)	(MSWD = 1.1, n = 6)	(Morel et al., 2008)

Table 1: Summary of the Hf isotope measurements of standard materials used interspersed with analyses of unknown zircons. Mean values were calculated using the built-in statistics from the Jolite software (Paton et al 2011)

34 RESULTS

3.14.1 U-Pb SHRIMP Zircon dating

<u>3.1.14.1.1</u> Footwall rhyolite (unit I) – Bentley Footwall

Fourteen analyses on 14 zircons from sample 15BUDD78 - 111.60 m were performed (Table 2 Supplementary Material 2). Using only analyses within 3% of concordant yields a mean ²⁰⁷Pb/²⁰⁶Pb age of 2696.5 ± 4.2 Ma (95% c.l., n=12; mean square weighted deviation, MSWD=1.04, Figure 3). The average and range of Th/U ratio from the most concordant SHRIMP analyses for this sample are 0.60 and 0.45-0.72, respectively.

A second sample from unit I was dated, t-Twenty-seven analyses from 27 zircons from sample 15BUDD137 – 398.60 m were collected (Table 2Supplementary Material 2). The mean ²⁰⁷Pb/²⁰⁶Pb age obtained for analyses within 4% of concordant and with <0.3% common Pb was 2691.7 ± 2.5 Ma (95% c.l.; n=25; MSWD=0.95, Figure 3). The average and range of Th/U ratio from the most concordant SHRIMP analyses are 0.63 and 0.41-0.84, respectively.

The CL images of zircons from the two unit I, footwall rhyolite samples show grains with continuous oscillatory zoning and no discernible core and/or rims, as shown in Figure 4, and have with sizes that ranginge from about 50 to 100 µm (Figure 4). Their morphologies, Th/U and ages are indistinguishable, and combining the most concordant data, the resulting age of

Commented [57]: I recommend to move Table 2 into the ESMs in a spreadsheet format, so that the data can be more easily accessible. We should save colleagues from wasting their time doing copy/pasting from tables within pdf. Commented [58R58]: Ok

Commented [59]: This sentences should be better linked or combined Commented [60R60]: Ok

2692.9 ± 2.1 Ma (95% cl; n=37; MSWD=1.05) is our best estimate of the age of the footwall rhyolite at Bentley.

3.1.24.1.2 Transitional andesite (unit III) – Bentley Hangingwall

The samples from the transitional andesite were treated as two separate samples for the geochronology portion of this study. However, these samples were taken 2 meters apart, from the same drillcore (15BUDD120), and were within the same stratigraphic facies. The CL images show zircons with continuous oscillatory zoning, and are ranging from 15 to 30 µm in diameter (Figure 5).

Sample 15BUDD120 – 226.04 m yielded 24 dates from 20 zircons. Considering only the 13 results with <5% discordance (Table 2Supplementary Material 2), the MSWD is 2.7 and indicates an age spread not consistent with a single age population. Omitting the three youngest ages as statistical outliers probably influenced by diffusional Pb-loss, yields a mean age for the remaining population yields a mean age of 2693.2 ± 5.8 Ma (95% cl; n= 10; MSWD=0.88, Figure 3). The average and range of Th/U from the SHRIMP analyses of the more concordant zircons from this sample is 0.90 and 0.39-1.55, respectively.

Sample 15BUDD120 – 228.42 has 18 dates from 16 grains. The ages <5% discordant and <0.1% common Pb yield a mean ²⁰⁷Pb/²⁰⁶Pb age of 2693.6 ± 6.0 Ma (95% cl, n=9; MSWD=0.24, Figure 3; Table 2Supplementary Material 2). The average and range of Th/U of the more concordant zircons is 0.95 and 0.73-1.31, respectively.

The ages obtained for the two adjacent samples from the same stratigraphical facies agree within error. Hence, the data can be combined to obtain a mean ²⁰⁷Pb/²⁰⁶Pb age for the Transitional Andesite (unit III) of 2693.4 ± 4.1 Ma (95% c.l., n=19; MSWD=0.55). The average Th/U from the zircons used in this mean age calculation was 0.92.

Table 13: SHRIMP isotopic data for monazite from the Penzance granite (mounts N18-06, 16)

Penzance gra	Penzance granite (mount N18-06, 16)															
<u>Mount</u> grain-spot	<u>ppm</u> <u>U</u>	<u>ppm</u> <u>Th</u>	232Th /238U	<u>4f206</u> (%)	<u>4f208</u> (%)	²⁰⁷ Pb* / ²⁰⁶ Pb*	$\pm 1\sigma$ <u>err</u>	206Pb* /238U	$\pm 1\sigma$ <u>err</u>	<u>207Pb*</u> /235U	$\pm 1\sigma$ <u>err</u>	²⁰⁸ Pb* / ²³² Th	$\pm 1\sigma$ <u>err</u>	²⁰⁷ Pb/ ²⁰⁶ Pb Age (Ma)	<u>lσ</u> err	<u>%</u> Disc.
≤5% discorda	nce and	<0.5% 4	<u>f206</u>													
<u>N18-06B.B-</u>																
<u>5</u>	<u>207</u>	<u>12986</u>	<u>63.00</u>	<u>-0.02</u>	<u>0.00</u>	<u>0.1865</u>	<u>0.0022</u>	<u>0.5074</u>	<u>0.0114</u>	<u>13.044</u>	<u>0.3320</u>	<u>0.137</u>	<u>0.0026</u>	<u>2711</u>	<u>19</u>	<u>+2</u>
<u>N18-16C.8-</u>			• • • • •	0.01	0.01					10.105						
$\underline{\underline{3}}$	<u>629</u>	<u>12531</u>	<u>20.00</u>	<u>-0.01</u>	<u>-0.01</u>	<u>0.1863</u>	<u>0.0010</u>	<u>0.5232</u>	<u>0.0101</u>	<u>13.435</u>	<u>0.2720</u>	<u>0.148</u>	<u>0.0032</u>	<u>2709</u>	<u>9</u>	<u>0</u>
<u>N18-16A.1-</u>	508	15332	30.00	-0.06	-0.02	0 1862	0.0014	0 5092	0.0069	13 075	0.2050	0 142	0.0030	2709	12	+2
N18-	<u>500</u>	<u>13332</u>	<u>50.00</u>	0.00	0.02	0.1002	0.0014	0.3072	0.0007	<u>15.075</u>	0.2050	0.142	0.0050	2102	12	
<u>06B.G-2</u>	<u>215</u>	<u>14282</u>	<u>66.00</u>	0.02	0.00	<u>0.1855</u>	0.0022	<u>0.5170</u>	0.0097	<u>13.224</u>	<u>0.2950</u>	<u>0.141</u>	0.0026	<u>2703</u>	<u>19</u>	<u>+1</u>
<u>N18-</u>																
<u>06B.A-6</u>	<u>789</u>	<u>32172</u>	<u>41.00</u>	<u>0.00</u>	<u>0.00</u>	<u>0.1853</u>	<u>0.0015</u>	<u>0.5092</u>	<u>0.0090</u>	<u>13.010</u>	<u>0.2560</u>	<u>0.140</u>	<u>0.0029</u>	<u>2701</u>	<u>13</u>	<u>+2</u>
<u>N18-16A.1-</u> 1	448	11587	26.00	0.00	0.00	0 1852	0.0026	0 5288	0.0091	13 499	0 3020	0 1 5 2	0.0032	2700	23	-1
N18-06B.B-		11007	-0.00	0.00	0.00	0.1002	0.00000	0.0100	0.0071	10.177	0.000000	0.101	0.0002			
<u></u>	<u>310</u>	<u>11884</u>	<u>38.00</u>	<u>-0.04</u>	<u>-0.01</u>	<u>0.1851</u>	<u>0.0018</u>	<u>0.5140</u>	<u>0.0088</u>	<u>13.119</u>	<u>0.2620</u>	<u>0.138</u>	<u>0.0028</u>	<u>2699</u>	<u>16</u>	<u>+1</u>
<u>N18-</u>	0.45	16460	40.00	0.07	0.01	0.1045	0.0010	0.4000	0.0005	10.500	0.0540	0.100	0.0004	2.000	1.5	
<u>06B.G-5</u>	<u>345</u>	<u>16469</u>	<u>48.00</u>	<u>-0.06</u>	<u>-0.01</u>	<u>0.1847</u>	<u>0.0019</u>	<u>0.4933</u>	<u>0.0085</u>	<u>12.563</u>	<u>0.2540</u>	<u>0.136</u>	<u>0.0024</u>	<u>2696</u>	<u>17</u>	<u>+4</u>
06B.A-5	573	19934	35.00	0.43	0.11	0.1844	0.0017	0.5213	0.0094	13.257	0.2710	0.144	0.0028	2693	15	0
<u>N18-</u>																
<u>06B.K-2</u>	<u>1134</u>	<u>74444</u>	<u>66.00</u>	<u>0.34</u>	<u>0.04</u>	<u>0.1842</u>	<u>0.0016</u>	<u>0.4894</u>	<u>0.0085</u>	<u>12.430</u>	<u>0.2430</u>	<u>0.136</u>	<u>0.0027</u>	<u>2691</u>	<u>14</u>	<u>+5</u>
<u>N18-16B.6-</u>			~~ ~~		0.01											-
$\underline{\underline{2}}$	<u>926</u>	<u>62647</u>	<u>68.00</u>	<u>0.05</u>	<u>0.01</u>	<u>0.1842</u>	<u>0.0010</u>	<u>0.4854</u>	<u>0.0078</u>	<u>12.327</u>	<u>0.2130</u>	<u>0.142</u>	<u>0.0030</u>	<u>2691</u>	<u>9</u>	+5
<u>16D.15-1</u>	602	14098	23.00	0.02	0.01	0.1841	0.0009	0.5092	0.0083	12.929	0.2250	0.147	0.0030	2690	8	+1
<u>N18-16C.8-</u>															<u> </u>	
<u>5</u>	<u>664</u>	<u>14242</u>	<u>21.00</u>	<u>-0.05</u>	<u>-0.02</u>	<u>0.1841</u>	<u>0.0012</u>	<u>0.5198</u>	<u>0.0080</u>	<u>13.193</u>	<u>0.2240</u>	<u>0.141</u>	<u>0.0030</u>	<u>2690</u>	<u>11</u>	<u>0</u>
<u>N18-16C.8-</u>	1.00	11220	2 1 0 0	0.01	0.00	0.10.10	0.0013	0.400-	0.0110	10 505	0.01.40	0.1.1.1	0.0000	• (00	10	
<u>6</u>	<u>466</u>	<u>11320</u>	<u>24.00</u>	<u>0.01</u>	<u>0.00</u>	<u>0.1840</u>	<u>0.0013</u>	<u>0.4927</u>	<u>0.0118</u>	<u>12.502</u>	<u>0.3140</u>	<u>0.144</u>	<u>0.0029</u>	<u>2689</u>	<u>12</u>	+4

<u>N18-</u> 16D 16-1	1039	19243	19.00	0.03	0.01	0 1839	0.0007	0 5021	0.0120	12 729	0 3110	0 147	0.0033	2688	6	+2
<u>N18-</u>	1057	17215	17.00	0.02	0.01	0.1057	0.0007	0.0021	0.0120	12.12	0.0110	0.117	0.0055	2000	_	
<u>16G.18-1</u>	<u>1002</u>	<u>69393</u>	<u>69.00</u>	<u>0.32</u>	<u>0.04</u>	<u>0.1838</u>	<u>0.0009</u>	<u>0.4905</u>	<u>0.0102</u>	<u>12.430</u>	<u>0.2690</u>	<u>0.149</u>	<u>0.0035</u>	<u>2687</u>	<u>8</u>	<u>+4</u>
<u>N18-</u> 06B.A-7	<u>1097</u>	<u>38290</u>	<u>35.00</u>	<u>0.01</u>	<u>0.00</u>	<u>0.1835</u>	<u>0.0014</u>	<u>0.5314</u>	<u>0.0097</u>	<u>13.442</u>	<u>0.2700</u>	<u>0.146</u>	<u>0.0029</u>	<u>2685</u>	<u>13</u>	<u>-2</u>
<u>N18-</u> 06B.G-7	<u>216</u>	12340	<u>57.00</u>	0.07	0.01	0.1832	0.0020	0.5244	0.0095	13.249	<u>0.2840</u>	0.143	0.0028	2682	<u>18</u>	<u>-1</u>
<u>N18-</u> 16D.14-1	129	6945	54.00	-0.03	-0.01	0.1832	0.0019	0.5022	0.0137	12.685	0.3700	0.152	0.0032	2682	17	+2
N18-16A.1-																
<u>4</u>	<u>279</u>	<u>15220</u>	<u>54.00</u>	<u>-0.01</u>	<u>0.00</u>	<u>0.1831</u>	<u>0.0016</u>	<u>0.5303</u>	<u>0.0114</u>	<u>13.390</u>	<u>0.3120</u>	<u>0.152</u>	<u>0.0032</u>	<u>2681</u>	<u>14</u>	<u>-2</u>
<u>N18-06B.B-</u> <u>6</u>	<u>308</u>	10496	<u>34.00</u>	0.03	0.01	0.1830	<u>0.0018</u>	0.4883	0.0107	12.323	<u>0.2980</u>	0.137	0.0028	2681	<u>16</u>	+4
<u>N18-</u> 06B G-4	178	11404	64 00	0.04	0.01	0 1828	0.0023	0 4965	0.0095	12 515	0 2870	0 1 3 9	0.0026	2679	20	+3
<u>N18-</u> 06B K-3	895	38750	43.00	0.02	0.00	0.1827	0.0015	0.4817	0.0083	12.135	0.2340	0.136	0.0026	2678	13	+5
N18-16A.1-	<u>075</u>	30737	<u>+3.00</u>	0.02	0.00	0.1027	0.0015	0.4017	0.0005	12.133	0.2340	0.150	0.0020	2010	<u>15</u>	<u> </u>
3	<u>515</u>	<u>14308</u>	<u>28.00</u>	<u>-0.01</u>	0.00	<u>0.1827</u>	<u>0.0010</u>	<u>0.5205</u>	<u>0.0105</u>	<u>13.111</u>	<u>0.2760</u>	<u>0.147</u>	<u>0.0032</u>	<u>2677</u>	2	<u>-1</u>
<u>N18-16C.8-</u> 1	638	13479	21.00	0.00	0.00	0.1824	0.0014	0.5182	0.0072	13.035	0.2110	0.147	0.0032	2675	13	-1
<u>N18-</u> 06B.A-1	863	31292	36.00	-0.02	0.00	0.1824	0.0015	0.5070	0.0088	12.750	0.2490	0.149	0.0030	2675	14	+1
<u>N18-06B.B-</u>	296	11665	39.00	-0.09	-0.02	0.1823	0.0020	0 5334	0.0095	13 405	0.2850	0 144	0.0029	2674	18	_3
N18-06B.B-	270	<u>11005</u>	<u>37.00</u>	0.02	0.02	0.1025	0.0020	0.0004	0.0075	<u>15.405</u>	0.2030	0.144	0.0022	2014	10	
1	<u>188</u>	<u>10313</u>	<u>55.00</u>	<u>0.05</u>	<u>0.01</u>	<u>0.1821</u>	<u>0.0023</u>	<u>0.5124</u>	<u>0.0099</u>	<u>12.868</u>	<u>0.2980</u>	<u>0.144</u>	<u>0.0026</u>	<u>2672</u>	<u>21</u>	<u>0</u>
<u>N18-</u> 06B.G-3	<u>475</u>	<u>24369</u>	<u>51.00</u>	<u>-0.03</u>	<u>-0.01</u>	<u>0.1821</u>	<u>0.0017</u>	<u>0.4923</u>	<u>0.0083</u>	<u>12.363</u>	<u>0.2420</u>	<u>0.136</u>	0.0026	<u>2672</u>	<u>15</u>	<u>+3</u>
<u>N18-16A.6-</u> 1	1052	69743	66.00	-0.01	0.00	0.1821	0.0007	0.5010	0.0077	12.581	0.2020	0.150	0.0033	2672	6	+2
<u>N18-16C.8-</u> 2	605	11778	19.00	0.00	0.00	0 1821	0.0010	0 5212	0.0089	13 084	0 2390	0 149	0.0030	2672	9	
$\frac{\underline{N18}}{16C 10}$	587	20801	35.00	0.02	0.00	0.1820	0.0011	0.5089	0.0006	12 772	0.2570	0.146	0.0033	2671	10	+1
<u>N18-</u> <u>16C.10-1</u>	<u>466</u>	<u>14728</u>	<u>32.00</u>	<u>0.10</u>	<u>0.03</u>	<u>0.1819</u>	<u>0.0011</u>	<u>0.5268</u>	<u>0.0110</u>	<u>12.772</u> <u>13.210</u>	<u>0.2900</u>	<u>0.140</u> <u>0.153</u>	0.0039	2670	<u>10</u>	<u>-2</u>

<u>N18-06B.B-</u> <u>2</u> <u>N18-16C.8-</u> <u>4</u> N18-	<u>202</u>	<u>9808</u>	49.00													
<u>N18-16C.8-</u> <u>4</u> N18-		in the second se	49.00	0.22	0.04	0.1812	0.0022	0.5116	0.0094	12.779	0.2860	0.141	0.0027	2664	20	0
<u>4</u> N18-																
N18-	<u>636</u>	<u>13910</u>	<u>22.00</u>	<u>0.02</u>	<u>0.01</u>	<u>0.1810</u>	<u>0.0010</u>	<u>0.5352</u>	<u>0.0069</u>	<u>13.353</u>	<u>0.1920</u>	<u>0.144</u>	<u>0.0030</u>	<u>2662</u>	<u>9</u>	<u>-4</u>
<u>16D.13-1</u>	<u>389</u>	<u>6592</u>	<u>17.00</u>	<u>0.09</u>	<u>0.04</u>	<u>0.1808</u>	<u>0.0011</u>	<u>0.5403</u>	<u>0.0104</u>	<u>13.471</u>	<u>0.2760</u>	<u>0.155</u>	<u>0.0034</u>	<u>2661</u>	<u>10</u>	<u>-5</u>
<u>N18-</u> 06B.D-1	<u>362</u>	<u>26423</u>	<u>73.00</u>	<u>0.04</u>	<u>0.00</u>	<u>0.1808</u>	<u>0.0018</u>	<u>0.4927</u>	<u>0.0099</u>	12.282	<u>0.2780</u>	<u>0.139</u>	0.0026	<u>2660</u>	16	<u>+3</u>
<u>N18-</u> 16C.10-3	557	15536	28.00	0.07	0.02	0.1805	0.0012	0.5212	0.0087	12.968	0.2360	0.142	0.0030	2657	11	-2
>5% discordance and/or >0.5% 4f206																
<u>N18-</u>																
<u>06A.N-3</u>	<u>115</u>	<u>12090</u>	<u>105.00</u>	<u>1.31</u>	<u>0.09</u>	<u>0.1942</u>	<u>0.0046</u>	<u>0.3399</u>	<u>0.0074</u>	<u>9.100</u>	<u>0.2920</u>	<u>0.120</u>	<u>0.0024</u>	<u>2778</u>	<u>38</u>	<u>+32</u>
<u>N18-</u> 06B.A-4	484	26279	54.00	0.98	0.17	0.1903	0.0024	0.4979	0.0106	13.063	0.3280	0.134	0.0025	2745	21	+5
<u>N18-06B.E-</u>																
<u>1</u>	<u>142</u>	<u>5608</u>	<u>40.00</u>	<u>2.70</u>	<u>0.69</u>	<u>0.1879</u>	<u>0.0044</u>	<u>0.5326</u>	<u>0.0107</u>	<u>13.801</u>	<u>0.4280</u>	<u>0.132</u>	<u>0.0024</u>	<u>2724</u>	<u>39</u>	<u>-1</u>
<u>N18-</u> 06B K_1	440	318/11	72.00	0.03	0.12	0 1852	0.0025	0.4438	0.0078	11 331	0.2530	0.120	0.0023	2700	22	+12
<u>00D.R-1</u> N18-	<u>440</u>	<u>31041</u>	<u>12.00</u>	<u>0.95</u>	<u>0.12</u>	<u>0.1652</u>	0.0023	0.4438	0.0078	<u>11.331</u>	0.2330	<u>0.120</u>	0.0025	2700		<u>+12</u>
<u>06B.G-1</u>	173	<u>10873</u>	<u>63.00</u>	<u>0.06</u>	<u>0.01</u>	0.1843	<u>0.0025</u>	<u>0.4764</u>	0.0124	<u>12.104</u>	<u>0.3560</u>	<u>0.133</u>	0.0027	<u>2692</u>	22	<u>+7</u>
<u>N18-06B.B-</u>																
<u>8</u>	<u>245</u>	<u>13623</u>	<u>56.00</u>	<u>-0.03</u>	<u>-0.01</u>	<u>0.1831</u>	<u>0.0020</u>	<u>0.4666</u>	<u>0.0083</u>	<u>11.780</u>	<u>0.2490</u>	<u>0.123</u>	<u>0.0022</u>	<u>2681</u>	<u>18</u>	<u>+8</u>
<u>N18-16A.1-</u> <u>2</u>	<u>288</u>	<u>14906</u>	<u>52.00</u>	<u>0.08</u>	<u>0.01</u>	<u>0.1819</u>	<u>0.0015</u>	<u>0.5669</u>	<u>0.0127</u>	<u>14.220</u>	<u>0.3420</u>	<u>0.160</u>	<u>0.0036</u>	<u>2670</u>	<u>14</u>	<u>-8</u>
<u>N18-</u>	240	26244	75.00	2.02	0.21	0 1010	0.0056	0 2042	0.0120	0.(25	0.4420	0.122	0.0020	2(70	51	1.2.1
<u>U0B.A-8</u> N18-06B B-	<u>349</u>	<u>20244</u>	<u>/5.00</u>	<u>2.02</u>	<u>0.21</u>	<u>0.1818</u>	<u>0.0056</u>	<u>0.3843</u>	0.0130	<u>9.035</u>	<u>0.4430</u>	<u>0.122</u>	<u>0.0029</u>	<u>2070</u>	<u>51</u>	<u>+21</u>
<u>4</u>	<u>143</u>	<u>9993</u>	<u>70.00</u>	<u>0.14</u>	<u>0.02</u>	<u>0.1816</u>	0.0027	<u>0.4682</u>	0.0095	<u>11.725</u>	<u>0.2960</u>	<u>0.128</u>	0.0025	<u>2668</u>	<u>24</u>	<u>+7</u>
<u>N18-</u>	220	1.4705	(7.00		0.04	0.1014	0.0000	0.47.41	0.0101	11.055	0.0000	0.100	0.0005	2444	10	
<u>06B.G-8</u>	<u>220</u>	<u>14795</u>	<u>67.00</u>	<u>0.26</u>	<u>0.04</u>	<u>0.1814</u>	<u>0.0020</u>	<u>0.4741</u>	<u>0.0101</u>	<u>11.857</u>	<u>0.2890</u>	<u>0.128</u>	0.0025	2666	18	<u>+6</u>
<u>IN18-16B.6-</u> <u>3</u>	<u>843</u>	<u>59533</u>	<u>71.00</u>	<u>0.07</u>	<u>0.01</u>	<u>0.1812</u>	<u>0.0010</u>	<u>0.4463</u>	<u>0.0081</u>	<u>11.152</u>	<u>0.2140</u>	<u>0.140</u>	<u>0.0030</u>	<u>2664</u>	<u>9</u>	<u>+11</u>
<u>N18-</u> 06A.N-1	76	9566	125.00	1.76	0.15	0.1811	0.0049	0.4884	0.0112	12.191	0.4330	0.110	0.0023	2663	45	+4
<u>N18-</u> 06B G-6	281	13360	48.00	0.06	0.01	0.1810	0.0018	0.4676	0.0182	11 670	0.4720	0.137	0.0027	2662	17	+7

1011	_																	
1011	[N18-																
1012		<u>16C.10-2</u>	629	<u>16612</u>	26.00	<u>0.12</u>	0.03	0.1802	0.0019	0.4040	0.0213	10.040	0.5400	<u>0.133</u>	0.0031	<u>2655</u>	17	+18
1013	Γ	N18-																
1014		<u>06B.A-2</u>	<u>814</u>	<u>29448</u>	<u>36.00</u>	<u>1.02</u>	<u>0.23</u>	<u>0.1763</u>	<u>0.0020</u>	<u>0.4132</u>	0.0093	<u>10.042</u>	<u>0.2560</u>	<u>0.124</u>	<u>0.0024</u>	<u>2618</u>	<u>19</u>	<u>+15</u>
1015		N18-																
1016		<u>06B.A-3</u>	<u>638</u>	<u>36168</u>	<u>57.00</u>	<u>1.50</u>	<u>0.23</u>	<u>0.1753</u>	<u>0.0038</u>	<u>0.4980</u>	<u>0.0173</u>	<u>12.034</u>	<u>0.4960</u>	<u>0.136</u>	<u>0.0027</u>	<u>2609</u>	<u>36</u>	<u>0</u>
1017		<u>N18-</u>																
1018		<u>16G.23-1</u>	<u>147</u>	<u>17544</u>	<u>120.00</u>	<u>0.89</u>	<u>0.04</u>	<u>0.1270</u>	<u>0.0034</u>	<u>0.2374</u>	<u>0.0127</u>	<u>4.155</u>	<u>0.2490</u>	<u>0.094</u>	<u>0.0021</u>	<u>2056</u>	<u>47</u>	<u>+33</u>
1019		<u>N18-</u>																
1010		<u>16G.23-2</u>	<u>456</u>	<u>36602</u>	80.00	<u>1.94</u>	0.08	0.0971	0.0042	0.1036	<u>0.0017</u>	<u>1.387</u>	<u>0.0640</u>	<u>0.067</u>	0.0019	<u>1569</u>	<u>81</u>	<u>+59</u>

3.1.34.1.3 Penzance granite

The CL imaging of abundant zircons from all three samples collected from different locations in a single quarry of the Penzance granite displays textures typical of metamict zircons (Figure 6). These include cavities, fractures, disruption of the original zoning and development of dark CL areas (Corfu, 2003; Kılıç, 2016).

Even when targeting zircon grains seemingly less affected by metamictisation, twenty-seven analysis were aborted throughout thea single analytical session due to the unacceptably high 204 Pb content. Of the twenty-four analysis which were not aborted, only nine were <5%discordant and had less than 1% common Pb (Figure 6, Table 2 Supplementary Material 2). The U and Th contents of completed analyses (average of ~580 and ~400 ppm, respectively) were commensurate with the observed metamictisation. The nine near concordant analysis have scattered ages typical of metamict zircons, and only one of the ages is within error of the previously reported age (Geoscience Australia (GA), 2019). We conclude that no reliable age could be calculated from these zircon data. The average and range of Th/U from the completed SHRIMP analyses was 0.72 and 0.52-1.46, respectively.

3.24.2 **U-Pb SHRIMP monazite dating of the Penzance granite**

A significant number of the monazite grains were separated from the three Penzance granite samples. They have euhedral zoning textures on BSE images (Figure 7), which indicates magmatic crystallization. Recent studies (e.g.: Piechocka et al., 2017) have demonstrated the increased reliability of magmatic monazite as a geochronometer for igneous rocks with unreliable zircon age data, when subsequent metamorphic conditions remained under the Pb closure temperature of monazite. Monazite contains high U and Th and incorporates minor common Pb and, unlike zircon, is largely immune to metamictisation and radiogenic Pb loss at low temperatures (Piechocka et al., 2017).

