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ABSTRACT  

Steam methane reforming is the primary route to convert natural gas into hydrogen, both at small 

and large-scale. Most of the effort from the scientific and industrial community has been directed 

towards CO2 capture from large-scale reforming plants. This article, therefore, proposes an 

intensified 8-bed, 14-step vacuum pressure swing adsorption unit to capture CO2 from a high 

partial pressure stream in a small-scale steam methane reforming process. The unit employs a 

monolithic adsorbent, rather than adsorbent pellets or beads; this allows the cycle time to be much 

shorter than that for pelleted adsorbent systems. The specific energy penalty for carbon capture 

has been minimised by regulating the blowdown and evacuation pressure, while also meeting the 

CO2 purity and recovery constraints. The minimum penalty is realised when the CO2 purity and