A total of 38 of 56 analysis from 18 grains with low common Pb (f206 <0.5%) and low discordance (\leq 5%) (Table 13) yield a mean ²⁰⁷Pb/²⁰⁶Pb age of 2681.9 ± 4.5 Ma (95% c1; MSWD = 1.4; Figure- 3). The slightly high MSWD indicates the possibility of scatter from a single-age population. However, in the absence of any skewness in the age probability plot (not shown), anomalous Th-U chemistry or other evidence for either inheritance or Pb-loss, and given the amount of data collected (n=56) and used (n=38), this is considered to be the age of these igneous monazites.

<u>3.34.3</u>

HF-isotopes in zircon

3.3.14.3.1 Teutonic Bore volcanics

Twenty-five zircon grains from sample 15BUDD78 - 111.60 m of the footwall rhyolite (unit I) were analysed for Lu-Hf by LA-SS-ICP-MS (Table 4 Supplementary Material 3, mount N18-15D, sample B78,). The calculated $\varepsilon Hf_{(i)}$, based on the interpreted SHRIMP ²⁰⁷Pb/²⁰⁶Pb age (2692.9Ma), plot in a homogeneous population with values ranging between +2.3 and +5.6 (Figure 8), and a mean of 3.7 ± 0.5 (MSWD = 0.47, n = 25). The low MSWD value partly reflects the relatively large $EHf_{(i)}$ errors on individual analyses.

Twenty-nine Lu–Hf analysis (Table 4Supplementary Material 3, mount N18-15C, sample B137) were conducted on zircons from sample 15BUDD137 – 398.60 m of the same footwall rhyolite (unit I), and, once again, the $\mathcal{E}Hf_{(i)}$ is calculated based on the interpreted SHRIMP 207 Pb/ 206 Pb age for emplacement. \mathcal{E} Hf_(i) values range between -0.6 and +5.2 with a mean of 2.9 ± 0.5 (MSWD = 0.90, n = 29, Figure 8). Combining the ϵ Hf_(i) data for the both footwall rhyolite samples (unit I) yields a value of 3.27 ± 0.33 (MSWD = 0.79, n = 54).

Sixteen Lu–Hf analysis (Table 4Supplementary Material 3, B37) were conducted on zircon from both samples of transitional andesite (unit III) and the mean age of the combined SHRIMP analyses of 2693.4 Ma was used to calculate $EHf_{(i)}$ which showed considerable scatter and ranged between -11.7 and +8.6 with significant errors on individual analyses (Table 4<u>Supplementary Material 3</u>). The lower precision is a result of the smaller spot-size necessary for the small zircons from these samples. The mean $\mathcal{E}Hf_{(i)}$ for the transitional andesite (unit III) is 2.6 ± 1.8 (MSWD = 1.05, n = 16, Figure 8).

3.3.24.3.2 Penzance granite

Recent studies show that the Lu–Hf system remains relatively undisturbed within metamic zircon that do not undergo significant later alteration (Lenting et al., 2010). Thirty-four Lu–Hf analyses on zircon from the Penzance granite (Table 4Supplementary Material 3, N18-06) show a range of $\mathcal{E}Hf_{(i)}$ between -1.5 to +4.7 with mean value of 2.17 ± 0.45 (MSWD = 1.15, n = 34). The $\mathcal{E}Hf_{(i)}$ values were calculated based on the SHRIMP monazite ages presented herein.

3.4<u>4.4</u> Trace elements in zircon

Selected trace elements were measured via LA-SS-ICP-MS (Table 5Supplementary Material 4). Figure 9 illustrates patterns for selected REEs normalized to chondrite (Anders and Grevesse, 1989) for the two samples from the footwall rhyolite (unit I), the combined samples of andesite (unit III) and the Penzance granite. Despite being represented separately on Figure 9, both samples of footwall rhyolite (unit I) display consistent REE chemistry.

The zircons from the footwall rhyolite (unit I) and the andesite (unit III) have similar MREE and HREE content, as showed on (Figure 9). The mean Yb/Dy ratio is 4.15 ± 0.85 and 4.45 ± 0.68 (1 σ) for the rhyolite and andesite, respectively. The Ce anomaly is estimated by the Ce/Nd_(CN) ratio (Loucks et al., 2018) to be positive in both rock types (Tables 4Supplementary Material 4), with mean Ce/Nd_(CN) of 1.04 ± 0.58 and 1.30 ± 0.75 (1 σ) for the rhyolite and andesite, respectively. The zircons from the Penzance granite show a mean Ce/Nd_(CN) of 0.92 ± 0.23 (1 δ), indicating a positive Ce anomaly, and Yb/Dy ratio of 2.5 ± 0.67 (1 σ). **Commented [61]:** If you believe that this graphical representation might be misleading provide an alternative version. To me it seems clear as it is, and I find this sentence not necessary.

Commented [62R62]: The unnecessary sentence was erased.

Table 5: Selected trace element contents (ppm) of zircons from the Penzance granite and

the volcanic sequence at the Bentley deposit.

45 DISCUSSION

4.15.1 Age constrains on the Penzance granite

Hollis et al. (2015) proposed a link between VHMS mineralisation at the TBTeutonic Bore Camp and the emplacement of the HFSE-enriched Penzance granite, based on geochemical similarities, the proximity and broad synchronicity between the intrusive magmatic activity and the volcanism of the host sequence. These observations were underpinned by a U-Pb zircon age for the volcanism (2692 \pm 4 Ma; Nelson, 1995) and the age reported by Champion and Cassidy (2002) of 2679 \pm 8 Ma, for the Kent Complex of the Penzance Supersuite. This latter age was obtained by SHRIMP U-Pb zircon dating of sample ID 96969076 of Geoscience Australia's database, after L.Black, AGSO (unpublished) in Champion and Cassidy (2002).

Champion and Cassidy (2002) reported the age but not the data table. However, the geochronological data, as well as location and description for sample ID 96969076, are available from Geoscience Australia's Geochron Delivery database (Geoscience Australia (GA)₅₂ 2019). The reported age for this sample is 2686 ± 9 Ma with MSWD = 1.6 and probability = 0.044 (Geoscience Australia-(GA)₅₂ 2019), which is within error of the age reported by Champion and Cassidy (2002), but not identical.

We have reprocessed the data available from Geochron Delivery for sample 96969076 and obtained an identical age of 2686 ± 9 Ma, MSWD = 1.6 from 21 analysis. However, given the scatter inferred by the high MSWD, we have filtered the data by only considering analysis with common Pb <0.3%, deriving a more statistically robust age of 2682 ± 9 Ma (n=12; MSWD = 1.3). More importantly, only four zircons were recovered from sample 96969076 and the 21 analyses and calculated age is based on analyses from only three grains, of which: one wasis

Commented [63]: As for Table 2 and 4, also Table 5 should be included in the ESMs. Raw data should have no place in the manuscript. If you think to be necessary provide a small summary-table of the analyses, but your figures already represent well your data.

Commented [64R64]: Ok

a xenocryst. Each of theour three samples we collected from the same quarry had hundreds of zircon grains, and after hand-picking the clearest (least metamict) zircons and analysing the best areas based on CL-SE imaging, we only detected one analysis in the relevant time interval, and it was 7% discordant. In view of this discrepancy, we searched for other datable minerals in the Penzance granite and identified igneous monazite. The monazite age of 2681.9 ± 4.5 Ma discussed above is considered to be a statistically valid age of magma crystallization for the Penzance granite, and supersedes the previous zircon age(s).

 $^{1303}_{1304}$ 469

4.25.2 Geochronological associations

The relative timing of ore formation in the **TBTeutonic Bore Ceamp** is well constrained within the stratigraphic sequence at Jaguar, where substantial evidence of seafloor precipitation indicate coeval mineralisation to the development of the upper sedimentary package (unit IV). Such evidence is absent from Bentley and the **TBTeutonic Bore** deposit, which indicates that they were formed at greater depths, probably by replacement of a slightly older stratigraphy (see Figure 2A).

The syn-ore nature of the upper sedimentary package (unit IV) at Jaguar, the deposit hosted within the youngest stratigraphic level in the **TBTeutonic Bore Ceamp**, indicates that the hangingwall sequence at Jaguar post-dates ore formation and could provide a potential minimum mineralisation age. Attempts to date this sequence have proven unsuccessful to date (Das, 2018). The footwall in all three deposits, as well as the hangingwall immediately above the orebodies of the Bentley and the **TBTeutonic** Bore deposits, pre-date the mineralisation and represent a maximum age of ore formation.

The ages obtained in this study for the footwall rhyolite (unit I - 2691.7 ± 2.5 Ma and 2696.5 \pm 4.3 Ma) and the transitional andesite (unit III - 2693.4 \pm 4.1 Ma) suggest that mineralisation at the **TBTeutonic Bore Ceamp** is younger than c.a. 2694 Ma, as indicated in (Figure 10). The unpublished TIMS age for the footwall rhyolite sequence (unit I) of 2692.6 ± 1.5 Ma (Das,

2018) is indistinguishable from the SHRIMP age presented here for the pre-ore volcanic sequence at the TBTeutonic Bore Ceamp. Similarly, the previous SHRIMP age for the **TB**Teutonic Bore Ceamp sequence $(2692 \pm 4 \text{ Ma}; (Nelson, 1995))$ is similar to the age determined in this study (Figure 10). Therefore, although poorly constrained in the stratigraphy, it is likely that the porphyritic dacite dated by Nelson (1995) is part of the pre-ore stratigraphy (units I, II, or III).

The ages for the footwall rhyolite (unit I) of 2696.5 ± 4.3 Ma and 2691.7 ± 2.5 Ma are within error of each other, when considering a 95% confidence interval. However, considering the normal distribution tendency (Figure 10) of single-population ages obtained from multiple grains (Figure 10; Schoene et al., 2013), it is probable that these could also represent a long duration of volcanic activity during the development of this stratigraphic facies.

The ages for the footwall rhyolite (unit I) and the Penzance granite (2681.9 ± 4.5 Ma) do not overlap (Figure 10) at the 95% confidence interval and are not, therefore, coeval. Furthermore, the porphyritic dacite from Nelson (1995) and the transitional andesite (unit III) do not overlap the age of the Penzance (Figure 10) at a 95% confidence interval. We infer that these rocks pre-date the mineralisation and the syn-ore stratigraphy.

4.35.3 Geochemical correlations

4.3.15.3.1 Whole-rock geochemistry

Hollis et al. (2015) described similarities in whole-rock REE distribution between the Penzance granite (Kent Complex) and the felsic volcanics that host the mineralisation at Jaguar (footwall rhyolite – unit I). Based on these observations and the HFSE enrichment of both rock types they suggested a possible genetic link between these rocks, proposing that the footwall volcanic sequence at Jaguar would be the extrusive equivalent to the Penzance granite.

The geochronological results presented here indicate that the crystallization of the Penzance granite is not coeval to the formation of the footwall rhyolite (unit I) or the transitional andesite

(unit III) at Bentley. However, these processes occur within a ~12 M.y. interval. Given the
chemical similarities between these rock types and their proximity in age it is conceivable that
they are both the product of a single magmatic system or had a common source.

1413515Additionally, based on whole-rock geochemistry observations, other stratigraphic facies14141415516within the younger, syn-ore, portion of the volcanic sequence at the TBTeutonic Bore Ceamp14161417517are alternative candidates to be the extrusive correspondent to the Penzance granite.

The dacite that can be observed at the sedimentary-volcanic package of the upper sedimentary horizon (unit IV) in the Jaguar deposit (MPD from Belford et al., 2015) has Y/Zr ratios that indicates a tholeiitic affinity (Belford et al., 2015), which is also the case for the Penzance granite (ID 96969076, sampled from the same locality of the geochronological study; Sedgmen et al., 2007) (Figure 11). Furthermore, the MPD dacite yields a La/Yb_{CN} ratio of 3.4 - 5.5 (Belford, 2010), which indicates a significant LREE/HREE enrichment, equal to what is indicated by whole-rock REE content for the Penzance granite (Hollis et al., 2015).

525 <u>4.3.25.3.2</u> Zircon geochemistry

The Hf-isotopes corroborate Hollis et al. (2015)'s hypothesis of a genetic link between the **TB**Teutonic Bore Camp volcanic sequence and the Penzance granite. All zircons (Penzance, units I and III) have very similar \Box Hf_(i), with most values between -1 and +6 (Figure 8). The \Box Hf_(i) values show little contribution from evolved sources as shown in (Figure 8). Indeed, Nd and Pb isotopes indicate that the TBTeutonic Bore eCamp is located within a more juvenile zone of the Yilgarn craton, the Teutonic zone (Huston et al., 2014). The \Box Hf_(i) for the zircons from the Penzance granite and the volcanic rocks from the TBTeutonic Bore Ceamp plot above the CHUR line (Figure 8), indicating a juvenile depleted mantle source component. These \Box Hf_(i) are slightly higher than the \Box Hf_(i) of zircons from other granites and volcanics within the Kurnalpi Terrain (Isaac, 2015; Wyche et al., 2012).

According to Kirkland et al. (2015), parental magma composition is one of four factors that may contribute to variations in the Th/U of a zircon crystal. Therefore, the similar Th/U ratios (Table 2Supplementary Material 2) of the Penzance (~0.7) and Bentley zircons (Unit I: ~0.6) also suggest they could have a shared magma source. Furthermore, all zircons have similar Ce/Nd_(CN) ratios (Table 5Supplementary Material 4), which indicates comparable redox conditions, as this ratio is a proxy for the Ce anomaly (Loucks et al., 2018). The zircons from the Penzance granite have higher overall REE content and MREE/HREE enrichment (indicated by the Yb/Dy ratio), when compared to the Bentley units I and III zircons (Table 5 Supplementary Material 4). These chemical differences indicate that the Penzance granite is more fractionated but do not resolve whether this is the result of igneous **Camp** ore

et al., 2015; Das, 2018; Hallberg and Thompson, 1985; Macklin, 2010; Parker et al., 2017). The geochronology data presented in this study constrain in time several processes within the Teutonic Bore Camp, including the intrusion of the Penzance granite, which could be linked to the development of the mineral system.

The 4D evolutionary model of the Teutonic Bore Camp is achieved by the addition of the time dimension to the current understanding of the geological evolution of the deposits, including stratigraphy and geochemistry (Figure 2; Belford, 2010; Belford et al., 2015; Chen

differentiation from a common magma or magma production from a common source. The ~12 M.y. interval between the units I and III volcanics, and the Penzance granite suggests the latter.

4.45.4 The-Contribution to the 4D evolutionary model of the TBTeutonic Bore

Similarities in zircon chemistry (i.e.: \Box Hf_(i) and Th/U ratio; see section 5.3: Geochemical correlations) complemented by the geochemical correspondences between the Penzance granite and the TBTeutonic Bore volcanics (i.e.: HFSE-enrichment and REE pattern, see
section 5.3: Geochemical correlations), suggest a genetic association between the intrusive granite and the extrusive rocks that constitute the **TBTeutonic Bore** Camp host sequence.

Additionally, there is evidence of interaction between the Penzance and the volcanic rocks that are intruded by it, such as the ilrregular contact between the Penzance granite and the volcanic sequence, as well as, the recognition of intrusive veins of granitoid within the volcanics, and xenoliths of volcanic rocks within the <u>intrusive</u> granite (Hallberg and Thompson, 1985) indicate that the Penzance intrudes the volcanic Teutonic Bore sequence and that their proximity is not the result of subsequent tectonic processes. Considering the close geographic position of the granite and the ore-bearing volcanic sequence (Figure_1), their shared geochemical features and broad synchronicity, it is probable possible that the Penzance granite was involved in the process that generated the VHMS mineralisation at the TBTeutonic Bore Comm

Bore Ceamp.

The role of granites in the development of VHMS systems has been the focus of numerous studies ... Magmatic-hydrothermal contribution of metals is not necessary in the development of VHMS deposits (Huston et al., 2011) and syn-ore intrusions do not always directly supply metal to the system, but rather act as a heating source, driving hydrothermal circulation that leaches metals from the country host rock (Lode et al., 2017). However, in a number of cases there is evidence of a significant contribution of metals and/or volatiles from the magmatic source, in addition to the supply of heat (e.g.: Chen et al., 2015; Lode et al., 2017; e.g.: Yang and Scott, 1996).

Chen et al. (2015) used S-isotopes as a proxy for the hydrothermal fluid composition in the TBTeutonic Bore Camp and interpreted that the supply of sulphur to the hydrothermal ore fluid was the result of a mixture between seawater and a hydrothermal fluid of magmatic origin. These authors did not find compelling evidence for leaching of sulphur from the host sequence into the ore fluid in the TBTeutonic Bore Camp. Therefore, the Penzance granite is a strong

Commented [65]: References are required. Commented [66R66]: I simply erased the sentence. It was not necessary to the understanding of the paragraph and the studies that would be referenced are presented through the rest of the text. 5 candidate to have acted as the probable magmatic source of sulphur to the mineralisation, and

consequentlypossibly, metals.

4.5<u>5.5</u> Exploration strategies

Our observations show that the HFSE-enriched Penzance granite probably played a fundamental role in the supply of metals and heat that culminated in the development of the replacement-type VHMS deposits of the <u>TBTeutonic Bore Ceamp</u>. Therefore, future exploration efforts within the camp should focus on fluid pathways from <u>the-similar granites</u>. The emphasis should be on mapping syn- or pre-intrusive structures that could facilitate fluid flow from the granite to the host sequence. Fertile zones are likely to be discovered where these fluid paths find the appropriate conditions for metal precipitation, which has been suggested by previous studies to be sediment-rich horizons (Parker et al., 2017) and/or depositional breaks (Belford et al., 2015).

This paper supports conclusions proposed by Hollis et al. (2015), of a connection between HFSE-enriched granites and VHMS (± base metals) deposits within the Yilgarn Craton. Following the identification of fertile terrains, populated with HFSE-enriched granites, *greenfield* exploration campaigns should employ a multi-disciplinary approach to test the processes involved in the formation of an ore deposit. The development of 4D models (i.e. constrain in time of 3D geological processes) allows for a better understanding of the timing and nature of the magmatic and stratigraphical processes necessary for the development of such ore deposits. This is particular true in Archean replacement-type VHMS deposits, where the syn-volcanic timing of the mineralisation is not always clear (e.g. Barrote et al., 2019)

CONCLUSIONS

 Three mined VHMS orebodies in the Teutonic Bore eCamp (Teutonic Bore deposit, Jaguar and Bentley) formed at different stratigraphic levels. **Commented [67]:** Whereas the suggestion that the Penzance granite could have acted as a sulfur source is coherent with the isotopic data discussed in Chen et al. (2015), the assumption that metals were sourced from the the granite magma needs to be supported from further evidence. **Commented [68R68]:** We understand the reviewers concern and have re-phrased the text as to not point the reader towards unsupported affirmations.

1640		
1641		
1642 1643	609	• Jaguar formed coeval with its host sequence, whereas the ore in Teutonic Bore and
1644	610	Pontlow replaces dightly older stratigraphy
1645	010	Benney replaces slightly older stratigraphy.
1646	611	• The age of the bost sequence at the stratigraphic level of the Bentley deposit is ca
1647	011	• The age of the host sequence at the stratigraphic level of the bentley deposit is ea.
1649	612	2693 Ma.
1650	•	
1651	613	• The age of the TBTeutonic Bore eCamp mineralisation is likely possibly coeval to
1652		
1653	614	the intrusion of the Penzance granite at ca. 2682 Ma.
1655		
1656	615	• Monazite has been shown to be a more reliable chronometer than high-U-Th zircons
1657	(1)	
1658	616	in the HFSE-enriched Penzance granite.
1659	617	• The Penzance granite possibly acted as the source of heat and potentially
1661	017	• The renzance granite possibly acted as the source of heat and potentially
1662	618	fluid/metals to the ore formation at the TBTeutonic Bore Ceamp.
1663		
1664	619	• VHMS exploration in the Yilgarn Craton should focus in finding fluid pathways
1665		
1666	620	between HFSE-enriched intrusives and potential host sequences to orebodies.
1668		
1669		(7 A CIZNOWI E CMENITO
1670	621	<u>•/</u> ACKNUWLEGMEN15
1671		
1672	622	The authors acknowledge: Dr Steve Bereford and Mr. Kyle Hodges from IGO for their
1673	(22)	
1675	623	wisdom, access to samples, drill core and internal data; Thermo Fisher, GSWA and MRIWA
1676	624	for financial support: and the John de Laster Centre (IdLC) for the facilities, scientific and
1677	024	for infancial support, and the joint de Laeter Centre (Julic) for the facilities, scientific and
1678	625	technical assistance. We thank Dr. Haoyang Zhou, Dr. Nicolas Thebaud and an anonymous
1679		······································
1681	626	reviewer whose comments helped improve and clarify this manuscript. JdLC facilities are
1682		
1683	627	supported by a university-government consortium, ARC and AuScope via NCRIS. GeoHistory
1684	(20)	
1685	628	Facility instruments in the John de Laeter Centre, Curtin University were funded via an
1685	620	Australian Geophysical Observing System grant provided to AuScope Pty I to by the ΛOAA
1688	02)	Australian Ocophysical Observing System grant provided to Auscope Tty Etd. by the AQ44
1689	630	Australian Education Investment Fund program. The NPII multi-collector was obtained via
1600	-	
1090		
1691	631	funding from the Australian Research Council LIEF program (LE150100013).

632 78 BIBLIOGRAPHY

1699 1700 1701

1702 1703 1704

1705

1712

1713

1714

1726

1727

- Anders, E., Grevesse, N., 1989. Abundances of the elements: Meteoritic and solar. Geochim.
 Cosmochim. Acta 53, 197–214. https://doi.org/10.1016/0016-7037(89)90286-X
- 1706 Barrett, T.J., MacLean, W.H., 1994. Chemostratigraphy and hydrothermal alterationin 635 1707 636 exploration for VHMS deposits in greenstones and younger volcanic rocks., in: Lentz, 1708 D.R. (Ed.), Alteration and Alteration Processes Associated with Ore-Forming Systems, 637 1709 Short Course Notes / Geological Association of Canada. Geological Assoc. of Canada, 638 1710 St.John's, Newfoundland, pp. 433-467. 639 1711
 - Barrote, V., Tessalina, S., McNaughton, N., Jourdan, F., Hollis, S.P., Ware, B., Zi, J.-W., 2020.
 4D history of the Nimbus VHMS ore deposit in the Yilgarn Craton, Western Australia. Precambrian Research 337, 105536. https://doi.org/10.1016/j.precamres.2019.105536
- 1715643Belford, S.M., 2010. Genetic and chemical characterisation of the host succession to the
archean Jaguar VHMS deposit. (Doctoral dissertation). University of Tasmania, UTAS,
Hobart, Tasmania, Australia.
- 1718 646 Belford, S.M., Davidson, G.J., McPhie, J., Large, R.R., 2015. Architecture of the Neoarchaean 1719 647 Jaguar VHMS deposit, Western Australia: Implications for prospectivity and the 1720 648 presence of depositional breaks. Precambrian Res. 260, 136–160. 1721 649 https://doi.org/10.1016/j.precamres.2014.12.019 1722
- Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J., Foudoulis, C., 2003. TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chem. Geol. 200, 155–170. https://doi.org/10.1016/S0009-2541(03)00165-7
 - Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf isotope geochemistry of chondrites and the
 evolution of the mantle-crust system. Earth Planet. Sci. Lett. 148, 243–258.
 https://doi.org/10.1016/S0012-821X(97)00040-X
- 1729656Butt, C.R.M., Anand, R.R., Smith, R.E., 2017. Geology of the Australian regolith, in: Phillips,1730657G.N. (Ed.), Australian Ore Deposits. The Australian Institute of Mining and1731658Metallurgy, Melbourne, pp. 27–34.
- 1732 659 Champion, D.C., Cassidy, K.F., 2002. Granites of the Northern Eastern Goldfields: their
 1733 660 Distribution, Age, Geochemistry, Petrogenesis, Relationship with Mineralisation, and
 1734 661 Implications for Tectonic Environment, AMIRA P482/MERIWAM281-Yilgarn
 1735 662 Granitoids. AMIRA P482/MERIWAM281-Yilgarn Granitoids.
- 1736 663 Chen, M., Campbell, I.H., Xue, Y., Tian, W., Ireland, T.R., Holden, P., Cas, R.A.F., Hayman, 1737 P.C., Das, R., 2015. Multiple Sulfur Isotope Analyses Support a Magmatic Model for 664 1738 665 the Volcanogenic Massive Sulfide Deposits of the Teutonic Bore Volcanic Complex, 1739 Craton, Western 666 Yilgarn Australia. Econ. Geol. 110. 1411-1423. 1740 667 https://doi.org/10.2113/econgeo.110.6.1411
- 1741668Chu, N.-C., Taylor, R.N., Chavagnac, V., Nesbitt, R.W., Boella, R.M., Milton, J.A., German,1742669Chu, N.-C., Taylor, R.N., Chavagnac, V., Nesbitt, R.W., Boella, R.M., Milton, J.A., German,1743669C.R., Bayon, G., Burton, K., 2002. Hf isotope ratio analysis using multi-collector1744670inductively coupled plasma mass spectrometry: an evaluation of isobaric interference1745671corrections. J. Anal. At. Spectrom. 17, 1567–1574. https://doi.org/10.1039/b206707b
- Claoué-Long, J.C., Compston, W., Roberts, J., Fanning, C.M., 1995. Two Carboniferous Ages: 672 1746 A Comparison of Shrimp Zircon Dating with Conventional Zircon Ages and 40Ar/39Ar 673 1747 Analysis, in: Berggren, W.A., Kent, D.V., Aubry, M.-P., Hardenbol, J. (Eds.), 674 1748 Geochronology, Time Scales, and Global Stratigraphic Correlation, Society for 675 1749 676 Sedimentary Geology Special Publications. SEPM (Society for Sedimentary Geology). 1750 677 pp. 3-21. https://doi.org/10.2110/pec.95.54 1751
- 1752 678 Compston, W., Williams, I.S., Meyer, C., 1984. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Proc. 14th Lunar
- 1754 1755
- 1756
- 1757

Planet. Sci. Conf. J. Geophys. Res. Suppl 89, B525-B534. https://doi.org/10.1029/JB089iS02p0B525 Corfu, F., 2003. Atlas of Zircon Textures. Rev. Mineral. Geochem. 53, 469-500. https://doi.org/10.2113/0530469 Czarnota, K., Champion, D.C., Goscombe, B., Blewett, R.S., Cassidy, K.F., Henson, P.A., Groenewald, P.B., 2010. Geodynamics of the eastern Yilgarn Craton. Precambrian Res. 183, 175–202. https://doi.org/10.1016/j.precamres.2010.08.004 Das, R., 2018. Understanding the Palaeovolcanological and Palaeoenvironmental setting of Archaean VMS Deposit: Stratigraphic Architecture and Volcanology of the Archaean VMS host rock succession of the Teutonic Bore, Jaguar and Bentley Mine corridor, Eastern Goldfields Province, Western Australia (Master thesis). Melbourne University, Melbourne. De Laeter, J.R., Kennedy, A.K., 1998. A double focusing mass spectrometer for geochronology. Int. J. Mass Spectrom. 178, 43-50. https://doi.org/10.1016/S1387-3806(98)14092-7 Doyle, M.G., Allen, R.L., 2003. Subsea-floor replacement in volcanic-hosted massive sulfide deposits. Ore Geol. Rev. 23, 183-222. https://doi.org/10.1016/S0169-1368(03)00035-Ellis, P., 2004. Geology and mineralisation of the Jaguar copper-zinc deposit, Western Australia, in: McConachy, T.F., McInnes, B.I.A. (Eds.), Copper-Zinc Massive Sulphide Deposits in Western Australia. CSIRO Exploration and Mining, Melbourne, pp. 39-46. Fletcher, I.R., McNaughton, N.J., Davis, W.J., Rasmussen, B., 2010. Matrix effects and calibration limitations in ion probe U-Pb and Th-Pb dating of monazite. Chem. Geol. 270, 31-44. https://doi.org/10.1016/j.chemgeo.2009.11.003 Geoscience Australia (GA), 2019. Geochron Delivery Database. Accessed June 2019. http://www.ga.gov.au/geochron-sapub-web/geochronology/shrimp/search.htm. GeoVIEW.WA, 2016. 1:500 000 State interpreted bedrock geology polygons, 2016. Hallberg, J.A., Thompson, J.F.H., 1985. Geologic setting of the Teutonic Bore massive sulfide deposit, Archean Yilgarn Block, Western Australia. Econ. Geol. 80, 1953-1964. https://doi.org/10.2113/gsecongeo.80.7.1953 Hollis, S.P., Mole, D.R., Gillespie, P., Barnes, S.J., Tessalina, S., Cas, R.A.F., Hildrew, C., Pumphrey, A., Goodz, M.D., Caruso, S., Yeats, C.J., Verbeeten, A., Belford, S.M., Wyche, S., Martin, L.A.J., 2017. 2.7 Ga plume associated VHMS mineralization in the Eastern Goldfields Superterrane, Yilgarn Craton: Insights from the low temperature and shallow water, Ag-Zn-(Au) Nimbus deposit. Precambrian Res. 291, 119-142. https://doi.org/10.1016/j.precamres.2017.01.002 Hollis, S.P., Yeats, C.J., Wyche, S., Barnes, S.J., Ivanic, T.J., Belford, S.M., Davidson, G.J., Roache, A.J., Wingate, M.T.D., 2015. A review of volcanic-hosted massive sulfide (VHMS) mineralization in the Archaean Yilgarn Craton, Western Australia: Tectonic, stratigraphic and geochemical associations. Precambrian Res. 260, 113-135. https://doi.org/10.1016/j.precamres.2014.11.002 Huston, D.L., Champion, D.C., Cassidy, K.F., 2014. Tectonic Controls on the Endowment of Neoarchean Cratons in Volcanic-Hosted Massive Sulfide Deposits: Evidence from Lead and Neodymium Isotopes. Econ. Geol. 109, 11-26. https://doi.org/10.2113/econgeo.109.1.11 Huston, D.L., Relvas, J.M.R.S., Gemmell, J.B., Drieberg, S., 2011. The role of granites in volcanic-hosted massive sulphide ore-forming systems: an assessment of magmatic-hydrothermal contributions. Miner. Deposita 46, 473-507. https://doi.org/10.1007/s00126-010-0322-7

- 1817
- 1818

1832

1833

1839

1840

1841

1842

1843

1844

1845 1846

1847

1855

1856

- 1819
 1820
 1820
 1821
 730
 Independence Group NL (IGO), 2015. Annual Report 2015 (Unpublished Annual Report). Independence Group NL (IGO), Perth, W.A.
- 731 1822 731
 732 1823 732
 733 732 733
 734 733
 735 734 733
 736 735 735
 737 735 736
 738 737 737
 739 738 738
 730 739 739
 731 1824 733
 732 730 730
 733 730
 734 730
 735 730
 735 730
 736 730
 737 730
 738 730
 739 730
 730 730
 730 730
 730 730
 730 730
 730 730
 731 1824 733
 732 730
 733 730
 734 730
 735 730
 735 730
 736 730
 737 730
 738 730
 739 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 730
 730 740
 730 740
 730 740
 730 740
- Kennedy, A.K., De Laeter, J.R., 1994. The performance characteristics of the WA SHRIMP II 734 1825 735 ion microprobe., in: Abstracts Vol., U.S. Geological Survey Circular. Presented at the 1826 Eighth International Conference on Geochronology, Cosmochronology and Isotope 736 1827 Geology, Berkeley, USA, p. 166.Kirkland, C.L., Smithies, R.H., Taylor, R.J.M., Evans, 737 1828 1829 738 N., McDonald, B., 2015. Zircon Th/U ratios in magmatic environs. Lithos 212-215, 1830 739 397-414. https://doi.org/10.1016/j.lithos.2014.11.021
 - Kılıç, A.D., 2016. Investigation of zircon by CL (Cathodoluminescence) and Raman
 Spectroscopy. IOP Conf. Ser. Earth Environ. Sci. 44, 042006.
 https://doi.org/10.1088/1755-1315/44/4/042006
- 1834 743 Lenting, C., Geisler, T., Gerdes, A., Kooijman, E., Scherer, E.E., Zeh, A., 2010. The behavior 1835 744 of the Hf isotope system in radiation-damaged zircon during experimental 1836 745 hydrothermal alteration. Am. Mineral. 95, 1343-1348. 1837 https://doi.org/10.2138/am.2010.3521 746 1838
 - Li, X.-H., Long, W.-G., Li, Q.-L., Liu, Y., Zheng, Y.-F., Yang, Y.-H., Chamberlain, K.R.,
 Wan, D.-F., Guo, C.-H., Wang, X.-C., Tao, H., 2010. Penglai Zircon Megacrysts: A
 Potential New Working Reference Material for Microbeam Determination of Hf-O
 Isotopes and U-Pb Age. Geostand. Geoanalytical Res. 34, 117–134.
 https://doi.org/10.1111/j.1751-908X.2010.00036.x
 - Lode, S., Piercey, S.J., Layne, G.D., Piercey, G., Cloutier, J., 2017. Multiple sulphur and lead
 sources recorded in hydrothermal exhalites associated with the Lemarchant
 volcanogenic massive sulphide deposit, central Newfoundland, Canada. Miner.
 Deposita 52, 105–128. https://doi.org/10.1007/s00126-016-0652-1
- 1848 756
 1849 757
 1850 758
 1851 759
 1852 759
 Loucks, R.R., Fiorentini, M.L., Rohrlach, B.D., 2018. Divergent T-fO2 paths during crystallisation of H2O-rich and H2O-poor magmas as recorded by Ce and U in zircon, with implications for TitaniQ and TitaniZ geothermometry. Contrib. Mineral. Petrol. 173. https://doi.org/10.1007/s00410-018-1529-3
- 1852
 1853
 1854
 760
 1854
 761
 Ludwig, K.R., 2011. User's manual for Isoplot 4.15: a geochronological toolkit for Microsoft Excel, Berkeley Geochronology Center Special Publication.
 - Ludwig, K.R., 2009. Squid 2.50, A User's Manual, Berkeley Geochronology Centre Special
 Publication,.
 - Macklin, D., 2010. Alteration at the Teutonic Bore (VHMS) Deposit, Western Australia (B.Sc
 with honours thesis). University of Tasmania, UTAS.
- 1858765with honours thesis). University of Tasmania, UTAS.1859766McConachy, T.F., McInnes, B.I.A., Carr, G.R., 2004. Is Western Australia intrinsically1860767impoverished in volcanogenic massive sulphide deposits, or under explored?, in:1861768McConachy, T.F., McInnes, B.I.A. (Eds.), Copper-Zinc Massive Sulphide Deposits in1862769Western Australia. CSIRO Exploration and Mining, Melbourne, pp. 15–32.
- 1863 770 Morel, M.L.A., Nebel, O., Nebel-Jacobsen, Y.J., Miller, J.S., Vroon, P.Z., 2008. Hafnium 1864 isotope characterization of the GJ-1 zircon reference material by solution and laser-771 1865 772 MC-ICPMS. Chem. Geol. 255. ablation 231-235. 1866 773 https://doi.org/10.1016/j.chemgeo.2008.06.040
- 1867 Nasdala, L., Hofmeister, W., Norberg, N., Martinson, J.M., Corfu, F., Dörr, W., Kamo, S.L., 774 1868 775 Kennedy, A.K., Kronz, A., Reiners, P.W., Frei, D., Kosler, J., Wan, Y., Götze, J., 1869 776 Häger, T., Kröner, A., Valley, J.W., 2008. Zircon M257 - a Homogeneous Natural 1870 777 Reference Material for the Ion Microprobe U-Pb Analysis of Zircon. Geostand. 1871 Geoanalytical Res. 32, 247-265. https://doi.org/10.1111/j.1751-908X.2008.00914.x 778 1872
- 1873
- 1874
- 1875

- 1877 1878 779 Nelson, D.R., 1995. Compilation of SHIRMP U-Pb zircon geochronology data, 1994, Record 1879 / Geological Survey of Western Australia. Geological Survey of Western Australia, 780 1880 781 Perth 1881 Parker, P., Belford, S.M., Maier, R., Lynn, S., Stewart, W., 2017. Teutonic Bore - Jaguar -782 1882 Bentley volcanogenic massive sulfide field, in: Phillips, G.N. (Ed.), Australian Ore 783 1883 Deposits. The Australian Institute of Mining and Metallurgy, Melbourne, pp. 167–172. 784 1884 785 Patchett, P.J., Tatsumoto, M., 1980. Hafnium isotope variations in oceanic basalts. Geophys. 1885 Res. Lett. 7, 1077-1080. https://doi.org/10.1029/GL007i012p01077 786 1886 Paton, C., Hellstrom, J., Paul, B., Woodhead, J., Hergt, J., 2011. Iolite: Freeware for the 787 1887 1888 788 visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 1889 789 2508. https://doi.org/10.1039/c1ja10172b 1890 Piechocka, A.M., Gregory, C.J., Zi, J.-W., Sheppard, S., Wingate, M.T.D., Rasmussen, B., 790 1891 791 2017. Monazite trumps zircon: applying SHRIMP U-Pb geochronology to 1892 792 systematically evaluate emplacement ages of leucocratic, low-temperature granites in 1893 793 Precambrian Mineral. complex orogen. Contrib. Petrol. 172. a 1894 794 https://doi.org/10.1007/s00410-017-1386-5 1895 795 Scherer, E., 2001. Calibration of the Lutetium-Hafnium Clock. Science 293, 683-687. 1896 796 https://doi.org/10.1126/science.1061372 1897 Schoene, B., Condon, D.J., Morgan, L., McLean, N., 2013. Precision and Accuracy in 797 1898 798 Geochronology. Elements 9, 19–24. https://doi.org/10.2113/gselements.9.1.19 1899 799 Sedgmen, A., Hazell, M.S., Budd, A.R., Champion, D.C., 2007. OZCHEM National Whole 1900 800 Rock Geochemistry Dataset. 1901 801 Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, 1902 802 M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, 1903 803 M.N., Whitehouse, M.J., 2008. Plešovice zircon — A new natural reference material 1904 1905 804 for U-Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1-35. 1906 805 https://doi.org/10.1016/j.chemgeo.2007.11.005 1907 Stern, R.A., Bodorkos, S., Kamo, S.L., Hickman, A.H., Corfu, F., 2009. Measurement of SIMS 806 1908 807 Instrumental Mass Fractionation of Pb Isotopes During Zircon Dating, Geostand, 1909 Geoanalytical Res. 33, 145–168, https://doi.org/10.1111/j.1751-908X.2009.00023.x 808 1910 809 Thirlwall, M.F., Anczkiewicz, R., 2004. Multidynamic isotope ratio analysis using MC-ICP-1911 MS and the causes of secular drift in Hf, Nd and Pb isotope ratios. Int. J. Mass 810 1912 Spectrom. 235, 59-81. https://doi.org/10.1016/j.jjms.2004.04.002 811 1913 Williams, I.S., 1998. Geochronology by Ion Microprobe, in: McKibben, M.A., Shanks, W.C., 812 1914 813 Ridley, W.I. (Eds.), Applications of Microanalytical Techniques to Understanding 1915 814 Mineralizing Processes, Reviews in Economic Geology. pp. 1-35. 1916 815 Woodhead, J., Hergt, J., Shelley, M., Eggins, S., Kemp, R., 2004. Zircon Hf-isotope analysis 1917 with an excimer laser, depth profiling, ablation of complex geometries, and 816 1918 817 concomitantage estimation. Chem. Geol. 209 -121 - 1351919 https://doi.org/10.1016/j.chemgeo.2004.04.026 818 1920 Woodhead, J.D., Hergt, J.M., 2005. A Preliminary Appraisal of Seven Natural Zircon 819 1921 Reference Materials for In Situ Hf Isotope Determination. Geostand. Geoanalytical 1922 820 1923 Res. 29, 183–195. https://doi.org/10.1111/j.1751-908X.2005.tb00891.x 821 1924 822 Wyche, S., Kirkland, C.L., Riganti, A., Pawley, M.J., Belousova, E., Wingate, M.T.D., 2012. 1925 823 Isotopic constraints on stratigraphy in the central and eastern Yilgarn Craton, Western 1926 824 Australia. 657-670. Aust. J. Earth Sci. 59, 1927 825 https://doi.org/10.1080/08120099.2012.697677 1928 Yang, K., Scott, S.D., 1996. Possible contribution of a metal-rich magmatic fluid to a sea-floor 826 1929 827 hydrothermal Nature 420-423. system. 383.
- 1930
 828
 https://doi.org/10.1038/383420a0
 Nature
 585,
 420-42.

 1931
 828
 https://doi.org/10.1038/383420a0
 10.1038/383420a0
 10.1038/383420a0
- 1932

Table 2: SHRIMP isotopic data for zircons in samples 15BUDD78 (mount N18-15D), 15BUDD138 (mount N18-

15C), 15BUDD120 -226.04 (mount N19-07, 08), 15BUDD120 - 228.42 (mount N19-09, 10) and Penzance granite

(mount N18-06).

15BUDD78 (mc	unt Ni	18-15D)											
						<u>⁰∕₀</u>		<u>⁰∕₀</u>		<mark>∿⁄₀</mark>				
Mount grain-	ppm	ppm	²³² Th	<mark>%com</mark>	207 ₽b*	1σ	207 РЬ*	1σ	206 ₽ <u>b</u> *	10	err	²⁰⁷ Pb/ ²⁰⁶ Pb	10	%
spot	U	Th	/ 238 U	206Pb	/ 206 Pb*	err	/ 235 ₩	err	/ 238 ₩	err	corr	Age (Ma)	err	Disc
<u>≤3% discordanc</u>	e		1				1					r		
N18-15D.11-1	126	72	0.59	0.01	0.1860	0.38	13.46	3.0	0.525	3.0	0.992	2707	6	-1
N18-15D.2-1	65	29	0.46	0.04	0.1858	0.54	13.58	3. 4	0.530	3.4	0.987	2705	9	-2
N18-15D.9-1	75	33	0.45	-0.11	0.1856	1.04	13.44	3.3	0.525	3.1	0.948	2703	17	-1
N18-15D.8-1	71	33	0.48	-0.07	0.1854	0.55	13.56	3.3	0.531	3.2	0.986	2701	9	-2
N18-15D.7-1	214	129	0.62	0.05	0.1853	0.49	13.36	2.9	0.523	2.9	0.986	2700	8	-1
N18-15D.1-1	182	123	0.70	0.03	0.1850	0.32	13.42	3.2	0.526	3.2	0.995	2698	5	-1
N18-15D.14-1	185	129	0.72	0.03	0.1849	0.33	13.48	3.2	0.529	3.2	0.995	2697	5	-2
N18-15D.10-1	85	5 4	0.65	0.02	0.1845	0.46	13.30	3.0	0.523	3.0	0.988	2693	8	-1
N18-15D.13-1	148	101	0.70	0.04	0.1841	0.37	13.55	3.0	0.534	3.0	0.993	2690	6	-3
N18-15D.12-1	75	4 8	0.66	0.21	0.1840	0.57	13.48	2.9	0.531	2.9	0.981	2690	9	-3
N18-15D.3-1	73	38	0.53	0.11	0.1837	0.54	13.05	3.2	0.515	3.1	0.985	2686	9	+0
N18-15D.6-1	77	48	0.65	0.21	0.1827	0.62	13.22	3.5	0.525	3.4	0.98 4	2678	10	-2
>3% discordance	e-										•			
N18-15D.4-1	125	74	0.62	0.00	0.1857	0.42	14.52	3.3	0.567	3.2	0.992	2705	7	-9
N18-15D.5-1	175	124	0.73	0.07	0.1848	0.71	14.32	3.1	0.562	3.0	0.973	2696	12	-8
15BUDD138 (m	ount N	18-150												

1978		1	1	1	1	1	<u> </u>	1		1		I			
1979						207-1	<u>0∕</u>	207-1		20/-1	%		207-1-120(-1		
1980	Mount grain-	ppm	ppm	²³² Th	%com	207Pb*	lσ	207 Pb*	ŀσ	200 Pb*	Ισ	err	²⁰⁷ Pb/ ²⁰⁶ Pb	lσ	$\frac{0}{0}$
1981	spot	H H	Th	/ 238 U	206Pb	/ 200 ₽ <u></u> ₽ <u></u>	err	/ 433 U	err	/ 238 U	err	corr	Age (Ma)	err	Disc.
1982	<5% discordance	e and <	0.3% c	ommon	Pb								1		
1983	N18-15C.22-1	136	83	0.63	0.04	0.1857	0.37	13.15	3.0	0.513	2.9	0.992	2705	6	+2
1984	N18-15C.26-1	174	128	0.76	0.04	0.1853	0.32	13.64	3.3	0.534	3.3	0.995	2701	5	-3
1985	N18-15C.3-1	103	78	0.78	0.07	0.1851	0.44	13.27	3.5	0.520	3.5	0.992	2699	7	θ
1986	N18-15C.17-1	175	120	0.71	0.03	0.1849	0.3 4	13.44	3.2	0.527	3.2	0.994	2698	6	-1
1987	N18-15C.6-1	250	173	0.71	0.02	0.1849	0.28	13.03	3.2	0.511	3.2	0.996	2697	5	+2
1989	N18-15C.21-1	85	39	0.47	-0.03	0.1847	0.48	13.40	3.0	0.526	3.0	0.987	2696	8	-1
1990	N18-15C.4-1	35	15	0.44	0.23	0.1846	0.85	12.77	3.5	0.502	3.4	0.969	269 4	14	+3
1991	N18-15C.7-1	189	113	0.61	0.08	0.1845	0.33	13.35	3.4	0.525	3.3	0.995	269 4	5	-1
1992	N18-15C.9-1	91	51	0.58	0.10	0.1845	0.49	13.92	3.3	0.547	3.3	0.989	269 4	8	-5
1993	N18-15C.10-1	89	48	0.55	0.02	0.1845	0.49	13.67	3.6	0.537	3.5	0.990	269 4	8	-4
1994	N18-15C.16-1	178	111	0.64	0.02	0.1843	0.35	12.64	3.6	0.498	3.6	0.995	2692	6	+4
1996	N18-15C.14-1	181	123	0.70	0.03	0.1842	0.32	12.86	3.0	0.506	2.9	0.994	2691	5	+2
1997	N18-15C.15-1	65	29	0.47	0.12	0.1841	0.57	13.08	3.3	0.515	3.2	0.99	2690	9	1
1998	N18-15C.18-1	238	180	0.78	0.01	0.1840	0.28	13.16	3.1	0.519	3.0	0.996	2689	5	θ
1999	N18-15C.5-1	26 4	195	0.77	0.01	0.1840	0.27	13.10	3.1	0.516	3.0	0.996	2689	4	θ
2000	N18-15C.20-1	53	21	0.41	0.040	0.184	0.63	13.42	3	0.529	2.9	0.98	2689	10	-2
2002	N18-15C.1-1	84	38	0.47	0.02	0.1839	0.46	13.08	2.9	0.516	2.8	0.987	2688	8	θ
2003	N18-15C.11-1	165	98	0.61	0.09	0.1839	0.36	13.30	3.4	0.525	3.4	0.994	2688	6	-1
2004	N18-15C.8-1	169	98	0.60	0.05	0.1838	0.35	13.33	3.0	0.526	2.9	0.993	2688	6	-2
2005	N18-15C.24-1	91	74	0.84	0.00	0.1838	0.42	13.17	3.0	0.520	3.0	0.990	2687	7	-1
2006	N18-15C.12-1	102	59	0.60	0.04	0.1837	0.82	13.36	3.3	0.528	3.2	0.968	2686	14	-2
2008	N18-15C.19-1	30 4	26 4	0.90	0.06	0.1836	0.27	12.95	3.2	0.511	3.2	0.997	2686	4	+1
2009	N18-15C.23-1	60	24	0.42	0.09	0.1833	0.59	13.00	2.9	0.514	2.9	0.980	2683	40	θ
2010	N18-15C.25-1	9 4	66	0.73	0.12	0.1828	0.47	13.08	3.0	0.519	3.0	0.988	2678	8	-1
2011	N18-15C.13-1	51	25	0.50	0.24	0.1822	0.68	12.82	3.0	0.510	2.9	0.973	2673	11	+1
/////		-	-	-		-					-	-			

2018															
2019	>5% discordance	e or >0	. <u>3% co</u> i	nmon P	Ъ										
2020	N18-15C.2-1	52	21	0.43	1.77	0.1869	2.85	13.19	4.2	0.512	3.1	0.739	2715	47	+2
2022	N18-15C.27-1	192	171	0.92	0.12	0.1826	0.36	12.12	3.6	0.481	3.6	0.995	2676	6	+6
2023	15BUDD120 -2/	26.04 (I	mount	N19-07	, 08)								•		
2024 2025 2026	Mount grain-	ppm U	ppm Th	²³² Th ∕ ²³⁸ U	%com 206Pb	²⁰⁷ ₽Ь* / ²⁰⁶ ₽Ь*	% 1σ err	207 ₽Ь* ≠ 235 Ц	% 1σ err	206<mark>рђ*</mark> ∕²³⁸Џ	% 1σ err	err corr	²⁰⁷ РЬ/ ²⁰⁶ РЬ Аде (Ма)	1ज err	% Disc.
2027	< <u>5% discordance</u>	e		,		,		, ,		, ,					
2028	N19-08.K.1-1	156	163	1.08	0.070	0.1859	0.51	13.25	2.8	0.517	2.7	0.98	2707	8	1
2029	N19-07.G.1-1	107	85	0.82	0.09	0.1857	0.61	13.39	3.3	0.523	3.2	0.982	2704	10	θ
2031	N19-08.I.1-1	149	158	1.10	0.13	0.1853	0.57	12.86	2.7	0.504	2.7	0.978	2701	9	+3
2032	N19-07.C.1-1	298	445	1.55	0.16	0.1844	0.36	12.80	2.4	0.504	2.4	0.989	2692	6	+3
2033	N19-08.A.1-1	134	110	0.84	0.10	0.1843	0.58	12.66	4.0	0.498	3.9	0.989	2692	10	+4
2034	N19-07.B.1-1	107	75	0.73	0.07	0.1841	0.65	13.05	2.5	0.514	2.4	0.965	2690	11	+1
2036	N19-07.L.1-2	60	23	0.39	0.08	0.1840	0.79	12.87	3.3	0.507	3.2	0.971	2689	13	+2
2037	N19-07.L.1-1	83	46	0.58	-0.04	0.1835	0.70	12.84	3.1	0.507	3.0	0.974	2685	12	+2
2038	N19-07.H.1-1	115	85	0.76	0.09	0.1834	0.60	13.08	3.2	0.517	3.1	0.982	268 4	10	θ
2039	N19-07.C.2-1	126	93	0.76	0.37	0.1828	0.65	12.91	2.6	0.512	2.5	0.968	2678	11	+1
2040	N19-07.J.1-1 #	153	156	1.05	0.19	0.1804	0.64	12.75	2.4	0.512	2.3	0.962	2657	11	θ
2042	N19-08.H.1-1#	177	205	1.20	0.11	0.1789	1.04	11.99	<u>3.9</u>	0.486	3.7	0.963	2643	17	+4
2043	N19-07.C.2-2 #	120	88	0.76	0.10	0.1779	1.29	11.87	2.7	0.484	2.3	0.875	2633	21	+4
2044	>5% discordance	e		1		1		1		1		1	1		
2045	N19-03B.1-1	4 9 7	1322	2.75	0.39	0.2230	0.72	7.37	4.9	0.240	4 <u>.9</u>	0.989	3003	12	+60
2040	N19-07.J.2-2	130	131	1.04	0.11	0.1848	0.62	10.74	5.0	0.422	5.0	0.992	2697	10	+19
2048	N19-07.C.2-3	196	171	0.9	0.200	0.1839	0.57	11.96	2.9	0.472	2.8	0.98	2688	9	9
2049	N19-08.G.1-1	124	113	0.94	0.09	0.1833	0.57	13.76	1.4	0.544	1.3	0.918	2683	9	-5
2050	N19-07.A.1-2	107	98	0.95	0.14	0.1832	0.95	12.03	2.9	0.476	2.7	0.9 44	2682	16	+8
2051	N19-07.K.1-1	128	115	0.93	0.26	0.1832	0.62	12.14	2.6	0.481	2.6	0.972	2682	10	+7
2052	N19-08.C.1-1	344	359	1.08	0.03	0.1826	0.57	12.21	3.5	0.485	3. 4	0.987	2676	9	+6

N19-08.1-11 113 77 0.70 0.23 0.1779 1.21 11.47 3.1 0.468 2.8 0.918 2633 20 4.7 N19-07.A-1-1 430 422 1.01 0.18 0.1777 0.63 1.23 5.0 0.458 5.0 0.902 2632 1.0 49 N19-07.1-2-1 436 0.41 0.905 1.01 0.41 0.972 1.48 0.60 5.0 0.455 4.7 0.902 2582 25 4.8 SBUDD12022 -227 1.40 0.41 0.725 1.48 0.60 5.2 0.902 1.61 1.7 1.48 1.46 0.40 0.792 1.47 1.40 0.40 0.42 1.48 1.66 0.60 1.299 1.9 0.50 1.8 0.90 1.4 1.4 M90-9.C.1-1 107 7.6 0.73 0.60 0.484 0.50 1.2.7 1.50 0.51 1.2 0.920 2.69.																
NH9-07.A.1-1 430 422 1.01 0.18 0.1777 0.63 14.23 5.0 0.458 5.0 0.992 2.632 1.0 4.9 NH9-08.E.1-1 186 143 0.42 0.472 1.48 0.965 1.041 0.55 0.962 2582 25 1.8 NH9-07.1.2-1 130 134 1.041 0.4172 1.48 9.66 5.0 0.902 2.582 2.5 1.8 ISBUDD120-228/27 Viso 1.421 1.48 9.66 5.0 9.60 5.0 0.902 2.582 2.582 2.58 1.8 Mount-grain-spot pp ft 1.421 1.44 9.600 2.692 1.9 0.590 1.8 0.940 2.700 1.1 4.2 NH9-00-C.1- 147 7.6 0.73 0.00 0.1842 0.50 1.23 0.501 1.2 0.920 2.690 1.4 4.4 NH9-00-C.1- 142 1.48 0	N19-08.J.1-1	113	77	0.70	0.23	0.1779	1.21	11.47	3.1	0.468	2.8	0.918	2633	20	+7	
N19-08.E.1-1 186 148 0.82 0.17 0.1740 0.95 10.91 4.8 0.455 4.7 0.980 2597 16 48 N19-07.J.2-1 136 134 1.01 0.41 0.1725 1.48 9.66 5.4 0.406 5.2 0.962 2582 25 4.18 SUDD120-2282 Control Vision Support Vision Vis	N19-07.A.1-1	430	422	1.01	0.18	0.1777	0.63	11.23	5.0	0.458	5.0	0.992	2632	10	<u>+9</u>	
NH9-07.1.2-1 136 134 1.01 0.41 0.1725 1.48 9.66 5.4 0.406 5.2 0.962 2582 25 +18 ISUDD120 - 228-22 VID-000000000000000000000000000000000000	N19-08.E.1-1	186	148	0.82	0.17	0.1740	0.95	10.91	4.8	0.455	4.7	0.980	2597	16	+8	
1991 1991 1971 <th cols<="" td=""><td>N19-07.J.2-1</td><td>136</td><td>134</td><td>1.01</td><td>0.41</td><td>0.1725</td><td>1.48</td><td>9.66</td><td>5.4</td><td>0.406</td><td>5.2</td><td>0.962</td><td>2582</td><td>25</td><td>+18</td></th>	<td>N19-07.J.2-1</td> <td>136</td> <td>134</td> <td>1.01</td> <td>0.41</td> <td>0.1725</td> <td>1.48</td> <td>9.66</td> <td>5.4</td> <td>0.406</td> <td>5.2</td> <td>0.962</td> <td>2582</td> <td>25</td> <td>+18</td>	N19-07.J.2-1	136	134	1.01	0.41	0.1725	1.48	9.66	5. 4	0.406	5.2	0.962	2582	25	+18
Mount grain spot pm 2 ³² Th (³⁴⁸ U week (³⁰⁹ Deb %/b (³⁰⁹ Deb mot (³⁰⁹ De	15BUDD120 - 2	28.42 (mount	N19-09	, 10)											
Mount grain- spot ppm jut jut <							<mark>0∕₀</mark>		<mark>%</mark>		<mark>%</mark>					
spot U H μescu 2004b μescu μescu μescu eff μescu eff μescu eff deff μescu eff Mescu ×19-09.C.1-1 107 76 0.73 0.00 0.1850 0.9 13.1 2.1 0.501 1.9 0.90 26097 14 +2 N19-0D.C.1-1 1425 1.31 0.460 0.4849 0.50 12.77 2.3 0.501 1.2 0.920 2697 8 44 N19-0.0.1-1 215 2.73 1.31 0.050 0.4840 0.47 12.35 0.500 1.9 0.97 2695 8 2 N19-10.1.1-1 226 181 0.93 0.4840 0.62 13.3 2.8 0.520 <td>Mount grain-</td> <td>ppm</td> <td>ppm</td> <td>²³²Th</td> <td>%com</td> <td>²⁰⁷Pb*</td> <td>1σ</td> <td>207РЬ*</td> <td>10</td> <td>206<u>РЬ*</u></td> <td>1σ</td> <td>err</td> <td>²⁰⁷Pb/²⁰⁶Pb</td> <td>10</td> <td><u>%</u></td>	Mount grain-	ppm	ppm	²³² Th	%com	²⁰⁷ Pb*	1σ	207 РЬ*	10	206 <u>РЬ*</u>	1σ	err	²⁰⁷ Pb/ ²⁰⁶ Pb	10	<u>%</u>	
C=Syst-discordant and common Pb-V0.1% N19-09.C.1-1 107 76 0.73 0.00 0.1852 0.64 12.99 1.9 0.509 1.8 0.940 2700 11 #2 N19-09.C.1-1 178 184 1.06 0.01 0.1850 0.9 13.1 2.1 0.514 1.9 0.9 2698 15 1 N19-10.D.2-1 162 181 1.16 -0.03 0.1849 0.50 12.77 2.3 0.501 1.2 0.920 2697 8 44 N19-00.G.1-1 215 273 1.31 0.050 0.1846 0.47 12.96 2 0.509 1.9 0.97 2695 8 2 N19-10.F.1-1 139 122 0.90 0.00 0.1842 0.60 12.92 1.8 0.509 1.7 0.940 26991 10 +2 N19-10.F.1-1 139 122 0.90 0.00 0.1842 0.60 12.92 1.8 0.502 1.3 0.940 2689 10 +2 N19-10.F	spot	<u><u></u></u>	1h	/ ≠≫ 0	206Pb	/ 200 ₽ <u>₽</u> ₽	err	/≠⇒⇒	err	7=>∞	err	corr	Age (Ma)	err	Disc.	
NH9-09.C.1-1 107 76 0.73 0.00 0.1852 0.64 12.99 1.9 0.509 1.8 0.940 2700 11 +2 NH9-09.C.2-1 178 184 1.06 0.01 0.1850 0.9 13.1 2.1 0.514 1.9 0.9 2698 15 1 NH9-10.1-3 252 210 0.86 -0.04 0.1849 0.50 12.77 2.3 0.501 1.2 0.920 2697 8 44 NH9-00.1-1 252 210 0.86 -0.04 0.1849 0.50 12.76 1.3 0.501 1.2 0.920 2697 8 4 NH9-01.1-1 226 181 0.83 0.05 0.1842 0.47 13.15 1.6 0.518 1.5 0.960 2691 8 0 NH9-10.1-1 139 122 0.90 0.00 0.1842 0.60 12.92 1.8 0.501 1.7 0.940 2691 10 +2 NH9-0.6.1-1 177 164 0.96 0.8	< <u>5% discordant</u>	and cor	mmon I	<u>ъ <0.19</u>	%											
NH9-09.G.2-1 178 184 1.06 0.01 0.1850 0.9 13.1 2.1 0.514 1.9 0.9 2698 15 1 NH9-10.D.2-1 162 184 1.16 -0.03 0.1849 0.50 12.77 2.3 0.501 2.3 0.980 2697 8 +4 NH9-10.1.1-3 252 210 0.86 -0.04 0.1849 0.50 12.76 1.3 0.501 1.2 0.920 2697 8 +4 NH9-00.1.1-1 215 273 1.31 0.050 0.1846 0.47 12.96 2 0.509 1.9 0.97 2695 8 2 NH9-10.1.1-1 226 181 0.83 0.05 0.1842 0.60 12.92 1.8 0.509 1.7 0.940 2691 10 +2 NH9-00.51-1 170 164 0.96 0.88 0.1836 0.56 12.93 1.7 0.511 1.6 0.940 2686 9 +1 >5% discordant- 177 164 0.96	N19-09.C.1-1	107	76	0.73	0.00	0.1852	0.64	12.99	1.9	0.509	1.8	0.940	2700	11	+2	
N19-10.D.2-1 162 181 1.16 -0.03 0.1849 0.50 12.77 2.3 0.501 2.3 0.980 2697 8 +4 N19-10.1.1-3 252 210 0.86 -0.04 0.1849 0.50 12.76 1.3 0.501 1.2 0.920 2697 8 +4 N19-09.G.1-1 215 273 1.31 0.050 0.1842 0.47 12.96 2 0.509 1.9 0.97 2695 8 2 N19-10.1.1-1 226 181 0.83 0.05 0.1842 0.60 12.92 1.8 0.509 1.7 0.940 2691 10 +2 N19-10.1.1-1 139 122 0.90 0.00 0.1842 0.60 12.93 1.7 0.511 1.6 0.940 2686 9 +4 N19-0.0.1-1 177 164 0.96 0.88 0.61 13.05 1.5 0.502 1.3 0.910 2728 10 +5 N19-10.1.1-1 132 109 0.85 -0.03	N19-09.G.2-1	178	184	1.06	0.01	0.1850	0.9	13.1	2.1	0.514	1.9	0.9	2698	15	1	
NH9-10.1.1-3 252 210 0.86 -0.04 0.1849 0.50 12.76 1.3 0.501 1.2 0.920 2697 8 +4 NH9-09.G.1-1 215 273 1.31 0.050 0.1846 0.47 12.96 2 0.509 1.9 0.97 2695 8 2 NH9-10.1.1-1 226 181 0.83 0.05 0.1842 0.60 12.92 1.8 0.509 1.7 0.940 2691 8 0 NH9-10.1.1-1 139 122 0.90 0.00 0.1842 0.60 12.92 1.8 0.509 1.7 0.940 2691 10 +2 NH9-10.1.1-1 132 140 0.94 0.62 13.35 2.8 0.526 2.8 0.980 2689 10 -2 NH9-10.6.1-1 177 164 0.96 0.88 0.56 12.93 1.7 0.511 1.6 0.940 2686 9 +4 NH9-10.6.1-1 132 109 0.85 -0.03 0.1884 0.61	N19-10.D.2-1	162	181	1.16	-0.03	0.1849	0.50	12.77	2.3	0.501	2.3	0.980	2697	8	+4	
NH9-09.G.1-1 215 273 1.31 0.050 0.1846 0.47 12.96 2 0.509 1.9 0.97 2695 8 2 N19-10.1.1-1 226 181 0.83 0.05 0.1842 0.47 13.15 1.6 0.518 1.5 0.960 2691 8 0 N19-10.F.1-1 139 122 0.90 0.00 0.1842 0.60 12.92 1.8 0.509 1.7 0.940 2691 10 +2 N19-10.F.1-1 128 113 0.91 0.03 0.1840 0.62 13.35 2.8 0.526 2.8 0.980 2689 10 -2 N19-10.G.1-1 177 164 0.96 0.88 0.61 13.05 1.5 0.502 1.3 0.910 2728 10 +5 N19-10.F.1-1 149 33 0.70 0.14 0.1875 1.06 12.36 2.3 0.478 2.0 0.890 2721 17 +9 N19-10.F.1-1 149 33 0.70 0.1884	N19-10.I.1-3	252	210	0.86	-0.04	0.1849	0.50	12.76	1.3	0.501	1.2	0.920	2697	8	+4	
N19-10.1.1-1 226 181 0.83 0.05 0.1842 0.47 13.15 1.6 0.518 1.5 0.960 2691 8 0 N19-10.F.1-1 139 122 0.90 0.00 0.1842 0.60 12.92 1.8 0.509 1.7 0.940 2691 10 +2 N19-09.F.1-1 128 113 0.91 0.03 0.1840 0.62 13.35 2.8 0.526 2.8 0.980 2689 10 -2 N19-10.G.1-1 177 164 0.96 0.08 0.1836 0.56 12.93 1.7 0.511 1.6 0.940 2689 9 +1 >5% discordamt-row-merbeent >0.188 0.61 13.05 1.5 0.502 1.3 0.910 2728 10 +5 N19-10.1.1-1 49 33 0.70 -0.14 0.1875 1.06 12.36 2.3 0.478 2.0 0.890 2721 17 49 N19-10.1.1-2 305 289 0.93 0.1868 1.39 12.66	N19-09.G.1-1	215	273	1.31	0.050	0.1846	0.47	12.96	2	0.509	<u>1.9</u>	0.97	2695	8	2	
N19-10.F.1-1 139 122 0.90 0.00 0.1842 0.60 12.92 1.8 0.509 1.7 0.940 2691 10 +2 N19-09.F.1-1 128 113 0.91 0.03 0.1840 0.62 13.35 2.8 0.526 2.8 0.980 2689 10 -2 N19-10.G.1-1 177 164 0.96 0.08 0.1836 0.56 12.93 1.7 0.511 1.6 0.940 2686 9 +1 >5% discordant	N19-10.I.1-1	226	181	0.83	0.05	0.1842	0.47	13.15	1.6	0.518	1.5	0.960	2691	8	θ	
N19-09.F.1-1 128 113 0.91 0.03 0.1840 0.62 13.35 2.8 0.526 2.8 0.980 2689 10 -2 N19-10.G.1-1 177 164 0.96 0.08 0.1836 0.56 12.93 1.7 0.511 1.6 0.940 2686 9 +1 >5% discordant von 0.85 -0.03 0.1884 0.61 13.05 1.5 0.502 1.3 0.910 2728 10 45 N19-10.F.1-1 132 109 0.85 -0.03 0.1884 0.61 13.05 1.5 0.502 1.3 0.910 2728 10 +5 N19-10.F.1-1 49 33 0.70 -0.14 0.1875 1.06 12.36 2.3 0.478 2.0 0.890 2721 17 49 N19-10.F.1-1 49 33 0.70 0.1884 0.59 12.55 2.7 0.491 2.6 0.980 2701 10 46 N19-10.C.1-1 143 150 1.08 -0.02 0.1	N19-10.F.1-1	139	122	0.90	0.00	0.1842	0.60	12.92	1.8	0.509	1.7	0.940	2691	10	+2	
N19-10.G.1-1 177 164 0.96 0.08 0.1836 0.56 12.93 1.7 0.511 1.6 0.940 2686 9 +1 >5% discordant rem v	N19-09.F.1-1	128	113	0.91	0.03	0.1840	0.62	13.35	2.8	0.526	2.8	0.980	2689	40	-2	
>5% discordant or commense >0.1% N19-10.H.1-1 132 109 0.85 -0.03 0.1884 0.61 13.05 1.5 0.502 1.3 0.910 2728 10 +5 N19-10.D.1-1 49 33 0.70 -0.14 0.1875 1.06 12.36 2.3 0.478 2.0 0.890 2721 17 +9 N19-10.L.1-2 305 289 0.98 0.33 0.1868 1.39 12.66 2.8 0.491 2.4 0.870 2715 23 +6 N19-10.E.1-1 152 138 0.93 0.02 0.1854 0.59 12.14 2.2 0.478 2.1 0.960 2691 10 +8 N19-10.C.1-1 143 150 1.08 -0.02 0.1823 0.57 12.23 2.3 0.486 2.2 0.970 2674 9 +5 N19-09.H.1-1 146 133 0.94 0.09 0.1823 0.57 12.23 2.3 0.486 2.2 0.970 2674 9 +5 N19-1	N19-10.G.1-1	177	164	0.96	0.08	0.1836	0.56	12.93	1.7	0.511	1.6	0.940	2686	9	+1	
N19-10.H.1-1 132 109 0.85 -0.03 0.1884 0.61 13.05 1.5 0.502 1.3 0.910 2728 10 ± 5 N19-10.D.1-1 49 33 0.70 -0.14 0.1875 1.06 12.36 2.3 0.478 2.0 0.890 2721 17 ± 9 N19-10.I.1-2 305 289 0.98 0.33 0.1868 1.39 12.66 2.8 0.491 2.4 0.870 2715 23 ± 6 N19-10.I.1-2 305 289 0.98 0.33 0.1868 1.39 12.66 2.8 0.491 2.4 0.870 2715 23 ± 6 N19-10.I.1-1 152 138 0.93 0.02 0.1823 0.59 12.14 2.2 0.478 2.1 0.960 2691 10 ± 8 N19-09.H.1-1 146 133 0.94 0.09 0.1823 0.57 12.23 2.3 0.486 2.2 0.970 2674 9 ± 5 N19-10.A.1-1 1408 8.6 <td>>5% discordant</td> <td>or com</td> <td>mon Pb</td> <td>>0.1%</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	>5% discordant	or com	mon Pb	>0.1%			-									
N19-10.D.1-1 49 33 0.70 -0.14 0.1875 1.06 12.36 2.3 0.478 2.0 0.890 2721 17 +9 N19-10.I.1-2 305 289 0.98 0.33 0.1868 1.39 12.66 2.8 0.491 2.4 0.870 2715 23 +6 N19-10.E.1-1 152 138 0.93 0.02 0.1854 0.59 12.55 2.7 0.491 2.6 0.980 2701 10 +6 N19-10.C.1-1 143 150 1.08 -0.02 0.1854 0.59 12.14 2.2 0.478 2.1 0.960 2691 10 +6 N19-09.H.1-1 146 133 0.94 0.09 0.1823 0.57 12.23 2.3 0.486 2.2 0.970 2674 9 +5 N19-10.A.1-1 140 133 0.94 0.07 0.1799 1.2 11.33 8.5 0.457 8.4 0.99 2652 20 10 N19-10.B.1-1 115 86 0.77	N19-10.H.1-1	132	109	0.85	-0.03	0.1884	0.61	13.05	1.5	0.502	1.3	0.910	2728	10	+5	
N19-10.1.1-2 305 289 0.98 0.33 0.1868 1.39 12.66 2.8 0.491 2.4 0.870 2715 23 #6 N19-10.E.1-1 152 138 0.93 0.02 0.1854 0.59 12.55 2.7 0.491 2.6 0.980 2701 10 #6 N19-10.C.1-1 143 150 1.08 -0.02 0.1842 0.59 12.14 2.2 0.478 2.1 0.960 2691 10 #8 N19-09.H.1-1 146 133 0.94 0.09 0.1823 0.57 12.23 2.3 0.486 2.2 0.970 2674 9 #5 N19-10.A.1-1 146 133 0.94 0.09 0.1823 0.57 12.33 1.6 0.493 1.4 0.830 2666 15 #4 N19-10.B.1-1 115 86 0.77 0.07 0.1799 1.2 11.33 8.5 0.487 8.4 0.99 2652 20 10 N19-10.J.1-1 223 247 1.14 <td>N19-10.D.1-1</td> <td>49</td> <td>33</td> <td>0.70</td> <td>-0.14</td> <td>0.1875</td> <td>1.06</td> <td>12.36</td> <td>2.3</td> <td>0.478</td> <td>2.0</td> <td>0.890</td> <td>2721</td> <td>17</td> <td>+9</td>	N19-10.D.1-1	49	33	0.70	-0.14	0.1875	1.06	12.36	2.3	0.478	2.0	0.890	2721	17	+9	
N19-10.E.1-1 152 138 0.93 0.02 0.1854 0.59 12.55 2.7 0.491 2.6 0.980 2701 10 #6 N19-10.C.1-1 143 150 1.08 -0.02 0.1842 0.59 12.14 2.2 0.478 2.1 0.960 2691 10 #8 N19-09.H.1-1 146 133 0.94 0.09 0.1823 0.57 12.23 2.3 0.486 2.2 0.970 2674 9 #5 N19-10.A.1-1 148 86 0.82 0.61 0.1815 0.92 12.33 1.6 0.493 1.4 0.830 2666 15 #4 N19-10.B.1-1 115 86 0.77 0.07 0.1799 1.2 11.33 8.5 0.457 8.4 0.99 2652 20 10 N19-10.J.1-1 223 247 1.14 0.17 0.1789 0.46 12.01 2.5 0.487 2.4 0.980 2643 8 #4 Penzance granite (mout N18-06)	N19-10.I.1-2	305	289	0.98	0.33	0.1868	1.39	12.66	2.8	0.491	2.4	0.870	2715	23	+6	
N19-10.C.1-1 143 150 1.08 -0.02 0.1842 0.59 12.14 2.2 0.478 2.1 0.960 2691 10 +8 N19-09.H.1-1 146 133 0.94 0.09 0.1823 0.57 12.23 2.3 0.486 2.2 0.970 2674 9 +5 N19-10.A.1-1 108 86 0.82 0.61 0.1815 0.92 12.33 1.6 0.493 1.4 0.830 2666 15 44 N19-10.B.1-1 115 86 0.77 0.070 0.1799 1.2 11.33 8.5 0.457 8.4 0.99 2652 20 10 N19-10.J.1-1 223 247 1.14 0.17 0.1789 0.46 12.01 2.5 0.487 8.4 0.99 2652 20 10 N19-10.J.1-1 223 247 1.14 0.17 0.1789 0.46 12.01 2.5 0.487 2.4 0.980 2643 8 +4 Penzamee gramite (mout) N18-05 0.178 0.46	N19-10.E.1-1	152	138	0.93	0.02	0.1854	0.59	12.55	2.7	0.491	2.6	0.980	2701	40	+6	
N19-09.H1-1 146 133 0.94 0.09 0.1823 0.57 12.23 2.3 0.486 2.2 0.970 2674 9 +5 N19-10.A1-1 108 86 0.82 0.61 0.1815 0.92 12.33 1.6 0.493 1.4 0.830 2666 15 +4 N19-10.B1-1 115 86 0.77 0.07 0.1799 1.2 11.33 8.5 0.457 8.4 0.99 2652 20 10 N19-10.J1-1 223 247 1.14 0.17 0.1789 0.46 12.01 2.5 0.487 8.4 0.99 2652 20 10 N19-10.J1-1 223 247 1.14 0.17 0.1789 0.46 12.01 2.5 0.487 2.4 0.980 2643 8 +4 Penzance granite (mouth N18-06) 0.1789 0.46 12.01 2.5 0.487 2.4 0.980 2643 8 +4	N19-10.C.1-1	143	150	1.08	-0.02	0.1842	0.59	12.14	2.2	0.478	2.1	0.960	2691	10	+8	
N19-10.A.1-1 108 86 0.82 0.61 0.1815 0.92 12.33 1.6 0.493 1.4 0.830 2666 15 #4 N19-10.B.1-1 115 86 0.77 0.07 0.1799 1.2 11.33 8.5 0.457 8.4 0.99 2652 20 10 N19-10.J.1-1 223 247 1.14 0.17 0.1789 0.46 12.01 2.5 0.487 2.4 0.980 2643 8 #4 Penzance granite (mouth N18-06)	N19-09.H.1-1	146	133	0.94	0.09	0.1823	0.57	12.23	2.3	0.486	2.2	0.970	2674	9	+5	
N19-10.B.1-1 115 86 0.77 0.07 0.1799 1.2 11.33 8.5 0.457 8.4 0.99 2652 20 10 N19-10.J.1-1 223 247 1.14 0.17 0.1789 0.46 12.01 2.5 0.487 2.4 0.980 2643 8 +4 Penzance granite (mount N18-06) 3 3 5 <	N19-10.A.1-1	108	86	0.82	0.61	0.1815	0.92	12.33	1.6	0.493	1.4	0.830	2666	15	+4	
N19-10.J.1-1 223 247 1.14 0.17 0.1789 0.46 12.01 2.5 0.487 2.4 0.980 2643 8 +4 Penzance granite (mount N18-06)	N19-10.B.1-1	115	86	0.77	0.07	0.1799	1.2	11.33	8.5	0.457	8.4	0.99	2652	20	40	
Penzance granite (mount N18-06)	N19-10.J.1-1	223	247	1.14	0.17	0.1789	0.46	12.01	2.5	0.487	2.4	0.980	2643	8	+4	
	Penzance grani	te (mo	unt N18	8-06)												

2100																
2101								<mark>0∕₀</mark>		<mark>0∕₀</mark>		<mark>0∕₀</mark>				
2102		Mount grain-	ppm	ppm	²³² Th	<mark>%com</mark>	²⁰⁷ РЬ*	10	207 ₽Ь*	10	206 ₽Ь*	10	err	²⁰⁷ Pb/ ²⁰⁶ Pb	1o	⁰∕₀
2103		spot	Ų	Th	/ 238 U	206Pb	/ 206 ₽b*	err	/ 235 ₩	err	/ 238 U	err	corr	Age (Ma)	err	Disc.
2105		N18-06B.16-1	476	378	0.82	0.43	0.1830	0.3 4	12.10	1.1	0.480	1.1	0.960	2676	6	+7
2106		N18-06A.4-1	53 4	246	0.48	0.11	0.1790	0.25	13.20	1.1	0.536	1.1	0.970	2640	4	-6
2107		N18-06C.9-1	462	381	0.85	0.75	0.1750	0.56	10.90	1.2	0.454	1.1	0.890	2602	9	+9
2108		N18-06C.1-1	513	335	0.68	0.24	0.1750	0.29	12.20	1.1	0.509	1.1	0.970	2601	5	-2
2109		N18-06A.7-1	475	250	0.5 4	0.46	0.1740	0.36	11.10	1.2	0.465	1.1	0.950	2593	6	+6
2110		N18-06A.10-1	502	252	0.52	0.67	0.1730	0.37	11.30	1.1	0.475	1.1	0.950	2589	6	+4
2112		N18-06C.12-1	542	451	0.86	0.28	0.1730	0.31	11.00	1.1	0.463	1.1	0.960	2583	5	+6
2113		N18-06A.3-1	401	295	0.76	0.64	0.1700	0.61	11.00	1.3	0.469	1.1	0.870	255 4	40	+3
2114		N18-06B.8-1	641	350	0.56	0.31	0.1680	0.28	11.30	1.1	0.486	1.1	0.970	2541	5	-1
2115		N18-06A.3-2	535	555	1.07	0.97	0.1610	0.43	9.50	1.3	0.429	1.2	0.940	2463	7	+8
2116		N18-06C.5-1	59 4	3 44	0.60	0.20	0.1610	0.66	9.90	1.3	0.449	1.1	0.850	2463	11	+4
2117		N18-06C.2-1	540	313	0.60	0.38	0.1550	0.85	8.80	1.6	0.414	1.3	0.840	2401	14	+8
2119		N18-06B.2-1	556	356	0.66	0.38	0.1510	0.35	8.6	1.1	0.413	1.1	0.95	2352	6	6
2120		N18-06A.19-1	601	363	0.62	0.95	0.1460	0.44	8.00	1.2	0.394	1.1	0.930	230 4	8	+8
2121		N18-06C.6-1	622	445	0.74	0.50	0.1410	0.41	7.50	1.2	0.383	1.1	0.930	2243	7	+8
2122		N18-06A.8-1	568	35 4	0.64	1.910	0.141	0.58	8.1	1.2	0.416	1.1	0.88	2237	10	θ
2123		N18-06A.14-1	591	360	0.63	0.96	0.1410	0.48	7.70	1.2	0.395	1.1	0.910	2234	8	+5
2125		N18-06B.12-1	605	339	0.58	0.54	0.1380	0.38	7.50	1.1	0.393	1.1	0.940	2198	7	+3
2126		N18-06A.2-1	623	442	0.73	1.87	0.1370	1.43	6.70	1.8	0.357	1.0	0.580	2190	25	+12
2127		N18-06B 11-1	601	850	1.46	0.94	0.1370	0.47	7.30	1.2	0.387	1.1	0.920	2185	8	+4
2128		N18-06C 8-1	652	442	0.70	0.61	0 1330	0.42	6.80	11	0 369	11	0.930	2138	7	+6
2129		N18-06B 9-1	676	514	0.79	0.86	0.1320	0.44	6.80	1-2	0.374	11	0.920	2127	8	+4
2130		N18-06A 1-1	830	539	0.67	2.80	0.1200	1.62	5.00	1.2	0.347	1.0	0.530	1951	29	+2
2132		N18-06B 13-1	801	567	0.73	0.74	0.1180	0.70	5.70	1.4	0.324	1.0	0.860	1934	12	+7
2133	l	# voung outlier	omitte	d from	age calc		0.1100	0.70	5.50	1.1	0.52 T	1.4	0.000	1751	1 🚄	• /
2134 8	30		- mee													

Mount grain_spot	ppm LI	թթա Ծե	232 Th 7 238 L1	4 f206	4 1208	207<u></u>рь* / 206 рь*		206<u>р</u>Ъ≭ 7 238 ГТ		207<u>р</u>ь* / 235 П		208<u>р</u>5* / 232 ть	$\pm +\sigma$	207 <u>Pb/206</u> Pb		
<u>grunt-spor</u>	noo and	<u>-111</u>	+ ↔	(70)	(70)	+ 10-	UII	+ +	UII	+ +	UII	+ 111	CII	11ge (1114)	U	Dist.
$\geq \frac{3}{2} \frac{7}{6} $ uiscorda	n ce anu	~\0.3704	1200												1	
719-00B'B-	207	12986	63.00	-0.02	0.00	0.1865	0.0022	0.5074	0.0114	13.044	0.3320	0.137	0.0026	2711	19	+2
N18-16C 8-		12/00	00.00	0.02	0.00	0.1000	0.0022	0.007.	0.011.	10.0	0.0020	0.107	0.0020			
3	629	12531	20.00	-0.01	-0.01	0.1863	0.0010	0.5232	0.0101	13.435	0.2720	0.148	0.0032	2709	₽	Ð
N18-16A.1-																
6	508	15332	30.00	-0.06	-0.02	0.1862	0.0014	0.5092	0.0069	13.075	0.2050	0.142	0.0030	2709	12	+2
N18-																
06B.G-2	215	14282	66.00	0.02	0.00	0.1855	0.0022	0.5170	0.0097	13.224	0.2950	0.141	0.0026	2703	19	+1
N18-																
06B.A-6	789	32172	41.00	0.00	0.00	0.1853	0.0015	0.5092	0.0090	13.010	0.2560	0.140	0.0029	2701	13	+2
N18-16A.1-																
ŧ	<u>448</u>	11587	26.00	0.00	0.00	0.1852	0.0026	0.5288	0.0091	13.499	0.3020	0.152	0.0032	2700	23	-
N18-06B.B-																
Ŧ	310	11884	38.00	-0.04	-0.01	0.1851	0.0018	0.5140	0.0088	13.119	0.2620	0.138	0.0028	2699	16	+1
N18-																
06B.G-5	345	16469	<u>48.00</u>	-0.06	-0.01	0.1847	0.0019	0.4933	0.0085	12.563	0.2540	0.136	0.0024	2696	17	+4
N18-																
06B.A-5	573	19934	35.00	0.43	0.11	0.1844	0.0017	0.5213	0.0094	13.257	0.2710	0.144	0.0028	2693	15	Ð
N18-																
06B.K-2	1134	74444	66.00	0.34	0.04	0.1842	0.0016	0.4894	0.0085	12.430	0.2430	0.136	0.0027	2691	+4	+5
N18-16B.6-		0.015	60.00	0.05	0.01	0.10.45	0.0010	0.405.	0.0070	10.007	0.0100	0.1.45	0.0000			
₽	926	62647	68.00	0.05	0.01	0.1842	0.0010	0.4854	0.0078	12.327	0.2130	0.142	0.0030	2691	₽	+5

Table 3: SHRIMP isotopic data for monazite from the Penzance granite (mounts N18-06, 16)

2183	ſ	N110																
2184		16D 15_1	602	14008	22.00	0.02	0.01	0.1841	0.0000	0.5002	0.0083	12.020	0.2250	0.147	0.0030	2600	Q	+1
2185		<u>N18_16C_8_</u>	002	17070	23.00	0.02	0.01	0.1011	0.0007	0.3072	0.0005	12.727	0.2250	0.17/	0.0050	2070	•	++
2186		<u>5</u>	664	14242	21.00	-0.05	-0.02	0.1841	0.0012	0.5198	0.0080	13,193	0.2240	0.141	0.0030	2690	++	₽
2187	·	N18-16C.8-																
2188		6	466	11320	24.00	0.01	0.00	0.1840	0.0013	0.4927	0.0118	12.502	0.3140	0.144	0.0029	2689	12	+4
2189	ľ	N18-																
2190		16D.16-1	1039	19243	19.00	0.03	0.01	0.1839	0.0007	0.5021	0.0120	12.729	0.3110	0.147	0.0033	2688	6	+2
2191		N18-																
2192		16G.18-1	1002	69393	69.00	0.32	0.04	0.1838	0.0009	0.4905	0.0102	12.430	0.2690	0.149	0.0035	2687	€	+4
2193		N18-	1007	20200	25.00	0.01	0.00	0.1005	0.0014	0.5014	0.0007	10,110	0.0500	0.146	0.0000	2 () 5	10	
2194		06B.A-/	1097	38290	35.00	0.01	0.00	0.1835	0.0014	0.5314	0.0097	13.442	$\frac{0.2700}{0.2700}$	0.146	0.0029	2685	₩	-2
2195		N18- 06B G-7	216	12340	57.00	0.07	0.01	0 1832	0.0020	0.5244	0.0005	13 240	0.2840	0.143	0.0028	2682	18	_1
2196		<u>N18-</u>	210	12310	57.00	0.07	0.01	0.1052	0.0020	0.0211	0.0075	15.217	0.2010	0.115	0.0020	2002	10	
2197		16D.14-1	129	6945	54.00	-0.03	-0.01	0.1832	0.0019	0.5022	0.0137	12.685	0.3700	0.152	0.0032	2682	17	+2
2198	·	N18-16A.1-																
2199		4	279	15220	54.00	-0.01	0.00	0.1831	0.0016	0.5303	0.0114	13.390	0.3120	0.152	0.0032	2681	14	-2
2200		N18-06B.B-																
2201		6	308	10496	34.00	0.03	0.01	0.1830	0.0018	0.4883	0.0107	12.323	0.2980	0.137	0.0028	2681	16	+4
2202		N18-																
2202		06B.G-4	178	11404	64.00	0.04	0.01	0.1828	0.0023	0.4965	0.0095	12.515	0.2870	0.139	0.0026	2679	20	+3
2204		$\frac{N18}{06P V}$	805	29750	42.00	0.02	0.00	0 1 8 2 7	0.0015	0 4917	0.0083	12 125	0 2240	0.126	0.0026	2679	12	⊥5
2205		VUD.N=3	073	30/37	43.00	0.02	0.00	9.1027	0.0013	V.4017	0.0003	12.133	0.2340	0.130	0.0020	2070	Ð	+++
2206		<u>110-10/1.1-</u>	515	14308	28.00	-0.01	0.00	0 1827	0.0010	0 5205	0.0105	13 111	0.2760	0 147	0.0032	2677	Q	-1
2207		N18-16C.8-	010	11500	20.00	0.01	0.00	0.1027	0.0010	0.0200	0.0100	10.111	0.2700	0.117	0.0052	2077		*
2208		¥	638	13479	21.00	0.00	0.00	0.1824	0.0014	0.5182	0.0072	13.035	0.2110	0.147	0.0032	2675	13	-
2209		N18-																
2210		06B.A-1	863	31292	36.00	-0.02	0.00	0.1824	0.0015	0.5070	0.0088	12.750	0.2490	0.149	0.0030	2675	14	+1
2210		N18-06B.B-																
2211		3	296	11665	39.00	-0.09	-0.02	0.1823	0.0020	0.5334	0.0095	13.405	0.2850	0.144	0.0029	2674	18	_}
2212		N18-06B.B-																
2213		+	188	10313	55.00	0.05	0.01	0.1821	0.0023	0.5124	0.0099	12.868	0.2980	0.144	0.0026	2672	24	₽
2214		$\frac{NI\delta}{C}$	475	24260	51.00	_0_02	_0_01	0.1001	0.0017	0.4023	0.0002	12.262	0.2420	0.126	0.0026	2672	15	⊥2
2216	·	N18_164_6	473	24303	91.00	-0.03	-0.01	0.1021	0.0017	0.4723	0.0003	12.903	0.2420	0.130	0.0020	2072	+>	++
2210		1110-10/1.0-																-
		1	1052	69743	<u>66-00</u>	-0.01	0.00	0.1821	0.0007	0.5010	0.0077	$\frac{12.581}{12.581}$	0.2020	0.150	0.0033	2672	6	+2

N18-16C.8-			10.00							10.001						
	605	11778	19.00	0.00	0.00	0.1821	0.0010	0.5212	0.0089	13.084	0.2390	0.149	0.0030	2672	₽	-
N18- 16C 10 4	597	20201	25.00	0.02	0.00	0.1820	0.0011	0.5080	0.0006	12 772	0.2570	0.146	0.0022	2671	10	1
<u>100.10-4</u> N12		20001	33.00	0.02	0.00	0.1020	0.0011	0.3007	0.0070	12.//2	0.2370	0.140	0.0055	2071	Ŧ₩	+1
16C.10-1	466	14728	32.00	0.10	0.03	0.1819	0.0011	0.5268	0.0110	13.210	0.2900	0.153	0.0039	2670	10	-2
N18-06B.B-																
₽	202	9808	49.00	0.22	0.04	0.1812	0.0022	0.5116	0.0094	12.779	0.2860	0.141	0.0027	2664	20	₽
N18-16C.8-																
4	636	13910	22.00	0.02	0.01	0.1810	0.0010	0.5352	0.0069	13.353	0.1920	0.144	0.0030	2662	₽	-4
N18- 16D 13-1	380	6502	17.00	0.00	0.04	0 1 8 0 8	0.0011	0.5403	0.0104	13 471	0.2760	0.155	0.0034	2661	10	5
N12_		0372	17.00	0.07	0.01	0.1000	0.0011	0.3103	0.0104	13.1/1	0.2700	0.133	0.0034	2001	Ŧ₩	
06B.D-1	362	26423	73.00	0.04	0.00	0.1808	0.0018	0.4927	0.0099	12.282	0.2780	0.139	0.0026	2660	16	+3
N18-																
16C.10-3	557	15536	28.00	0.07	0.02	0.1805	0.0012	0.5212	0.0087	12.968	0.2360	0.142	0.0030	2657	#	-2
≥5% discorda	ince and	l ∕or >0.5 9	64f206													
N18-																
06A.N-3	115	12090	105.00	1.31	0.09	0.1942	0.0046	0.3399	0.0074	9.100	0.2920	0.120	0.0024	2778	38	+32
N18-																
<u>06B.A-4</u>	484	26279	54.00	0.98	0.17	0.1903	0.0024	0.4979	0.0106	13.063	0.3280	0.134	0.0025	2745	21	+5
N18-06B.E-	1.40	5 (0 0	10.00	2 70	0.00	0.1070	0.0044	0.5226	0.0107	12 001	0.4200	0.100	0.0004	0704	20	1
±	+42	3608	40.00	2./0	0.69	0.18/9	0.0044	0.5326	0.010/	13.801	0.4280	0.132	0.0024	2/24	39	=
$\frac{1 \times 10^{-1}}{106 \text{ K} - 1}$	440	31841	72.00	0.02	0.12	0.1852	0.0025	0.4438	0.0078	11 331	0.2530	0.120	0.0023	2700	22	+12
<u>N18-</u>		51011	72.00	0.75	0.12	0.1052	0.0025	0.1150	0.0070	11.551	0.2000	0.120	0.0025	2700	22	. 12
06B.G-1	173	10873	63.00	0.06	0.01	0.1843	0.0025	0.4764	0.0124	12.104	0.3560	0.133	0.0027	2692	22	+7
N18-06B.B-																
€	245	13623	56.00	-0.03	-0.01	0.1831	0.0020	0.4666	0.0083	11.780	0.2490	0.123	0.0022	2681	18	+8
N18-16A.1-																
₽	288	14906	52.00	0.08	0.01	0.1819	0.0015	0.5669	0.0127	14.220	0.3420	0.160	0.0036	2670	14	
N18-	2.40	2(244	75.00	2.02	0.01	0.1010	0.0050	0.00.40	0.0120	0.625	0.4420	0.100	0.000	2(7)	5.1	101
00B.A-8	349	20244	/3.00	2.02	0.21	0.1818	0.0056	0.3843	0.0130	9.633	0.4430	0.122	0.0029	20/0	€	+21
N18-06B.B- <u>4</u>	142	0002	70.00	0.14	0.02	0 1816	0.0027	0.4682	0.0005	11 725	0.2060	0.128	0.0025	2668	24	+7
N18-	115	1115	10.00	0.11	0.02	0.1010	0.0027	0.1002	0.0095	11.125	0.2900	0.120	0.0025	2000	2-1	
06B.G-8	220	14795	67.00	0.26	0.04	0.1814	0.0020	0.4741	0.0101	11.857	0.2890	0.128	0.0025	2666	18	+6

N18-16B.6-																
3	843	59533	71.00	0.07	0.01	0.1812	0.0010	0.4463	0.0081	11.152	0.2140	0.140	0.0030	2664	₽	+11
N18-																
06A.N-1	76	9566	125.00	1.76	0.15	0.1811	0.0049	0.4884	0.0112	12.191	0.4330	0.110	0.0023	2663	45	+4
N18-																
06B.G-6	281	13360	48.00	0.06	0.01	0.1810	0.0018	0.4676	0.0182	11.670	0.4720	0.137	0.0027	2662	17	+7
N18-																
16C.10-2	629	16612	26.00	0.12	0.03	0.1802	0.0019	0.4040	0.0213	10.040	0.5400	0.133	0.0031	2655	17	+18
N18-																
06B.A-2	814	29448	36.00	1.02	0.23	0.1763	0.0020	0.4132	0.0093	10.042	0.2560	0.124	0.0024	2618	19	+15
N18-																
06B.A-3	638	36168	57.00	1.50	0.23	0.1753	0.0038	0.4980	0.0173	12.034	0.4960	0.136	0.0027	2609	36	₽
N18-																
16G.23-1	147	17544	120.00	0.89	0.04	0.1270	0.0034	0.2374	0.0127	4 .155	0.2490	0.094	0.0021	2056	47	+33
N18-																
16G.23-2	456	36602	80.00	1.94	0.08	0.0971	0.0042	0.1036	0.0017	1.387	0.0640	0.067	0.0019	1569	81	+59

2304		
2305		
2306	835	Figure 1: Location of the TB <u>Teutonic Bore</u> Camp on a map showing the major subdivisions
2308	836	of the Eastern Goldfields Superterrane, Yilgarn Craton, Western Australia. The town of
2310 2311	837	Leonora is indicated by a black diamond. Also The inset map shows the location of the three
2312	838	deposits (Teutonic Bore, Jaguar and Bentley) and the sampled Penzance granite on the 1:500
2314 2315 2316	839	000 State interpreted bedrock geological map from the GSWA online database GeoVIEW.WA
2317 2318	840	(2016).
2319 2320	841	
2321		
2322		
2323		
2324		
2325		
2320		
2328		
2329		
2330		
2331		
2332		
2333		
2334		
2335		
2337		
2338		
2339		
2340		
2341		
2342		
2343		
2344		
2346		
2347		
2348		
2349		
2350		
2351		
2352 2353		
2354		
2355		
2356		
2357		
2358		
2359 2260		
2361		
2362		

2363		
2364		
2365	842	Figure 2: A) Schematic geological model for the TBTeutonic Bore Ceamp showing the
2367	842	nosition of each deposit within the stratigraphic sequence and illustrating the sub secfloor
2368 2369	043	position of each deposit within the strangraphic sequence and musuating the sub-seanoor
2370 2371	844	replacement feature of the VHMS mineralisation and possible relationship of the host
2372	845	stratigraphy and the intrusive leucogranite described by Hallberg and Thompson (1985). B)
2374	846	Simplified stratigraphic sequence and stratigraphical subdivisions for each of the three deposits
2375 2376 2377	847	within the TBTeutonic Bore Camp (Belford, 2010; Belford et al., 2015; Chen et al., 2015; Das,
2378 2370	848	2018 and complemented by this study; stratigraphic sequence modified from Hallberg and
2380 2381	849	Thompson, 1985; Macklin, 2010; Parker et al., 2017). The U-Pb zircon age, drillhole and depth
2382	850	for the dacite are from Nelson (1995).
2384	851	
2385 2386	001	
2387		
2388		
2389		
2390		
2391		
2392		
2393		
2394		
2390		
2390		
2397		
2399		
2400		
2401		
2402		
2403		
2404		
2405		
2406		
2407		
2408		
2409		
2410		
2411		
2412		
2413		
2414		
2415		
2410		
2418		
2419		
2420		
2421		

2422		
2423		
2424 2425	852	Figure 3: U-Pb Concordia diagram showing the SHRIMP spot analyses and mean
2426 2427	853	²⁰⁷ Pb/ ²⁰⁶ Pb ages for: A) Footwall rhyolite (unit I) – Bentley footwall zircons (sample
2428 2429	854	15BUDD78; mount N18-15D). B) Footwall rhyolite (unit I) – Bentley footwall zircons (sample
2430 2431	855	15BUDD138; mount N18-15C). C) Transitional andesite (unit III) - Bentley hangingwall
2432 2433 2434	856	zircons (sample 15BUDD120 - 226.04m; mount N19-07, 08). D) Transitional andesite (unit
2435 2436	857	III) - Bentley hangingwall zircons (sample 15BUDD120 - 228.42m; mount N19-09, 10). E)
2437 2438	858	Penzance granite zircons (mount N18-06, 16). F) Penzance granite monazites (mounts N18-
2439 2440	859	06, N18-16). Error ellipses are $\pm 1\sigma$.
2441	860	
2442	000	
2443 2444		
2445		
2446		
2447		
2448		
2449		
2450		
2451		
2452 2453		
2455		
2455		
2456		
2457		
2458		
2459		
2460		
2461		
2402 2463		
2464		
2465		
2466		
2467		
2468		
2469		
2470		
2471		
2473		
2474		
2475		
2476		
2477		
2478		
2419 2120		
2 r00		

2481		
2482		
2483 2484 2485 2486 2486 2487 2488 2480	861	Figure 4: Cathodoluminescence electron microscope images of zircon grains separated
	862	from the footwall rhyolite (unit I) at the Bentley deposit, and analysed with SHRIMP and/or
	863	LA-SS-ICPMS. The location of the spots are indicated within each grain as well as the name
2489 2490 2401	864	(and ²⁰⁷ Pb/ ²⁰⁶ Pb age for SHRIMP spots).
2491	865	
2493		
2494		
2495		
2496 2497		
2498		
2499		
2500		
2501		
2502		
2504		
2505		
2506		
2508		
2509		
2510		
2511		
2512		
2514		
2515		
2516		
2517		
2519		
2520		
2521		
2522		
2523		
2525		
2526		
2527		
2529		
2530		
2531		
2532		
2533		
2535		
2536		
2537 2538		
2539		

2544 866 Figure 5: Cathodoluminescence electron microscope images of zircon grains separated 4544 867 from the transitional andesite (unit III) at the Bentley deposit, and analysed with SHIRIMP or 4547 868 LA-SS-ICPMS. The location of the spots are indicated within each grain as well as the name 4548 869 (and ³⁰⁷ Pb ⁻⁰⁶ Pb age and discordance for SHRIMP spots). 4551 870 4552 8569 4553 8569 4554 857 4555 8569 4556 8569 4561 8569 4563 8569 4564 856 4565 8569 4566 8569 4567 8569 4568 8569 4569 8569 4569 8569 4569 8569 4569 8569 4569 8569 4569 8569 4569 8569 4569 8569 4569 8569 4569 8569 4569 8569	2540		
2542 866 Figure 5: Cathodoluminescence electron microscope images of zircon grains separated 2543 867 from the transitional andesite (unit III) at the Bentley deposit, and analysed with SHRIMP or 2544 868 LA-SS-ICPMS. The location of the spots are indicated within each grain as well as the name 2548 869 (and ³⁰⁷ Pb/ ⁵⁰⁶ Ph age and discordance for SHRIMP spots). 2551 870 2552 870 2553 870 2554 870 2555 870 2556 870 2557 870 2558 870 2559 870 2560 870 2561 870 2562 870 2563 870 2564 870 2565 870 2566 870 2567 870 2568 870 2569 870 2570 870 2571 871 2572 873 2573 874 2574 875 25	2541		
 Pignet 5: Canadocumentecence occurs interconcept images or meter grain separates from the transitional andesite (unit III) at the Bentley deposit, and analysed with SHRIMP or LA-SS-ICPMS. The location of the spots are indicated within each grain as well as the name (and ³⁰⁷Pb^{,706}Pb age and discordance for SHRIMP spots). (and ³⁰⁷Pb^{,706}Pb age age age age age age age age age age	2542	866	Figure 5. Cathodoluminescence electron microscone images of zircon grains senarated
2244 867 from the transitional andesite (unit III) at the Bentley deposit, and analysed with SHRIMP or 2246 868 LA-SS-ICPMS. The location of the spots are indicated within each grain as well as the name 248 869 (and ²⁰⁷ Pb/ ²⁰⁶ Pb age and discordance for SHRIMP spots). 251 870 2525 870 2526 9 2537 9 2538 9 2549 9 2550 9 2561 9 2562 9 2563 9 2564 9 2565 9 2566 9 2567 9 2568 9 2569 9 2569 9 2569 9 2569 9 2569 9 2569 9 2569 9 2569 9 2569 9 2569 9 2569 9	2543	000	rigure 5. Cumouorumneseenee erection interoseepe intuges of zheon gruins sepurated
2346 000 From the dimensional access (can fright first fields) depicts, and analyses from the strain of the spots are indicated within each grain as well as the name 2547 868 LA-SS-ICPMS. The location of the spots are indicated within each grain as well as the name 2548 869 (and ²⁰⁷ Pb/ ²⁰⁶ Pb age and discordance for SHRIMP spots). 2551 870 2552 555 2555 555 2556 555 2557 555 2558 556 2559 556 2561 2566 2562 2563 2564 2564 2565 2566 2566 2567 2568 2569 2571 2572 2573 2574 2574 2575 2575 2576 2576 2577 2578 2576 2579 2574 2571 2575 2572 2576 2573 2576 2574 2576 2575 2576 2576	2544	867	from the transitional andesite (unit III) at the Bentley denosit and analysed with SHRIMP or
2247 868 1.A-SS-ICPMS. The location of the spots are indicated within each grain as well as the name 2548 869 (and ²⁰⁷ Pb/ ²⁰⁶ Pb age and discordance for SHRIMP spots). 2551 870 2552 870 2553 870 2554 870 2555 870 2556 870 2557 870 2558 870 2559 870 2559 870 2550 870 2551 870 2555 870 2556 870 2557 870 2558 870 2559 870 2560 870 2561 870 2562 870 2563 870 2564 870 2565 870 2566 870 2567 871 2568 870 2570 871 2571 871 2572 871 2573 871 </td <td>2545</td> <td>007</td> <td>from the transitional andesite (unit fif) at the Denticy deposit, and analysed with Sfirthin of</td>	2545	007	from the transitional andesite (unit fif) at the Denticy deposit, and analysed with Sfirthin of
2947 000 Ext of 210° DF 1000. The location of the 5-plot at a indicated whilm total plant at while the lattice 2848 869 (and 20° Pb/206 Pb age and discordance for SHRIMP spots). 2851 870 2852 870 2853 870 2854 870 2855 870 2856 870 2857 870 2858 870 2859 870 2850 870 2851 870 2852 870 2853 870 2854 870 2855 870 2861 870 2862 870 2864 866 2866 870 2867 870 2878 871 2879 873 2874 874 2875 877 2876 877 2877 878 2878 879 2881 879 2882 879 2883 879 <td>2546</td> <td>868</td> <td>I A-SS-ICPMS. The location of the spots are indicated within each grain as well as the name</td>	2546	868	I A-SS-ICPMS. The location of the spots are indicated within each grain as well as the name
2249 69 (and ²⁰⁷ Pb ^{.206} Pb age and discordance for SHRIMP spots). 2550 70 2551 870 2552 2 2553 2 2554 2 2555 2 2556 2 2557 2 2558 2 2559 2 2561 2 2562 2 2563 2 2564 2 2565 2 2566 2 2567 2 2568 2 2569 2 2561 2 2562 2 2563 2 2564 2 2565 2 2566 2 2571 2 2572 2 2573 2 2574 2 2575 2 2576 2 2577 2 2578 2 2580 2 <	2547	000	EAT 55 TET WIS. The location of the spots are increated within each grain as wen as the name
2049 0.000 (a) Control of the control and control of the the sponse. 2561 870 2552 2 2553 2 2554 2 2555 2 2556 2 2557 2 2558 2 2569 2 2561 2 2562 2 2563 2 2564 2 2565 2 2566 2 2567 2 2568 2 2569 2 2570 2 2571 2 2572 2 2573 2 2574 2 2575 2 2576 2 2577 2 2578 2 2579 2 2570 2 2571 2 2572 2 2573 2 2574 2 2575 2 <	2548	869	(and ²⁰⁷ Pb/ ²⁰⁶ Pb age and discordance for SHRIMP spots)
2252 2553 2554 2555 2556 2557 2558 2559 2550 2551 2552 2553 2554 2555 2556 2561 2562 2563 2564 2565 2566 2567 2568 2569 2569 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2571 2572 2573 2574 2575 2576 2577 2578 2579 2581 2582 2583 2584 2585 2586 2587 2588 <t< td=""><td>2549</td><td>007</td><td>(and 10/ 10 age and discordance for Striction spots).</td></t<>	2549	007	(and 10/ 10 age and discordance for Striction spots).
	2551	870	
253 254 255 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2566 2567 2568 2569 2566 2567 2568 2569 2569 2560 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2578 2579 2581 2582 2583 2584 2585 2586 2581 2582 2583 2584 2585 2586 2587 2588 2589 2581 2582 2583 2584 2585 2586 2587 2588 2588 2589 2581	2552	070	
2554 2555 2557 2558 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2569 2569 2569 2569 2569 2569 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2578 2579 2578 2579 2578 2581 2582 2583 2584 2585 2586 2581 2582 2583 2584 2585 2586 2587 2588 2589 2589 2581 2582 2583 2584 2585 2586 2587 2588 2589 2581 <td>2553</td> <td></td> <td></td>	2553		
2556 2557 2558 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2569 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2579 2581 2582 2583 2584 2585 2586 2581 2582 2583 2584 2585 2586 2587 2588 2589 2581 2582 2583 2584 2585 2586 2587 2588 2589 2589 2581 2582 2583 2584 2585 2586 2587 2588 2589 2581 2582 <td>2554</td> <td></td> <td></td>	2554		
2556 2557 2569 2561 2562 2563 2564 2565 2566 2567 2568 2569 2569 2569 2569 2569 2569 2569 2569 2569 2569 2569 2569 2570 2571 2572 2573 2574 2575 2576 2576 2577 2578 2579 2581 2582 2582 2583 2584 2585 2586 2587 2588 2589 2581 2582 2583 2584 2585 2586 2587 2588 2589 2589 2581 2582 2583 2584 2585 2587 2588 2589 <td>2555</td> <td></td> <td></td>	2555		
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2581 2582 2583 2584 2585 2586 2581 2582 2583 2584 2585 2586 2587 2588 2589 2581 2582 2583 2584 2585 2586 2587 2588 2589 2581 2582 2583 2584 2585 2586 <t< td=""><td>2556</td><td></td><td></td></t<>	2556		
2558 2569 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2581 2582 2583 2584 2585 2586 2587 2588 2589 2581 2582 2583 2584 2585 2586 2587 2588 2589 2581 2582 2583 2584 2585 2586 2587 2588 2589 2591 2592 2593 2596 <t< td=""><td>2557</td><td></td><td></td></t<>	2557		
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2575 2576 2577 2578 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2581 2582 2583 2584 2585 2586 2587 2588 2589 2589 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2591 2592 2593 <td>2558</td> <td></td> <td></td>	2558		
2500 2561 2562 2563 2566 2567 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2574 2575 2576 2577 2578 2579 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2591 2592 2593 2594	2559		
2561 2562 2563 2564 2565 2566 2567 2568 2570 2571 2572 2573 2575 2576 2577 2578 2579 2581 2582 2583 2584 2585 2586 2587 2588 2589 2589 2591 2592 2593 2594 2595 2596 2597 2598 2599 2591 2592 2593 2594 2595 2596 2597 2598 2599 2591 2592 2593 2594 2595 2596 2597 <t< td=""><td>2560</td><td></td><td></td></t<>	2560		
2562 2563 2564 2565 2566 2567 2568 2570 2571 2572 2573 2576 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2596 2597 2598 2599 2591 2592 2595 2596 <t< td=""><td>2561</td><td></td><td></td></t<>	2561		
2003 2564 2565 2566 2567 2568 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2581 2582 2583 2584 2585 2586 2587 2588 2589 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2591 2592 2593 2594 2595 2596 2597 2598 2596 2597 2598	2562		
2004 2565 2566 2567 2568 2570 2571 2572 2573 2575 2576 2577 2578 2579 2581 2582 2583 2584 2585 2586 2581 2582 2583 2584 2585 2586 2587 2588 2589 2591 2592 2593 2594 2595 2596 2597 2598 2598 2599 2591 2592 2593 2594 2595 2596 2597 2598	2003		
2565 2566 2567 2568 2569 2570 2571 2573 2574 2575 2576 2577 2578 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2595 2596 2597 2598	2565		
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2582 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2596 2597 2598	2566		
2668 2569 2570 2571 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2595 2596 2597 2598	2567		
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2580 2581 2582 2584 2585 2586 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2591 2592 2593 2594 2595 2596 2597 2598	2568		
2570 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2589 2590 2591 2592 2593 2594 2595 2595 2595 2596 2597 2598 2599 2591 2595 2596 2597 2598 2596 2597 2598	2569		
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2595 2596 2597 2598 2596 2597 2598 2597 2598 2597 2598 2599 2596 2597 2598	2570		
2572 2573 2574 2575 2576 2577 2578 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2597 2598	2571		
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2597 2598	2572		
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598	2573		
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2590 2591 2592 2593 2594 2595 2596 2597 2598 2596 2597 2598	2574		
2576 2577 2578 2580 2581 2582 2583 2584 2585 2586 2587 2588 2590 2591 2592 2593 2594 2595 2596 2597 2598 2596 2597 2596 2597 2598	2575		
2577 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2590 2591 2592 2593 2594 2595 2596 2597 2598	2576		
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2599 2591 2592 2593 2594 2595 2596 2597 2598 2597 2598 2597 2598	2578		
2580 2581 2582 2583 2584 2585 2586 2587 2588 2590 2591 2592 2593 2594 2595 2596 2597 2598 2597 2598	2570		
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598	2580		
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598	2581		
2583 2584 2585 2586 2587 2588 2590 2591 2592 2593 2595 2596 2597 2598	2582		
2584 2585 2586 2587 2588 2590 2591 2592 2593 2594 2595 2596 2597 2598	2583		
2585 2587 2588 2589 2590 2591 2592 2593 2593 2594 2595 2595 2596 2596	2584		
2586 2587 2588 2589 2590 2591 2592 2593 2593 2594 2595 2595 2596 2596	2585		
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598	2586		
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598	2587		
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598	2588		
2590 2591 2592 2593 2594 2595 2596 2597 2598	2589 2500		
2592 2593 2594 2595 2596 2597 2598	2590		
2593 2594 2595 2596 2597 2598	2592		
2594 2595 2596 2597 2598	2593		
2595 2596 2597 2598	2594		
2596 2597 2598	2595		
2597 2598	2596		
2598	2597		
	2598		

2599		
2600		
2602	871	Figure 6: Cathodoluminescence images of zircon grains separated from the Penzance
2603	872	granite, and analysed with SHRIMP and/or LA-SS-ICPMS. The location of the spots are
2605 2606 2607 2608 2609 2610 2611	873	indicated within each grain as well as the name (and ²⁰⁷ Pb/ ²⁰⁶ Pb age and discordance for
	874	SHRIMP spots). The zircons exhibit cavities, fractures, disruption of the original zoning and/or
	875	development of dark CL areas.
2612 2613	876	
2013 2614 2615		
2616		
2617		
2618		
2619		
2620		
2622		
2623		
2624		
2625		
2626		
2627		
2620		
2630		
2631		
2632		
2633		
2634		
2635		
2630		
2638		
2639		
2640		
2641		
2642		
2643		
2645		
2646		
2647		
2648		
2649		
2650		
2652		
2653		
2654		
2655		
2656		
2657		

2658		
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2674 2675 2676 2677 2678 2679 2680 2681 2683 2684 2683 2684 2685 2686 2687 2688 2689 2690 2691 2691 2693 2694 2695 2695	877	Figure 7: Backscatter electron images of four monazite grains senarated from the Penzance
	077	rigure 7. Duckseuter electron mages of four monazite grants separated from the renzance
	878	granite, and analysed with SHRIMP. The location of the spots are indicated within each grain
	879	as well as the name, ²⁰⁷ Pb/ ²⁰⁶ Pb ages and discordance. Most crystals present visible regular
	880	euhedral zoning, typical of magmatic monazite.
	880	euhedral zoning, typical of magmatic monazite.
2698 2699		
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716		

2717		
2718		
2719 2720	882	Figure 8: $EHf_{(i)}$ (CHUR) vs. ²⁰⁷ Pb/ ²⁰⁶ Pb age (Ma) plot for zircon from the Penzance granite,
2721 2722	883	the volcanic sequence at Bentley and zircons from other magmatic rocks within the Kurnalpi
2723 2724	884	Terrane (Wyche et al., 2012). The errors for $\epsilon Hf_{(i)}$ are 1σ . The zircon data from this study are
2725 2726 2727	885	plotted with the interpreted ²⁰⁷ Pb/ ²⁰⁶ Pb magmatic age for each sample, which is also used in
2728 2729	886	the calculation of the $EHf_{(i)}$. The thick black line labelled DM represents EHf of depleted mantle
2730 2731	887	over time.
2732 2733	888	
2734		
2735		
2736		
2737		
2738		
2739		
2740		
2741		
2742		
2743		
2744		
2746		
2747		
2748		
2749		
2750		
2751		
2752		
2753		
2754		
2755		
2756		
2757		
2758		
2759		
2760		
2762		
2762		
2763		
2765		
2766		
2767		
2768		
2769		
2770		
2771		
2772		
2773		
2774		
2775		

2776		
2777		
2778	889	Figure 9: MREE and HREE natterns for zircon from the Penzance granite and the volcanic
2779	007	rigure 9. WINELE and TINELE patients for Zireon from the renzance granice and the volcame
2780	000	a manufactor of Dentland and the share have been a Conserve at 1080). The larger small
2781	890	sequence at Bentley, normalized to chondrite (Anders and Grevesse, 1989). The lower graph
2782		
2783	891	is a compilation of the four results.
2784		
2785	892	
2786		
2787		
2788		
2789		
2790		
2791		
2792		
2793		
2794		
2795		
2796		
2797		
2798		
2799		
2800		
2801		
2802		
2803		
2804		
2805		
2806		
2807		
2808		
2809		
2810		
2811		
2812		
2813		
2814		
2815		
2816		
2817		
2818		
2819		
2820		
2821		
2822		
2823		
2824		
2825		
2826		
2827		
2828		
2829		
2830		
2831		
2832		
2833		
2034		

2835		
2836		
2837 2838	893	Figure 10: Graph of probability density, assuming a normal distribution, for the zircon
2839 2840	894	²⁰⁷ Pb/ ²⁰⁶ Pb mean ages obtained in this study and the previous age from Nelson (1995), with the
2841 2842	895	mean age indicated by a dashed line for each sample. Each age is represented both by the
2843 2844 2845	896	probability plot and by a graph bar. In both cases, the different shades represent 1σ or 2σ for
2845 2846 2847	897	each age, as indicated in the legend. The thick red line marks the maximum age of the
2848 2849	898	mineralisation. The unpublished TIMS age of the footwall rhyolite (unit I) (Das, 2018) is
2850 2851	899	represented only in bar graph form.
2852 2853	900	
2854		
2855		
2856		
2857		
2858		
2859		
2860		
2861		
2862		
2863		
2864		
2865		
2866		
2867		
2868		
2869		
2870		
2871		
2872		
2873		
2874		
2875		
2876		
2877		
2878		
2879		
2880		
2881		
2882		
2883		
2884		
2885		
2886		
2887		
2888		
2889		
2890		
2891		
2892		
2893		

2894		
2895		
2896 2897	901	Figure 11: Zr vs Y plot for the volcanic rocks that host the Jaguar deposit (Belford et al.,
2898 2899	902	2015) and two samples from the Penzance granite from Geoscience Australia's OZCHEM
2900 2901	903	database (Sedgmen et al., 2007). The filled square represents a sample collected from the same
2902 2903	904	quarry that was sampled for the geochemical studies (Sample id 96969076). The roman
2904 2905 2006	905	numerals indicates the stratigraphical subdivisions from this study and their correspondence to
2900 2907 2908	906	the facies described by Belford et al. (2015). The boundaries and indicated Zr/Y ratios that
2909 2910	907	define tholeiitic, transitional and calc-alkaline fields are from Barrett and MacLean (1994).
2911 2912	908	
2913		
2914		
2915		
2916		
2918		
2919		
2920		
2921		
2922		
2923		
2924		
2925		
2927		
2928		
2929		
2930		
2931		
2932		
2933 2034		
2935		
2936		
2937		
2938		
2939		
2940		
2941		
2943		
2944		
2945		
2946		
2947		
2948 2010		
2949 2950		
2951		
2952		

- The Teutonic Bore volcanics are broadly coeval to the Penzance granite
- The age of the Penzance granite is ca. 2682 Ma
- The Jaguar volcanics and the ore at the Teutonic Bore camp are \leq ca. 2693 Ma
- The Penzance granite possibly supplied heat and metals to the mineralisation
- Exploration in the EGS should focus on fluid pathways of HFSE-enriched granites

The 4D evolution of the Teutonic Bore Camp VHMS deposits, Yilgarn Craton, Western Australia

4	Vitor R. Barrote ^{1,2,3} , Neal J. McNaughton ¹ , Svetlana G. Tessalina ¹ , Noreen J. Evans ^{1,2} ,
5	Cristina Talavera ^{1,4} , Jian-Wei Zi ^{1,5} , Bradley J. McDonald ^{1,2}
6	1- John de Laeter Centre and The Institute for Geoscience Research (TIGeR), Curtin
7	University, Kent St, Bentley, WA 6102, Australia
8	2- School of Earth and Planetary Sciences, Curtin University, Kent St, Bentley, WA 6102,
9	Australia
10	3- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria
11	3800, Australia
12	4- School of Geosciences, University of Edinburgh, The King's Building, James Hutton
13	Road, EH9 3FE, Edinburgh, UK
14	5- State Key Lab of Geological Processes and Mineral Resources, China University of
15	Geosciences
16	Declarations of interest: none
17	ABSTRACT
18	The Teutonic Bore Camp, comprised of the Teutonic Bore, Jaguar and Bentley deposits, is
19	one of the most significant volcanic-hosted massive sulphide (VHMS) camps in Western
20	Australia. Despite being extensively studied, only recently there have been advances in the
21	understanding of the mechanism that drove the formation of mineralisation. It has been
22	recognized by recent studies that the volcanic-hosted deposits from the Teutonic Bore Camp
23	represent replacement-type VHMS systems, with significant input of fluids and metals from a
24	magmatic source. This paper tests the existing hypothesis that the nearby Penzance granite
25	acted as the metals source and/or thermal engine driving the development of these ore deposits.

New age constraints on the formation of the host volcanic sequence at the Bentley deposit and the crystallization of the Penzance granite allows for the construction of a 4D evolutionary model for the ore system. A new U-Pb SHRIMP monazite age of 2681.9 ± 4.5 Ma indicates that the Penzance granite post-dates the host stratigraphy at Bentley (ca. 2693 Ma) and is probably coeval with mineralisation. All zircons (Penzance, Bentley units I and III) have very similar \Box Hf_(i), with most values between -1 and +6, slightly higher than the \Box Hf_(i) of zircons from other granites and volcanics within the Kurnalpi Terrain, and indicative of juvenile sources. The mean Th/U ratios are ~0.7 and ~0.6 for the Penzance and Bentley zircons, respectively. All zircons have similar Ce/Nd_(CN) ratios. The chemical similarities between the zircons from the granite and the volcanic rocks at Bentley support a shared magmatic source between the Penzance and the Teutonic Bore Camp sequence. The Penzance granite is the likely source of heat, and potentially metals, which drove the VHMS mineralisation at the Teutonic Bore Camp.

39 Keywords: Penzance; Teutonic Bore; Volcanic-hosted massive sulphide; Archean;
40 Geochronology; 4D modelling

1 INTRODUCTION

Using an extensive database of compiled whole-rock geochemistry and U-Pb geochronology, Hollis et al (2015) proposed a link between VHMS mineralisation and the emplacement of HFSE-enriched syn-volcanic intrusions, throughout the Archean Yilgarn Craton, including the Eastern Goldfield Superterrane. Despite the apparent geographical and broadly coeval association between VHMS ores and HFSE-enriched intrusions, the identification of a genetic link would benefit from further geochronological and isotopic evidence.

49 The number of significant VHMS occurrences in the Yilgarn Craton is small compared to
 50 other Archean terrains with similar characteristics such as the Superior Province of Canada

(Hollis et al., 2015). Previous studies suggested that this could be due to under-exploration and the use of techniques inappropriate for mineral prospecting in the Yilgarn Craton (Butt et al., 2017; Ellis, 2004; Hollis et al., 2017, 2015; McConachy et al., 2004). Unlike classic VHMS systems, replacement-type VHMS systems, such as those in the Eastern Goldfield Superterrane, do not precipitate onto the seafloor and although some stratigraphic control can be observed within replacement-type mineralisation, it is not an inevitable feature (Doyle and Allen, 2003). Historically, exploration for VHMS occurrences within the Teutonic Bore area was focused on key stratigraphic horizons. However, the known deposits formed at different stratigraphic positions and show significant differences in the geometry of mineralisation, compared to Teutonic Bore (Chen et al., 2015; Parker et al., 2017). This led to a significant time gap between the discoveries of the Teutonic Bore deposit in 1976, and the Jaguar and Bentley deposits in 2004 and 2008, respectively (Ellis, 2004; Parker et al., 2017). To better understand this lack of stratigraphic control on the position of orebodies at the Teutonic Bore Camp, and a possible link between high-field-strength-elements (HFSE)-enriched granite emplacement and ore precipitation, this work re-examines and expands the database of geochronology and isotopic/geochemical fingerprints for the igneous rock units. This includes re-assessment of the geochronological data from the nearby HFSE-enriched granite, the Penzance granite (Champion and Cassidy, 2002; Geoscience Australia, 2019), and the volcanic sequence from the Teutonic Bore Camp (Nelson, 1995), with additional U-Pb Sensitive High-Resolution Ion Microprobe (SHRIMP) dating of zircon and monazite. These geochronological studies are complemented by zircon Hf-isotope and trace element analyses from the Bentley volcanic sequence and Penzance granite, and compilation of detailed

stratigraphy, whole-rock geochemistry and sulphur isotope data from previous studies (Belford
et al., 2015; Chen et al., 2015; Das, 2018; Isaac, 2015; Sedgmen et al., 2007). The present work
combines the improved geochronological constrains presented here to the current 3D

understanding of the geological processes at place, to develop a 4D evolutionary model of the deposits at the Teutonic Bore Camp.

Reliable and precise ages for magmatism and ore-hosting volcanism, combined with traditional and isotopic geochemistry, allows testing of the hypothesis of a genetic relationship between the HFSE-rich Penzance granite and the Teutonic Bore Camp deposits. The results could have implications for future exploration for Precambrian VHMS deposits, not only in the well-established Teutonic Bore Camp, but also in greenfields throughout the Eastern Goldfield Superterrane and, potentially, elsewhere in the Yilgarn Craton.

GEOLOGICAL BACKGROUND

2.1 **Geology of the Teutonic Bore Camp**

The Teutonic Bore, Jaguar and Bentley VHMS deposits, along with several other smaller occurrences, form the Teutonic Bore Camp (Independence Group NL (IGO), 2015). The Teutonic Bore Camp is located near the town of Leonora, within the Kurnalpi Terrane of the Eastern Goldfield Superterrane, Yilgarn Craton (Figure 1). The deposits in the Teutonic Bore Camp are hosted by the Teutonic Bore volcanic complex, which comprises pillow basalt, overlain and interlayered with volcanoclastic units, coherent rhyolite, andesite and thin sedimentary units (Belford et al., 2015; Parker et al., 2017 and references therein). The prefix "meta" is assumed but omitted when addressing the Archean stratigraphic sequence of the Yilgarn Craton, because all rocks are metamorphosed to some extent (Czarnota et al., 2010).

The volcanic stratigraphy and the distribution of the three deposits, as well as other known uneconomic ore bodies, have a NW-SE trend (Figure 1). This trend coincides with the general alignment of regional structures, such as the fault that bounds the Teutonic Bore volcanic complex to the west (Hallberg and Thompson, 1985; Parker et al., 2017).

- The stratigraphy at the Teutonic Bore Camp comprises a predominantly laterally continuous lithofacies association between the three deposits (Figure 2A). Therefore, the volcanic sequence that hosts the mineralisation can be broadly subdivided in six units as follow from bottom to top (Figure 2B; Belford et al., 2015; Parker et al., 2017):
- Footwall Rhyolite: from 200 m to over 1 km thick. Mainly coherent, either massive I. or flow-banded, with minor breccia (Parker et al., 2017), and with calc-alkaline to transitional magmatic affinity (Belford et al., 2015). This package is footwall to all three deposits.
- 256
257107II.Sedimentary rocks partly derived from the rhyolite, locally coarse but grading to258
259108arenite, siltstone and shale. This is the host unit to the Bentley deposit. The thickness260
261109range from 0 to 70 m according to Parker et al. (2017)
- III. Transitional to tholeiitic basalt/ transitional andesite with thickness between 30 and 170 m, with massive or pillowed habit, commonly intercalated with shale rich sediments (Parker et al., 2017). This package is host to the Teutonic Bore deposit and upper lens at Bentley (e.g.: Flying Spur, Brooklands, Comet: Independence Group NL (IGO), 2015) and overlays the lower orebody at the Bentley deposit (Arnage: Independence Group NL (IGO), 2015). Belford et al. (2015) names this unit Footwall Andesite (FA) and Footwall Basalt (FB), relative to their position to the mineralised zone at Jaguar.
- IV. Upper sedimentary horizon (mineralised package from Belford et al., 2015) consists of a complex assemblage of intercalated dacite (called MPD by Belford et al., 2015), conglomerate, pumice-rich breccia, laminated sediment, laminated chert and massive sulphide (Belford et al., 2015). Unit IV marks a geochemical break in magmatic affinity, from tholeiitic/transitional of the underlying basalts/andesites to

- 298
299123calc-alkaline in the overlying lavas. The thickness is typically within 20 to 40 m300
301124(Parker et al., 2017).
- V. Upper basalt and andesite of calc-alkaline affinity consists of massive and pillowed basalt and andesite lavas with minor volcanic breccias, and intercalated with mostly carbonaceous shales (Belford et al., 2015). The total thickness of this unit ranges between about 200 to 700 m (Parker et al., 2017).
- 311
312129VI.Hangingwall rhyolite: uppermost stratigraphic unit, described by Belford et al.313
314130(2015) from a single drillhole. The thickness of this unit is estimated to be between315
316131100 to 500m according to Parker et al. (2017).

The Teutonic Bore volcanic sequence is bounded to the east by a large composite batholith (Figure 1) named the Kent Complex by Champion and Cassidy (2002) and part of the Penzance Supersuite (Hollis et al., 2015). The Penzance Supersuite consists of HFSE-enriched granites with biotite and/or amphibole in guartz and feldspar rich rocks. These granites are characterised by variably elevated total Fe, MgO, Y, LREE, Zr, coupled with low to moderate Al₂O₃, K₂O, Rb, Sr and moderate Na₂O (Champion and Cassidy, 2002).

The relationship between the Penzance granite and the volcanic sequence in the Teutonic Bore Camp area remains unclear. Earlier studies (e.g.: Hallberg and Thompson, 1985) suggest an irregular contact between the granite and the volcanic rocks, with anastomosing veins of granitoid extending into adjacent extrusive rocks and a number of xenoliths of volcanic rocks within the intrusive granite. The Penzance granite is one of several HFSE-enriched intrusions in the Yilgarn Craton that occurs in close proximity to VHMS deposits or occurrences hosted by equally HFSE-enriched volcanics (Hollis et al., 2015).

The Jaguar deposit was classified as a replacement-type VHMS deposit by Belford (2010).
 This classification relied on evidence including replacement front texture, absence of chimney
 structures, and rapid emplacement of the host volcanic sequence, according to the criteria

proposed by Doyle and Allen (2003). Later studies (Chen et al., 2015; Das, 2018; Parker et al., 2017) have identified similar textures in Bentley and other smaller occurrences and. consequently, the replacement-type VHMS model is accepted within the Teutonic Bore Camp. Despite the predominance of sub-seafloor replacement processes, Belford (2010) observed features that indicate possible above seafloor activity. The development of thin beds of translucent chert with colloform intergrowths of chert and sulphide is interpreted as products of a waning hydrothermal system that had vented fluid to the sediment-water interface and deposited precipitates onto the seafloor (Belford et al., 2015). Massive sulphides conformably overlain by, and gradational upwards into, narrow beds of laminated chert intercalated with finely-bedded sulphide-rich mudstone, support the idea of a progressive disruption of the mineral activity and indicate that some sulphide precipitation might have taken place very near or at seafloor (Belford et al., 2015).

The occurrence of massive sulphide clasts in the surrounding breccias and conglomerates, which were the result of rapid erosion and mass flow, indicates that the sulphide body was formed contemporaneously with the deposition of the upper sedimentary horizon (IV) (Belford et al., 2015). Similar features have not been observed in either the Bentley or the Teutonic Bore deposits.

394 165

2.2 Geochronology of the Teutonic Bore sequence and the Penzance granite

The SHRIMP zircon age of 2692 ± 4 Ma (Nelson, 1995) is the only published age for the volcanic sequence at the Teutonic Bore Camp and comes from a porphyric dacite with unclear stratigraphic position (Belford et al., 2015). Additionally, Das (2018) reported an ID-TIMS U-Pb age of 2692 ± 1.5 Ma for a sample of coherent Footwall Rhyolite (unit IV) from Jaguar. These analysis remain unpublished and no data table or sample characterization is provided by Das (2018).
The reported ages for the Penzance granite are 2679 ± 8 Ma (Champion and Cassidy, 2002) and 2686 ± 9 Ma (Geoscience Australia, 2019, sample ID 96969076). The two ages are derived from the same analyses and calculated from a single dataset for sample ID 96969076. No explanation is provided by either references as to the reason behind the difference in age calculation from a single set of analysis.

SAMPLES AND METHODS

Penzance samples 3.1

Samples from the Penzance granite were collected from three different positions within the same guarry (Lat. -28.264050, Long. 121.077888, Penzance Ouarry in Figure 1). They were collected from the same quarry as sample ID 96969076 from the Geochron Delivery database of Geoscience Australia (2019). Each one of the three samples was processed separately and treated as different samples, the analyses were combined only in the data processing phase of each technique.

Bentley samples 3.2

Two samples were collected from different positions within the footwall rhyolite (unit I) in the Bentley deposit. Sample 15BUDD78 – 111.60 m was collected from drillhole 15BUDD78 at 111.60 meters depth, from a distal position to the ore. Sample 15BUDD137 – 398.60 m was collected from a higher stratigraphic position within the sequence, a stringer zone to the lower massive sulphide lens, from a different drillhole (15BUDD137).

Two samples (15BUDD120 - 228.42 and 15BUDD120 - 226.04) of the transitional andesite (unit III), were collected from a single drillhole (15BUDD120), within two meters of each other. The transitional andesite at the sampled point is hanging wall to the lower lens (Arnage), but it is in the stringer zone for the upper lens, marked by the occurrence of disseminated sulphides.

3.3 Analytical techniques

201 In zircons from the same samples that were analysed by SHRIMP, but not necessarily on the 202 same grain or over the same spot as the SHRIMP analysis. Detailed description of the 203 conditions and procedures are provided in Supplementary Material 1.

4 RESULTS

205 4.1 U-Pb SHRIMP Zircon dating

4.1.1 Footwall rhyolite (unit I) – Bentley Footwall

Fourteen analyses on 14 zircons from sample 15BUDD78 - 111.60 m were performed (Supplementary Material 2). Using only analyses within 3% of concordant yields a mean 207 Pb/ 206 Pb age of 2696.5 ± 4.2 Ma (95% c.l., n=12; mean square weighted deviation, MSWD=1.04, Figure 3). The average and range of Th/U ratio from the most concordant SHRIMP analyses for this sample are 0.60 and 0.45-0.72, respectively.

A second sample from unit I was dated, twenty-seven analyses from 27 zircons from sample 15BUDD137 – 398.60 m were collected (Supplementary Material 2). The mean ²⁰⁷Pb/²⁰⁶Pb age obtained for analyses within 4% of concordant and with <0.3% common Pb was 2691.7 \pm 2.5 Ma (95% c.l.; n=25; MSWD=0.95, Figure 3). The average and range of Th/U ratio from the most concordant SHRIMP analyses are 0.63 and 0.41-0.84, respectively.

⁵²² 217 The CL images of zircons from the two unit I, footwall rhyolite samples show grains with ⁵²⁴ 218 continuous oscillatory zoning and no discernible core and/or rims, with sizes ranging from ⁵²⁶ 219 about 50 to 100 μ m (Figure 4). Their morphologies, Th/U and ages are indistinguishable, and

combining the most concordant data, the resulting age of 2692.9 ± 2.1 Ma (95% cl; n=37; MSWD=1.05) is our best estimate of the age of the footwall rhyolite at Bentley.

4.1.2 Transitional andesite (unit III) – Bentlev Hangingwall

The samples from the transitional andesite were treated as two separate samples for the geochronology portion of this study. However, these samples were taken 2 meters apart, from the same drillcore (15BUDD120), and were within the same stratigraphic facies. The CL images show zircons with continuous oscillatory zoning, and ranging from 15 to 30 µm in diameter (Figure 5).

Sample 15BUDD120 – 226.04 m yielded 24 dates from 20 zircons. Considering only the 13 results with <5% discordance (Supplementary Material 2), the MSWD is 2.7 and indicates an age spread not consistent with a single age population. Omitting the three youngest ages as statistical outliers probably influenced by diffusional Pb-loss, the remaining population yields a mean age of 2693.2 ± 5.8 Ma (95% cl; n= 10; MSWD=0.88, Figure 3). The average and range of Th/U from the SHRIMP analyses of the more concordant zircons from this sample is 0.90 and 0.39-1.55, respectively.

Sample 15BUDD120 – 228.42 has 18 dates from 16 grains. The ages <5% discordant and <0.1% common Pb yield a mean ²⁰⁷Pb/²⁰⁶Pb age of 2693.6 ± 6.0 Ma (95% cl, n=9; MSWD=0.24, Figure 3; Supplementary Material 2). The average and range of Th/U of the more concordant zircons is 0.95 and 0.73-1.31, respectively.

The ages obtained for the two adjacent samples from the same stratigraphical facies agree within error. Hence, the data can be combined to obtain a mean ²⁰⁷Pb/²⁰⁶Pb age for the Transitional Andesite (unit III) of 2693.4 ± 4.1 Ma (95% c.l., n=19; MSWD=0.55). The average Th/U from the zircons used in this mean age calculation was 0.92.

245 4.1.3 Penzance granite

The CL imaging of abundant zircons from all three samples collected from different locations in a single quarry of the Penzance granite displays textures typical of metamict zircons (Figure 6). These include cavities, fractures, disruption of the original zoning and development of dark CL areas (Corfu, 2003; Kılıç, 2016).

Even when targeting zircon grains seemingly less affected by metamictisation, twenty-seven analysis were aborted throughout a single analytical session due to the unacceptably high 204 Pb content. Of the twenty-four analysis which were not aborted, only nine were <5%discordant and had less than 1% common Pb (Figure 6, Supplementary Material 2). The U and Th contents of completed analyses (average of ~580 and ~400 ppm, respectively) were commensurate with the observed metamictisation. The nine near concordant analysis have scattered ages typical of metamict zircons, and only one of the ages is within error of the previously reported age (Geoscience Australia, 2019). We conclude that no reliable age could be calculated from these zircon data. The average and range of Th/U from the completed SHRIMP analyses was 0.72 and 0.52-1.46, respectively.

627 260

4.2 U-Pb SHRIMP monazite dating of the Penzance granite

A significant number of the monazite grains were separated from the three Penzance granite samples. They have euhedral zoning textures on BSE images (Figure 7), which indicates magmatic crystallization. Recent studies (e.g.: Piechocka et al., 2017) have demonstrated the increased reliability of magmatic monazite as a geochronometer for igneous rocks with unreliable zircon age data, when subsequent metamorphic conditions remained under the Pb closure temperature of monazite. Monazite contains high U and Th and incorporates minor common Pb and, unlike zircon, is largely immune to metamictisation and radiogenic Pb loss at low temperatures (Piechocka et al., 2017).

A total of 38 of 56 analysis from 18 grains with low common Pb (f206 <0.5%) and low discordance (\leq 5%) (Table 1) yield a mean ²⁰⁷Pb/²⁰⁶Pb age of 2681.9 ± 4.5 Ma (95% c1; MSWD = 1.4; Figure 3). The slightly high MSWD indicates the possibility of scatter from a single-age population. However, in the absence of any skewness in the age probability plot (not shown), anomalous Th-U chemistry or other evidence for either inheritance or Pb-loss, and given the amount of data collected (n=56) and used (n=38), this is considered to be the age of these igneous monazite.

4.3 HF-isotopes in zircon

277 4.3.1 Teutonic Bore volcanics

Twenty-five zircon grains from sample 15BUDD78 – 111.60 m of the footwall rhyolite (unit I) were analysed for Lu–Hf by LA-SS-ICP-MS (Supplementary Material 3, mount N18-15D, sample B78,). The calculated ε Hf_(i), based on the interpreted SHRIMP ²⁰⁷Pb/²⁰⁶Pb age (2692.9Ma), plot in a homogeneous population with values ranging between +2.3 and +5.6 (Figure 8), and a mean of 3.7 ± 0.5 (MSWD = 0.47, n = 25). The low MSWD value partly reflects the relatively large ε Hf_(i) errors on individual analyses.

Twenty-nine Lu–Hf analysis (Supplementary Material 3, mount N18-15C, sample B137) were conducted on zircons from sample 15BUDD137 – 398.60 m of the same footwall rhyolite (unit I), and, once again, the $\mathcal{E}Hf_{(i)}$ is calculated based on the interpreted SHRIMP ²⁰⁷Pb/²⁰⁶Pb age for emplacement. $\mathcal{E}Hf_{(i)}$ values range between -0.6 and +5.2 with a mean of 2.9 ± 0.5 (MSWD = 0.90, n = 29, Figure 8). Combining the $\mathcal{E}Hf_{(i)}$ data for the both footwall rhyolite samples (unit I) yields a value of 3.27 ± 0.33 (MSWD = 0.79, n = 54).

Sixteen Lu–Hf analysis (Supplementary Material 3, B37) were conducted on zircon from both samples of transitional andesite (unit III) and the mean age of the combined SHRIMP analyses of 2693.4 Ma was used to calculate $EHf_{(i)}$ which showed considerable scatter and ranged between -11.7 and +8.6 with significant errors on individual analyses (Supplementary

Material 3). The lower precision is a result of the smaller spot-size necessary for the small zircons from these samples. The mean $\mathcal{E}Hf_{(i)}$ for the transitional andesite (unit III) is 2.6 ± 1.8 (MSWD = 1.05, n = 16, Figure 8).

297 4.3.2 Penzance granite

Recent studies show that the Lu–Hf system remains relatively undisturbed within metamic zircon that do not undergo significant later alteration (Lenting et al., 2010). Thirty-four Lu–Hf analyses on zircon from the Penzance granite (Supplementary Material 3, N18-06) show a range of $\mathcal{E}Hf_{(i)}$ between -1.5 to +4.7 with mean value of 2.17 ± 0.45 (MSWD = 1.15, n = 34). The $\mathcal{E}Hf_{(i)}$ values were calculated based on the SHRIMP monazite ages presented herein.

4.4

Trace elements in zircon

Selected trace elements were measured via LA-SS-ICP-MS (Supplementary Material 4).
Figure 9 illustrates patterns for selected REEs normalized to chondrite (Anders and Grevesse,
1989) for the two samples from the footwall rhyolite (unit I), the combined samples of andesite
(unit III) and the Penzance granite.

The zircons from the footwall rhyolite (unit I) and the andesite (unit III) have similar MREE and HREE content (Figure 9). The mean Yb/Dy ratio is 4.15 ± 0.85 and 4.45 ± 0.68 (1 σ) for the rhyolite and andesite, respectively. The Ce anomaly is estimated by the Ce/Nd_(CN) ratio (Loucks et al., 2018) to be positive in both rock types (Supplementary Material 4), with mean Ce/Nd_(CN) of 1.04 ± 0.58 and 1.30 ± 0.75 (1 σ) for the rhyolite and andesite, respectively. The zircons from the Penzance granite show a mean Ce/Nd_(CN) of 0.92 ± 0.23 (1 δ), indicating a positive Ce anomaly, and Yb/Dy ratio of 2.5 ± 0.67 (1 σ).

DISCUSSION

5.1 Age constrains on the Penzance granite

Hollis et al. (2015) proposed a link between VHMS mineralisation at the Teutonic Bore Camp and the emplacement of the HFSE-enriched Penzance granite, based on geochemical similarities, the proximity and broad synchronicity between the intrusive magmatic activity and the volcanism of the host sequence. These observations were underpinned by a U-Pb zircon age for the volcanism (2692 ± 4 Ma; Nelson, 1995) and the age reported by Champion and Cassidy (2002) of 2679 ± 8 Ma, for the Kent Complex of the Penzance Supersuite. This latter age was obtained by SHRIMP U-Pb zircon dating of sample ID 96969076 of Geoscience Australia's database, after L.Black, AGSO (unpublished) in Champion and Cassidy (2002).

Champion and Cassidy (2002) reported the age but not the data table. However, the geochronological data, as well as location and description for sample ID 96969076, are available from Geoscience Australia's Geochron Delivery database (Geoscience Australia, 2019). The reported age for this sample is 2686 ± 9 Ma with MSWD = 1.6 and probability = 0.044 (Geoscience Australia, 2019), which is within error of the age reported by Champion and Cassidy (2002), but not identical.

We have reprocessed the data available from Geochron Delivery for sample 96969076 and obtained an identical age of 2686 ± 9 Ma, MSWD = 1.6 from 21 analysis. However, given the scatter inferred by the high MSWD, we have filtered the data by only considering analysis with common Pb <0.3%, deriving a more statistically robust age of 2682 ± 9 Ma (n=12; MSWD = 1.3). More importantly, only four zircons were recovered from sample 96969076 and the 21 analyses and calculated age is based on analyses from only three grains, of which one is a xenocryst. Each of our three samples collected from the same guarry had hundreds of zircon grains, and after hand-picking the clearest (least metamict) zircons and analysing the best areas based on CL-SE imaging, we only detected one analysis in the relevant time interval, and it

was 7% discordant. In view of this discrepancy, we searched for other datable minerals in the Penzance granite and identified igneous monazite. The monazite age of 2681.9 ± 4.5 Ma discussed above is considered to be a statistically valid age of magma crystallization for the Penzance granite, and supersedes the previous zircon age(s).

838 344

5.2 Geochronological associations

The relative timing of ore formation in the Teutonic Bore Camp is well constrained within the stratigraphic sequence at Jaguar, where substantial evidence of seafloor precipitation indicate coeval mineralisation to the development of the upper sedimentary package (unit IV). Such evidence is absent from Bentley and the Teutonic Bore deposit, which indicates that they were formed at greater depths, probably by replacement of a slightly older stratigraphy (see Figure 2A).

The syn-ore nature of the upper sedimentary package (unit IV) at Jaguar, the deposit hosted within the youngest stratigraphic level in the Teutonic Bore Camp, indicates that the hangingwall sequence at Jaguar post-dates ore formation and could provide a potential minimum mineralisation age. Attempts to date this sequence have proven unsuccessful to date (Das, 2018). The footwall in all three deposits, as well as the hangingwall immediately above the orebodies of the Bentley and the Teutonic Bore deposits, pre-date the mineralisation and represent a maximum age of ore formation.

The ages obtained in this study for the footwall rhyolite (unit I - 2691.7 ± 2.5 Ma and 2696.5 \pm 4.3 Ma) and the transitional andesite (unit III - 2693.4 \pm 4.1 Ma) suggest that mineralisation at the Teutonic Bore Camp is younger than c.a. 2694 Ma (Figure 10). The unpublished TIMS age for the footwall rhyolite sequence (unit I) of 2692.6 ± 1.5 Ma (Das, 2018) is indistinguishable from the SHRIMP age presented here for the pre-ore volcanic sequence at the Teutonic Bore Camp. Similarly, the previous SHRIMP age for the Teutonic Bore Camp sequence $(2692 \pm 4 \text{ Ma}; (\text{Nelson}, 1995))$ is similar to the age determined in this study (Figure

365 10). Therefore, although poorly constrained in the stratigraphy, it is likely that the porphyritic
366 dacite dated by Nelson (1995) is part of the pre-ore stratigraphy (units I, II, or III).

The ages for the footwall rhyolite (unit I) of 2696.5 ± 4.3 Ma and 2691.7 ± 2.5 Ma are within error of each other, when considering a 95% confidence interval. However, considering the normal distribution tendency of single-population ages obtained from multiple grains (Figure 10; Schoene et al., 2013), it is probable that these could also represent a long duration of volcanic activity during the development of this stratigraphic facies.

The ages for the footwall rhyolite (unit I) and the Penzance granite (2681.9 ± 4.5 Ma) do not overlap (Figure 10) at the 95% confidence interval and are not, therefore, coeval. Furthermore, the porphyritic dacite from Nelson (1995) and the transitional andesite (unit III) do not overlap the age of the Penzance (Figure 10) at a 95% confidence interval. We infer that these rocks pre-date the mineralisation and the syn-ore stratigraphy.

914 377

5.3 Geochemical correlations

378 5.3.1 Whole-rock geochemistry

Hollis et al. (2015) described similarities in whole-rock REE distribution between the Penzance granite (Kent Complex) and the felsic volcanics that host the mineralisation at Jaguar (footwall rhyolite – unit I). Based on these observations and the HFSE enrichment of both rock types they suggested a possible genetic link between these rocks, proposing that the footwall volcanic sequence at Jaguar would be the extrusive equivalent to the Penzance granite.

The geochronological results presented here indicate that the crystallization of the Penzance granite is not coeval to the formation of the footwall rhyolite (unit I) or the transitional andesite (unit III) at Bentley. However, these processes occur within a ~12 M.y. interval. Given the chemical similarities between these rock types and their proximity in age it is conceivable that they are both the product of a single magmatic system or had a common source.

Additionally, based on whole-rock geochemistry observations, other stratigraphic facies
within the younger, syn-ore, portion of the volcanic sequence at the Teutonic Bore Camp are
alternative candidates to be the extrusive correspondent to the Penzance granite.

The dacite that can be observed at the sedimentary-volcanic package of the upper sedimentary horizon (unit IV) in the Jaguar deposit (MPD from Belford et al., 2015) has Y/Zr ratios that indicates a tholeiitic affinity (Belford et al., 2015), which is also the case for the Penzance granite (ID 96969076, sampled from the same locality of the geochronological study; Sedgmen et al., 2007) (Figure 11). Furthermore, the MPD dacite yields a La/Yb_{CN} ratio of 3.4 - 5.5 (Belford, 2010), which indicates a significant LREE/HREE enrichment, equal to what is indicated by whole-rock REE content for the Penzance granite (Hollis et al., 2015).

399 5.3.2 Zircon geochemistry

The Hf-isotopes corroborate Hollis et al. (2015)'s hypothesis of a genetic link between the Teutonic Bore Camp volcanic sequence and the Penzance granite. All zircons (Penzance, units I and III) have very similar \Box Hf_(i), with most values between -1 and +6 (Figure 8). The \Box Hf_(i) values show little contribution from evolved sources (Figure 8). Indeed, Nd and Pb isotopes indicate that the Teutonic Bore Camp is located within a more juvenile zone of the Yilgarn craton, the Teutonic zone (Huston et al., 2014). The \Box Hf_(i) for the zircons from the Penzance granite and the volcanic rocks from the Teutonic Bore Camp plot above the CHUR line (Figure 8), indicating a juvenile depleted mantle source component. These \Box Hf_(i) are slightly higher than the \Box Hf_(i) of zircons from other granites and volcanics within the Kurnalpi Terrain (Isaac, 2015; Wyche et al., 2012).

According to Kirkland et al. (2015), parental magma composition is one of four factors that may contribute to variations in the Th/U of a zircon crystal. Therefore, the similar Th/U ratios (Supplementary Material 2) of the Penzance (~0.7) and Bentley zircons (Unit I: ~0.6) also suggest they could have a shared magma source. Furthermore, all zircons have similar

414 Ce/Nd_(CN) ratios (Supplementary Material 4), which indicates comparable redox conditions, as
415 this ratio is a proxy for the Ce anomaly (Loucks et al., 2018).

The zircons from the Penzance granite have higher overall REE content and MREE/HREE enrichment (indicated by the Yb/Dy ratio), when compared to the Bentley units I and III zircons (Supplementary Material 4). These chemical differences indicate that the Penzance granite is more fractionated but do not resolve whether this is the result of igneous differentiation from a common magma or magma production from a common source. The ~12 M.y. interval between the units I and III volcanics, and the Penzance granite suggests the latter.

102310244225.4Contribution to the 4D evolutionary model of the Teutonic Bore Camp ore

The 4D evolutionary model of the Teutonic Bore Camp is achieved by the addition of the time dimension to the current understanding of the geological evolution of the deposits, including stratigraphy and geochemistry (Figure 2; Belford, 2010; Belford et al., 2015; Chen et al., 2015; Das, 2018; Hallberg and Thompson, 1985; Macklin, 2010; Parker et al., 2017). The geochronology data presented in this study constrain in time several processes within the Teutonic Bore Camp, including the intrusion of the Penzance granite, which could be linked to the development of the mineral system.

Similarities in zircon chemistry (i.e.: \Box Hf_(i) and Th/U ratio; see section 5.3: Geochemical correlations) complemented by the geochemical correspondences between the Penzance granite and the Teutonic Bore volcanics (i.e.: HFSE-enrichment and REE pattern, see section 5.3: Geochemical correlations), suggest a genetic association between the intrusive granite and the extrusive rocks that constitute the Teutonic Bore Camp host sequence.

Irregular contact between the Penzance granite and the volcanic sequence, as well as, the recognition of intrusive veins of granitoid within the volcanics, and xenoliths of volcanic rocks within the granite (Hallberg and Thompson, 1985) indicate that the Penzance intrudes the volcanic Teutonic Bore sequence and that their proximity is not the result of subsequent

tectonic processes. Considering the close geographic position of the granite and the ore-bearing volcanic sequence (Figure 1), their shared geochemical features and broad synchronicity, it is possible that the Penzance granite was involved in the process that generated the VHMS mineralisation at the Teutonic Bore Camp.

Magmatic-hydrothermal contribution of metals is not necessary in the development of VHMS deposits (Huston et al., 2011) and syn-ore intrusions do not always directly supply metal to the system, but rather act as a heating source, driving hydrothermal circulation that leaches metals from the country host rock (Lode et al., 2017). However, in a number of cases there is evidence of a significant contribution of metals and/or volatiles from the magmatic source, in addition to the supply of heat (e.g.: Chen et al., 2015; Lode et al., 2017; Yang and Scott, 1996).

Chen et al. (2015) used S-isotopes as a proxy for the hydrothermal fluid composition in the Teutonic Bore Camp and interpreted that the supply of sulphur to the hydrothermal ore fluid was the result of a mixture between seawater and a hydrothermal fluid of magmatic origin. These authors did not find compelling evidence for leaching of sulphur from the host sequence into the ore fluid in the Teutonic Bore Camp. Therefore, the Penzance granite is a strong candidate to have acted as the probable magmatic source of sulphur to the mineralisation, and possibly, metals.

1104 457 5.5 Exploration strategies

Our observations show that the HFSE-enriched Penzance granite probably played a fundamental role in the supply of metals and heat that culminated in the development of the replacement-type VHMS deposits of the Teutonic Bore Camp. Therefore, future exploration efforts within the camp should focus on fluid pathways from similar granites. The emphasis should be on mapping syn- or pre-intrusive structures that could facilitate fluid flow from the granite to the host sequence. Fertile zones are likely to be discovered where these fluid paths

find the appropriate conditions for metal precipitation, which has been suggested by previous studies to be sediment-rich horizons (Parker et al., 2017) and/or depositional breaks (Belford et al., 2015).

This paper supports conclusions proposed by Hollis et al. (2015), of a connection between HFSE-enriched granites and VHMS (± base metals) deposits within the Yilgarn Craton. Following the identification of fertile terrains, populated with HFSE-enriched granites, greenfield exploration campaigns should employ a multi-disciplinary approach to test the processes involved in the formation of an ore deposit. The development of 4D models (i.e. constrain in time of 3D geological processes) allows for a better understanding of the timing and nature of the magmatic and stratigraphical processes necessary for the development of such ore deposits. This is particular true in Archean replacement-type VHMS deposits, where the syn-volcanic timing of the mineralisation is not always clear (e.g. Barrote et al., 2019)

CONCLUSIONS

- Three mined VHMS orebodies in the Teutonic Bore Camp (Teutonic Bore deposit, • Jaguar and Bentley) formed at different stratigraphic levels.
 - Jaguar formed coeval with its host sequence, whereas the ore in Teutonic Bore and Bentley replaces slightly older stratigraphy.
 - The age of the host sequence at the stratigraphic level of the Bentley deposit is ca. 2693 Ma.
 - The age of the Teutonic Bore Camp mineralisation is possibly coeval to the • intrusion of the Penzance granite at ca. 2682 Ma.
 - Monazite has been shown to be a more reliable chronometer than high-U-Th zircons • in the HFSE-enriched Penzance granite.

• The Penzance granite possibly acted as the source of heat and potentially fluid/metals to the ore formation at the Teutonic Bore Camp.

• VHMS exploration in the Yilgarn Craton should focus in finding fluid pathways between HFSE-enriched intrusives and potential host sequences to orebodies.

1 7 ACKNOWLEGMENTS

The authors acknowledge: Dr Steve Bereford and Mr. Kyle Hodges from IGO for their wisdom, access to samples, drill core and internal data; Thermo Fisher, GSWA and MRIWA for financial support; and the John de Laeter Centre (JdLC) for the facilities, scientific and technical assistance. We thank Dr. Haoyang Zhou, Dr. Nicolas Thebaud and an anonymous reviewer whose comments helped improve and clarify this manuscript. JdLC facilities are supported by a university-government consortium, ARC and AuScope via NCRIS. GeoHistory Facility instruments in the John de Laeter Centre, Curtin University were funded via an Australian Geophysical Observing System grant provided to AuScope Pty Ltd. by the AQ44 Australian Education Investment Fund program. The NPII multi-collector was obtained via funding from the Australian Research Council LIEF program (LE150100013).

BIBLIOGRAPHY

- Anders, E., Grevesse, N., 1989. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214. https://doi.org/10.1016/0016-7037(89)90286-X
- Barrett, T.J., MacLean, W.H., 1994. Chemostratigraphy and hydrothermal alterationin
 exploration for VHMS deposits in greenstones and younger volcanic rocks., in: Lentz,
 D.R. (Ed.), Alteration and Alteration Processes Associated with Ore-Forming Systems,
 Short Course Notes / Geological Association of Canada. Geological Assoc. of Canada,
 St.John's, Newfoundland, pp. 433–467.
- Barrote, V., Tessalina, S., McNaughton, N., Jourdan, F., Hollis, S.P., Ware, B., Zi, J.-W., 2020.
 4D history of the Nimbus VHMS ore deposit in the Yilgarn Craton, Western Australia.
 Precambrian Research 337, 105536. https://doi.org/10.1016/j.precamres.2019.105536
- 513 Belford, S.M., 2010. Genetic and chemical characterisation of the host succession to the archean Jaguar VHMS deposit. (Doctoral dissertation). University of Tasmania, UTAS, Hobart, Tasmania, Australia.
 - 516 Belford, S.M., Davidson, G.J., McPhie, J., Large, R.R., 2015. Architecture of the Neoarchaean 517 Jaguar VHMS deposit, Western Australia: Implications for prospectivity and the

- 1240 1241 1242 518 of depositional breaks. Precambrian 260, presence Res. 136–160. 1243 519 https://doi.org/10.1016/j.precamres.2014.12.019 1244 Butt, C.R.M., Anand, R.R., Smith, R.E., 2017. Geology of the Australian regolith, in: Phillips, 520 1245 G.N. (Ed.), Australian Ore Deposits. The Australian Institute of Mining and 521 1246 Metallurgy, Melbourne, pp. 27–34. 522 1247
- 1248 523 Champion, D.C., Cassidy, K.F., 2002. Granites of the Northern Eastern Goldfields: their
 1249 524 Distribution, Age, Geochemistry, Petrogenesis, Relationship with Mineralisation, and
 1250 525 Implications for Tectonic Environment, AMIRA P482/MERIWAM281-Yilgarn
 1251 526 Granitoids. AMIRA P482/MERIWAM281-Yilgarn Granitoids.
- 1252 527 Chen, M., Campbell, I.H., Xue, Y., Tian, W., Ireland, T.R., Holden, P., Cas, R.A.F., Hayman, 1253 528 P.C., Das, R., 2015. Multiple Sulfur Isotope Analyses Support a Magmatic Model for 1254 529 the Volcanogenic Massive Sulfide Deposits of the Teutonic Bore Volcanic Complex, 1255 530 Yilgarn Craton, Western Australia. Econ. Geol. 110, 1411-1423. 1256 531 https://doi.org/10.2113/econgeo.110.6.1411
- 1257 532
 1258 533
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534
 1259 534<
- 534
 1260
 535
 1261
 536
 1262
 536
 1263
 1264
 1264
 1264
 1265
 1265
 1267
 1268
 1269
 1269
 1269
 1269
 1260
 1260
 1261
 1261
 1262
 1262
 1263
 1264
 1264
 1264
 1265
 1265
 1267
 1267
 1268
 1269
 1269
 1269
 1269
 1260
 1260
 1261
 1262
 1262
 1262
 1262
 1262
 1262
 1262
 1264
 1264
 1265
 1265
 1267
 1267
 1268
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 1269
 <
- 1263537Das, R., 2018. Understanding the Palaeovolcanological and Palaeoenvironmental setting of1264538Archaean VMS Deposit: Stratigraphic Architecture and Volcanology of the Archaean1265539VMS host rock succession of the Teutonic Bore, Jaguar and Bentley Mine corridor,1266540Eastern Goldfields Province, Western Australia (Master thesis). Melbourne University,1267541Melbourne.
- 1268542Doyle, M.G., Allen, R.L., 2003. Subsea-floor replacement in volcanic-hosted massive sulfide1269543deposits. Ore Geol. Rev. 23, 183–222. https://doi.org/10.1016/S0169-1368(03)00035-12705440
- 1271 545
 1272 546
 1273 547
 1274 548
 1274 548
 Ellis, P., 2004. Geology and mineralisation of the Jaguar copper-zinc deposit, Western Australia, in: McConachy, T.F., McInnes, B.I.A. (Eds.), Copper-Zinc Massive Sulphide Deposits in Western Australia. CSIRO Exploration and Mining, Melbourne, pp. 39–46.
 Constitution 2010
 Constitution 2010
- 548 Geoscience Australia, 2019. Geochron Delivery Database. Accessed June 2019.
 1275 549 http://www.ga.gov.au/geochron-sapub-web/geochronology/shrimp/search.htm.
 1276 550 Geoscience Australia, 2019. Geochron Delivery Database. Accessed June 2019.
 - 550 GeoVIEW.WA, 2016. 1:500 000 State interpreted bedrock geology polygons, 2016.
 - Hallberg, J.A., Thompson, J.F.H., 1985. Geologic setting of the Teutonic Bore massive sulfide
 deposit, Archean Yilgarn Block, Western Australia. Econ. Geol. 80, 1953–1964.
 https://doi.org/10.2113/gsecongeo.80.7.1953
- 554 Hollis, S.P., Mole, D.R., Gillespie, P., Barnes, S.J., Tessalina, S., Cas, R.A.F., Hildrew, C., 1281 Pumphrey, A., Goodz, M.D., Caruso, S., Yeats, C.J., Verbeeten, A., Belford, S.M., 555 1282 556 Wyche, S., Martin, L.A.J., 2017. 2.7 Ga plume associated VHMS mineralization in the 1283 Eastern Goldfields Superterrane, Yilgarn Craton: Insights from the low temperature and 557 1284 shallow water, Ag-Zn-(Au) Nimbus deposit. Precambrian Res. 291, 119-142. 558 1285 1286 559 https://doi.org/10.1016/j.precamres.2017.01.002
- Hollis, S.P., Yeats, C.J., Wyche, S., Barnes, S.J., Ivanic, T.J., Belford, S.M., Davidson, G.J.,
 Roache, A.J., Wingate, M.T.D., 2015. A review of volcanic-hosted massive sulfide
 (VHMS) mineralization in the Archaean Yilgarn Craton, Western Australia: Tectonic,
 stratigraphic and geochemical associations. Precambrian Res. 260, 113–135.
 https://doi.org/10.1016/j.precamres.2014.11.002
- 1292
 1293
 1294
 1294
 1295
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 1294
 <li
- 1295

1278

1279

- 1296
- 1297 1298

- 1301
 567
 Lead and Neodymium Isotopes.
 Econ.
 Geol.
 109,
 11–26.

 1303
 568
 https://doi.org/10.2113/econgeo.109.1.11
 109,
 11–26.
- Huston, D.L., Relvas, J.M.R.S., Gemmell, J.B., Drieberg, S., 2011. The role of granites in 569 1304 volcanic-hosted massive sulphide ore-forming systems: an assessment of magmatic-570 1305 hydrothermal contributions. Miner. 571 Deposita 46. 473-507. 1306 https://doi.org/10.1007/s00126-010-0322-7 572 1307
- 1308 573 Independence Group NL (IGO), 2015. Annual Report 2015 (Unpublished Annual Report).
 1309 574 Independence Group NL (IGO), Perth, W.A.
- Isaac, C., 2015. Geochemistry of the north Eastern Goldfields, Western Australia: examining
 the processes that produce nickel sulphide camps (Masters Thesis). The University of
 Western Australia, Perth, W.A.
- 1313578Kirkland, C.L., Smithies, R.H., Taylor, R.J.M., Evans, N., McDonald, B., 2015. Zircon Th/U1314579ratios in magmatic environs.Lithos 212–215, 397–414.1315580https://doi.org/10.1016/j.lithos.2014.11.021
- 1316 Kılıç, A.D., 2016. Investigation of zircon by CL (Cathodoluminescence) and Raman 581 1317 582 Spectroscopy. IOP Conf. Ser. Earth Environ. Sci. 44. 042006. 1318 583 https://doi.org/10.1088/1755-1315/44/4/042006 1319
- Lenting, C., Geisler, T., Gerdes, A., Kooijman, E., Scherer, E.E., Zeh, A., 2010. The behavior 584 1320 of the Hf isotope system in radiation-damaged zircon during experimental 585 1321 586 hydrothermal alteration. Am. Mineral. 95, 1343-1348. 1322 https://doi.org/10.2138/am.2010.3521 587 1323
- 1324588Lode, S., Piercey, S.J., Layne, G.D., Piercey, G., Cloutier, J., 2017. Multiple sulphur and lead1325589sources recorded in hydrothermal exhalites associated with the Lemarchant1326590volcanogenic massive sulphide deposit, central Newfoundland, Canada. Miner.1327591Deposita 52, 105–128. https://doi.org/10.1007/s00126-016-0652-1
- Loucks, R.R., Fiorentini, M.L., Rohrlach, B.D., 2018. Divergent T-fO2 paths during crystallisation of H2O-rich and H2O-poor magmas as recorded by Ce and U in zircon, with implications for TitaniQ and TitaniZ geothermometry. Contrib. Mineral. Petrol.
 173. https://doi.org/10.1007/s00410-018-1529-3
 Macklin D. 2010. Alteration at the Teutonic Bore (VHMS) Deposit Western Australia (B Sc.
 - Macklin, D., 2010. Alteration at the Teutonic Bore (VHMS) Deposit, Western Australia (B.Sc
 with honours thesis). University of Tasmania, UTAS.
- McConachy, T.F., McInnes, B.I.A., Carr, G.R., 2004. Is Western Australia intrinsically impoverished in volcanogenic massive sulphide deposits, or under explored?, in: McConachy, T.F., McInnes, B.I.A. (Eds.), Copper-Zinc Massive Sulphide Deposits in Western Australia. CSIRO Exploration and Mining, Melbourne, pp. 15–32.
- 602
 1339
 603
 1340
 604
 Nelson, D.R., 1995. Compilation of SHIRMP U-Pb zircon geochronology data, 1994, Record
 / Geological Survey of Western Australia. Geological Survey of Western Australia,
 Perth.
- Parker, P., Belford, S.M., Maier, R., Lynn, S., Stewart, W., 2017. Teutonic Bore Jaguar Bentley volcanogenic massive sulfide field, in: Phillips, G.N. (Ed.), Australian Ore
 Deposits. The Australian Institute of Mining and Metallurgy, Melbourne, pp. 167–172.
- Piechocka, A.M., Gregory, C.J., Zi, J.-W., Sheppard, S., Wingate, M.T.D., Rasmussen, B., 1345 608 1346 609 2017. Monazite trumps zircon: applying SHRIMP U-Pb geochronology to 1347 systematically evaluate emplacement ages of leucocratic, low-temperature granites in 610 1348 611 а complex Precambrian orogen. Contrib. Mineral. Petrol. 172. 1349 612 https://doi.org/10.1007/s00410-017-1386-5
- 1352
1353
1354615Sedgmen, A., Hazell, M.S., Budd, A.R., Champion, D.C., 2007. OZCHEM National Whole
Rock Geochemistry Dataset.
- 1355

1299 1300

1358		
1359 1360	617	Wyche, S., Kirkland, C.L., Riganti, A., Pawley, M.J., Belousova, E., Wingate, M.T.D., 2012.
1362	618	Isotopic constraints on stratigraphy in the central and eastern Yilgarn Craton, Western
1363	619	Australia. Aust. J. Earth Sci. 59, 657–670.
1364	620 621	https://doi.org/10.1080/08120099.2012.69/6//
1365	621 622	hydrothermal system Nature 383, 420–423, https://doi.org/10.1038/383420a
1367	022	nyaromornar system. rataro 505, 120 125. naps.//doi.org/10.1050/5051204
1368		
1369		
1370		
1371		
1373		
1374		
1375		
1376		
1378		
1379		
1380		
1381		
1383		
1384		
1385		
1300		
1388		
1389		
1390		
1392		
1393		
1394		
1395		
1397		
1398		
1399		
1400		
1402		
1403		
1404		
1405		
1407		
1408		
1409 1410		
1411		
1412		
1413		
1415		
1416		

Figure 1: Location of the Teutonic Bore Camp on a map showing the major subdivisions of the Eastern Goldfields Superterrane, Yilgarn Craton, Western Australia. The town of Leonora is indicated by a black diamond. The inset map shows the location of the three deposits (Teutonic Bore, Jaguar and Bentley) and the sampled Penzance granite on the 1:500 000 State interpreted bedrock geological map from the GSWA online database GeoVIEW.WA (2016).

Figure 2: A) Schematic geological model for the Teutonic Bore Camp showing the position of each deposit within the stratigraphic sequence and illustrating the sub-seafloor replacement feature of the VHMS mineralisation and possible relationship of the host stratigraphy and the intrusive leucogranite described by Hallberg and Thompson (1985). B) Simplified stratigraphic sequence and stratigraphical subdivisions for each of the three deposits within the Teutonic Bore Camp (Belford, 2010; Belford et al., 2015; Chen et al., 2015; Das, 2018 and complemented by this study; stratigraphic sequence modified from Hallberg and Thompson, 1985; Macklin, 2010; Parker et al., 2017). The U-Pb zircon age, drillhole and depth for the dacite are from Nelson (1995).

Figure 3: U-Pb Concordia diagram showing the SHRIMP spot analyses and mean $^{207}Pb/^{206}Pb$ ages for: A) Footwall rhyolite (unit I) – Bentley footwall zircons (sample 15BUDD78; mount N18-15D). B) Footwall rhyolite (unit I) – Bentley footwall zircons (sample 15BUDD138; mount N18-15C). C) Transitional andesite (unit III) – Bentley hangingwall zircons (sample 15BUDD120 - 226.04m; mount N19-07, 08). D) Transitional andesite (unit III) – Bentley hangingwall zircons (sample 15BUDD120 - 226.04m; mount N19-07, 08). D) Transitional andesite (unit III) – Bentley hangingwall zircons (sample 15BUDD120 - 228.42m; mount N19-09, 10). E) Penzance granite zircons (mount N18-06, 16). F) Penzance granite monazite (mounts N18-06, N18-16). Error ellipses are $\pm 1\sigma$.

Figure 5: Cathodoluminescence electron microscope images of zircon grains separated from the transitional andesite (unit III) at the Bentley deposit, and analysed with SHRIMP or LA-SS-ICPMS. The location of the spots are indicated within each grain as well as the name (and ²⁰⁷Pb/²⁰⁶Pb age and discordance for SHRIMP spots).

Figure 6: Cathodoluminescence images of zircon grains separated from the Penzance granite, and analysed with SHRIMP and/or LA-SS-ICPMS. The location of the spots are indicated within each grain as well as the name (and ²⁰⁷Pb/²⁰⁶Pb age and discordance for SHRIMP spots). The zircons exhibit cavities, fractures, disruption of the original zoning and/or development of dark CL areas.

Figure 7: Backscatter electron images of four monazite grains separated from the Penzance granite, and analysed with SHRIMP. The location of the spots are indicated within each grain as well as the name, ²⁰⁷Pb/²⁰⁶Pb ages and discordance. Most crystals present visible regular euhedral zoning, typical of magmatic monazite.

Figure 8: $\mathcal{E}Hf_{(i)}$ (CHUR) vs. ²⁰⁷Pb/²⁰⁶Pb age (Ma) plot for zircon from the Penzance granite, the volcanic sequence at Bentley and zircons from other magmatic rocks within the Kurnalpi Terrane (Wyche et al., 2012). The errors for $\mathcal{E}Hf_{(i)}$ are 1 σ . The zircon data from this study are plotted with the interpreted ²⁰⁷Pb/²⁰⁶Pb magmatic age for each sample, which is also used in the calculation of the $\mathcal{E}Hf_{(i)}$. The thick black line labelled DM represents $\mathcal{E}Hf$ of depleted mantle over time.

473	
474	
475	Figure 0: MDEE and UDEE notterns for sizeen from the Densence granite and the velocitie
476	Figure 9. MIREE and HREE patterns for zircon from the Penzance granite and the volcanic
477	
478	sequence at Bentley, normalized to chondrite (Anders and Grevesse, 1989). The lower graph
479	
480	is a compilation of the four results.
481	
482	
483	
484	
485	
486	
487	
488	
489	
490	
491	
492	
493	
494	
495	
496	
497	
498	
499	
500	
501	
502	
503	
504	
505	
506	
507	
508	
509	
510	
511	
512	
513	
514	
515	
516	
517	
518	
519	
520	
521	
522	
J∠J	
525	
525	
520	
520	
520	
529 530	
531	
551	

Figure 10: Graph of probability density, assuming a normal distribution, for the zircon $^{207}Pb/^{206}Pb$ mean ages obtained in this study and the previous age from Nelson (1995), with the mean age indicated by a dashed line for each sample. Each age is represented both by the probability plot and by a graph bar. In both cases, the different shades represent 1σ or 2σ for each age, as indicated in the legend. The thick red line marks the maximum age of the mineralisation. The unpublished TIMS age of the footwall rhyolite (unit I) (Das, 2018) is represented only in bar graph form.

Figure 11: Zr vs Y plot for the volcanic rocks that host the Jaguar deposit (Belford et al., 2015) and two samples from the Penzance granite from Geoscience Australia's OZCHEM database (Sedgmen et al., 2007). The filled square represents a sample collected from the same quarry that was sampled for the geochemical studies (Sample id 96969076). The roman numerals indicates the stratigraphical subdivisions from this study and their correspondence to the facies described by Belford et al. (2015). The boundaries and indicated Zr/Y ratios that define tholeiitic, transitional and calc-alkaline fields are from Barrett and MacLean (1994).

Declaration of conflict of interests

¹ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Vitor Rodrigues Barrote

SUPPLEMENTARY MATERIAL 1

1.1 SHRIMP U-Pb dating of Zircon and Monazite

1.1.1 Mount preparation

Zircon and monazite grains were separated from crushed rock samples using a Frantz magnetic separator and heavy liquids (methylene iodide). Grains were handpicked, mounted in epoxy resin discs and polished to expose their interiors. The zircon crystals were characterized by cathodoluminescence (CL) imaging, and monazite crystals by back-scattered electron (BSE) microscopy using the Mira3, at the Microscopy and Microanalysis Facility, John de Laeter Centre, Curtin University. The epoxy mounts were carbon coated for SEM imaging and Au-coated before each SHRIMP analytical session.

Polished thin sections prepared from samples of transitional andesite (unit III) were examined to identify suitable zircon grains for SHRIMP geochronology using the Tescan Integrated Mineral Analyzer (TIMA GM) and back-scattered electron (BSE) microscopy using the Mira3, at the Microscopy and Microanalysis Facility, John de Laeter Centre, Curtin University. Portions of the thin sections containing grains large enough (>15 μ m) for ion microprobe analysis were drilled out, in ~3 mm plugs, and cast in 25 mm epoxy mounts. The reference materials were in a separate mount that was cleaned and Au-coated with the sample mounts before each SHRIMP analytical session.

1.1.2 Zircon

Selected areas of the imaged zircon were analysed on the SHRIMP II at the John de Laeter Centre, Curtin University (JdLC). The analytical procedures for the Curtin consortium SHRIMP II have been described by de Laeter and Kennedy (1998) and Kennedy and de Laeter (1994) and are similar to those described by Compston et al. (1984) and Williams (1998). For the larger zircons in grain mounts, a 20-25 μ m elliptical spot was used, with a mass-filtered O₂⁻⁻

primary beam of ~2.8-3.0 nA, whereas a 10-12 μ m spot of ~0.5 nA was used on the smaller zircons in polished thin sections. Data for each spot was collected in sets of six scans on the zircons through the mass range of ¹⁹⁶Zr2O⁺, ²⁰⁴Pb⁺, Background, ²⁰⁶Pb⁺, ²⁰⁷Pb⁺, ²⁰⁸Pb⁺, ²³⁸U⁺, ²⁴⁸ThO⁺ and ²⁵⁴UO⁺. The ²⁰⁶Pb/²³⁸U age standard and U-content standard used was M257 (561.3 Ma and 840 ppm U; Nasdala et al., 2008) while OGC zircon was utilized as the ²⁰⁷Pb/²⁰⁶Pb standard, to monitor instrument induced mass fractionation (3465.4 ± 0.6 Ma; Stern et al., 2009). The ²⁰⁷Pb/²⁰⁶Pb dates obtained on OGC zircons during the SHRIMP sessions matched the ²⁰⁷Pb/²⁰⁶Pb standard age within uncertainty and no fractionation correction was warranted. The common Pb correction was based on the measured ²⁰⁴Pb-content (Compston et al., 1984). The correction formula for Pb/U fractionation is ²⁰⁶Pb⁺/²³⁸U⁺ = a (²⁵⁴UO⁺/²³⁸U⁺)^b (Claoué-Long et al., 1995) using the parameter values of Black et al. (2003). The constant "a" is determined empirically from analyses of the standard during each analytical session. The programs SQUID II and Isoplot (Ludwig, 2011, 2009) were used for data processing.

1.1.3 Monazite

The U–Th–Pb analyses were performed using the high spatial-resolution capability of the SHRIMP II at the JdLC. Monazite was analysed in two analytical sessions. Grains were analysed using a 30 μ m Köhler aperture, ~0.3 nA primary ion beam (O₂⁻) and a ~10 μ m analysis spot. Energy filtering was not applied, and the post-collector retardation lens was activated to reduce stray ion arrivals. The mass resolution (M/ Δ M at 1% peak height) was >5000. French (²⁰⁶Pb/²³⁸U age 514 Ma) was used as the primary Pb/U reference material, and Z2908 and Z2234 were the secondary reference materials used to monitor matrix effects (Fletcher et al., 2010). Z2908 (²⁰⁷Pb/²⁰⁶Pb age 1796 Ma) was also analysed to monitor and correct for instrumental mass fractionation of ²⁰⁷Pb from ²⁰⁶Pb. SQUID II software (Ludwig, 2009) was used for initial data reduction including ²⁰⁴Pb correction. Matrix effects in ²⁰⁶Pb/²³⁸U were corrected following established protocols detailed by Fletcher et al. (2010). 9 analyses of

Z2908 yielded a mean ${}^{207}Pb/{}^{206}Pb$ age of 1796.7 ± 5.4 Ma (mean square weighted deviation, MSWD = 1.7). An insignificant fractionation correction (0.02%) was applied to sample data, with no augmentation of sample precision required based on the reproducibility of ²⁰⁷Pb/²⁰⁶Pb in the reference materials. $^{207}Pb/^{206}Pb$ dates from individual analyses are presented with 1σ internal precision, whereas weighted mean ²⁰⁷Pb/²⁰⁶Pb dates are reported at 95% confidence limits. **1.2 LA-SS-ICPMS of Zircon – Trace elements and Hf isotopes** Zircon Lu-Hf isotopes and rare earth element (REE) abundances were measured over two analytical sessions using laser ablation split stream inductively coupled plasma mass spectrometry (LA-SS-ICPMS). The analyses were conducted in zircons from the same samples that were analysed by SHRIMP, but not necessarily on the same grain or over the same spot as the SHRIMP analysis. Isotopic and elemental data were collected simultaneously using a Resonetics S-155-LR 193 nm excimer laser coupled to a Nu Plasma II multicollector and Agilent 7700s quadrupole mass spectrometer in the GeoHistory Facility, JdLC at Curtin University.

> Samples 15BUDD120 – 228.42 and 15BUDD120 – 226.04 m, from the Transitional and esite (unit III) were analysed with a laser spot diameter of 24 μ m, with 2.7 J/cm² on-sample laser energy, repetition rate of 10 Hz, ablation time of 25 seconds and ~30 seconds of background capture before and after each analysis. Two cleaning pulse preceded analysis. The spot size and ablation time in this case were limited by the smaller size of the zircons.

> The remaining samples were analysed with a laser spot diameter of 50 μ m, with 2.7 J/cm² on-sample laser energy, repetition rate of 10 Hz, ablation time of 40 seconds and ~45 seconds of total baseline acquisition.

> Zircon standard P1 (Li et al., 2010; chips of Penglai zircon characterised in-house for trace element composition) was used as the primary standard to calculate element concentrations

using ⁹¹Zr as the internal reference isotope and assuming 43.14% Zr in zircon, and to correct for instrument drift.

Lu–Hf isotopic data were measured simultaneously for ¹⁷²Yb, ¹⁷³Yb, ¹⁷⁵Lu, ¹⁷⁶Hf+Yb+Lu, ¹⁷⁷Hf, ¹⁷⁸Hf, ¹⁷⁹Hf and ¹⁸⁰Hf on the Faraday array. Time resolved data was baseline subtracted and reduced using Iolite3.5 (DRS after Woodhead et al., 2004), where ¹⁷⁶Yb and ¹⁷⁶Lu were removed from the 176 mass signal using 176 Yb/ 173 Yb = 0.7962 (Chu et al., 2002) and 176 Lu/ 175 Lu = 0.02655 (Chu et al., 2002) with an exponential law mass bias correction assuming 172 Yb/ 173 Yb = 1.35274 (Chu et al., 2002). The interference corrected 176 Hf/ 177 Hf was normalized to ${}^{179}\text{Hf}/{}^{177}\text{Hf} = 0.7325$ (Patchett and Tatsumoto, 1980) for mass bias correction. Zircons from the Mud Tank carbonatite locality were analysed together with the samples in each session to determine corrected, standard referenced ¹⁷⁶Hf/¹⁷⁷Hf (Table 1). Zircon standards with a range of REE contents (FC1 91500, Plešovice and GJ-1; references and data in Table 1) were run to verify the method. All analysed standards fell within 2σ error of reported ¹⁷⁶Hf/¹⁷⁷Hf values, although uncertainties on the 24 micron beam run were, understandably, significantly higher. In addition, the corrected ¹⁷⁸Hf/¹⁷⁷Hf and ¹⁸⁰Hf/¹⁷⁷Hf ratios (for the 50 micron beam run) were calculated to monitor the accuracy of the mass bias correction and vielded an average value of 1.467193 ± 12 and 1.886808 ± 11 (n=184), which is within the range of values reported by Thirlwall and Anczkiewicz (2004). Calculation of EHf values employed the decay constant of Scherer et al. (2001) and the Chondritic Uniform Reservoir (CHUR) values of Blichert-Toft and Albarède (1997).

Table 1: Summary of the Hf isotope measurements of standard materials used interspersed with analyses of unknown zircons. Mean values were calculated using the built-in statistics from the Iolite software (Paton et al., 2011)

Standard	50 μm	24 μm	Dafaranga Valua
Material	Corrected ¹⁷⁶ Hf/ ¹⁷⁷ Hf	Corrected ¹⁷⁶ Hf/ ¹⁷⁷ Hf	Kelerence value
Mud Tank	0.282505 ± 14	0.282507 ± 64	0.282505 ± 44
	(MSWD = 0.70, n = 14)	(MSWD = 2.9, n = 6)	(Woodhead and Hergt, 2005)
FC1	0.282182 ± 9	0.282229 ± 150	0.282172 ± 42
	(MSWD = 0.31, n = 9)	(MSWD = 3.9, n = 6)	(Woodhead and Hergt, 2005)

91500	0.282306 ± 11	0.282235 ± 130	0.282306 ± 40
	(MSWD = 0.71, n = 14)	(MSWD = 2.4, n = 6)	(Woodhead et al., 2004)
Plešovice	$\boldsymbol{0.282477 \pm 8}$	0.282470 ± 51	0.282482 ± 13
	(MSWD = 0.3, n = 10)	(MSWD = 0.49, n = 6)	(Sláma et al., 2008)
GJ-1	0.282016 ± 12	0.281201 ± 110	0.282000 ± 5
	(MSWD = 0.69, n = 14)	(MSWD = 1.1, n = 6)	(Morel et al., 2008)

1.3 References

- Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J., Foudoulis, C., 2003. TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem. Geol. 200, 155–170. https://doi.org/10.1016/S0009-2541(03)00165-7
- Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 148, 243–258. https://doi.org/10.1016/S0012-821X(97)00040-X
- Claoué-Long, J.C., Compston, W., Roberts, J., Fanning, C.M., 1995. Two Carboniferous Ages: A Comparison of Shrimp Zircon Dating with Conventional Zircon Ages and 40Ar/39Ar Analysis, in: Berggren, W.A., Kent, D.V., Aubry, M.-P., Hardenbol, J. (Eds.), Geochronology, Time Scales, and Global Stratigraphic Correlation, Society for Sedimentary Geology Special Publications. SEPM (Society for Sedimentary Geology), pp. 3–21. https://doi.org/10.2110/pec.95.54
- Compston, W., Williams, I.S., Meyer, C., 1984. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Proc. 14th Lunar Planet. Sci. Conf. J. Geophys. Res. Suppl 89, B525–B534. https://doi.org/10.1029/JB089iS02p0B525
- Chu, N.-C., Taylor, R.N., Chavagnac, V., Nesbitt, R.W., Boella, R.M., Milton, J.A., German, C.R., Bayon, G., Burton, K., 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. J. Anal. At. Spectrom. 17, 1567–1574. https://doi.org/10.1039/b206707b
- de Laeter, J.R., Kennedy, A.K., 1998. A double focusing mass spectrometer for geochronology. Int. J. Mass Spectrom. 178, 43–50. https://doi.org/10.1016/S1387-3806(98)14092-7
- Fletcher, I.R., McNaughton, N.J., Davis, W.J., Rasmussen, B., 2010. Matrix effects and calibration limitations in ion probe U–Pb and Th–Pb dating of monazite. Chem. Geol. 270, 31–44. https://doi.org/10.1016/j.chemgeo.2009.11.003
- Kennedy, A.K., De Laeter, J.R., 1994. The performance characteristics of the WA SHRIMP II ion microprobe., in: Abstracts Vol., U.S. Geological Survey Circular. Presented at the Eighth International Conference on Geochronology, Cosmochronology and Isotope Geology, Berkeley, USA, p. 166.
- Li, X.-H., Long, W.-G., Li, Q.-L., Liu, Y., Zheng, Y.-F., Yang, Y.-H., Chamberlain, K.R., Wan, D.-F., Guo, C.-H., Wang, X.-C., Tao, H., 2010. Penglai Zircon Megacrysts: A Potential New Working Reference Material for Microbeam Determination of Hf-O Isotopes and U-Pb Age. Geostand. Geoanalytical Res. 34, 117–134. https://doi.org/10.1111/j.1751-908X.2010.00036.x
- Ludwig, K.R., 2011. User's manual for Isoplot 4.15: a geochronological toolkit for Microsoft Excel, Berkeley Geochronology Center Special Publication.
- Ludwig, K.R., 2009. Squid 2.50, A User's Manual, Berkeley Geochronology Centre Special Publication.
- Morel, M.L.A., Nebel, O., Nebel-Jacobsen, Y.J., Miller, J.S., Vroon, P.Z., 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-

ablation MC-ICPMS. Chem. Geol. 255, 231–235. https://doi.org/10.1016/j.chemgeo.2008.06.040

Nasdala, L., Hofmeister, W., Norberg, N., Martinson, J.M., Corfu, F., Dörr, W., Kamo, S.L., Kennedy, A.K., Kronz, A., Reiners, P.W., Frei, D., Kosler, J., Wan, Y., Götze, J., Häger, T., Kröner, A., Valley, J.W., 2008. Zircon M257 - a Homogeneous Natural Reference Material for the Ion Microprobe U-Pb Analysis of Zircon. Geostand. Geoanalytical Res. 32, 247–265. https://doi.org/10.1111/j.1751-908X.2008.00914.x

- Patchett, P.J., Tatsumoto, M., 1980. Hafnium isotope variations in oceanic basalts. Geophys. Res. Lett. 7, 1077–1080. https://doi.org/10.1029/GL007i012p01077
- Paton, C., Hellstrom, J., Paul, B., Woodhead, J., Hergt, J., 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 2508. https://doi.org/10.1039/c1ja10172b
- Scherer, E., 2001. Calibration of the Lutetium-Hafnium Clock. Science 293, 683–687. https://doi.org/10.1126/science.1061372
- Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., Whitehouse, M.J., 2008. Plešovice zircon A new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005
- Stern, R.A., Bodorkos, S., Kamo, S.L., Hickman, A.H., Corfu, F., 2009. Measurement of SIMS Instrumental Mass Fractionation of Pb Isotopes During Zircon Dating. Geostand. Geoanalytical Res. 33, 145–168. https://doi.org/10.1111/j.1751-908X.2009.00023.x
- Thirlwall, M.F., Anczkiewicz, R., 2004. Multidynamic isotope ratio analysis using MC–ICP– MS and the causes of secular drift in Hf, Nd and Pb isotope ratios. Int. J. Mass Spectrom. 235, 59–81. https://doi.org/10.1016/j.ijms.2004.04.002
- Williams, I.S., 1998. Geochronology by Ion Microprobe, in: McKibben, M.A., Shanks, W.C., Ridley, W.I. (Eds.), Applications of Microanalytical Techniques to Understanding Mineralizing Processes, Reviews in Economic Geology. pp. 1–35.
- Woodhead, J., Hergt, J., Shelley, M., Eggins, S., Kemp, R., 2004. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chem. Geol. 209, 121–135. https://doi.org/10.1016/j.chemgeo.2004.04.026
- Woodhead, J.D., Hergt, J.M., 2005. A Preliminary Appraisal of Seven Natural Zircon Reference Materials for In Situ Hf Isotope Determination. Geostand. Geoanalytical Res. 29, 183–195. https://doi.org/10.1111/j.1751-908X.2005.tb00891.x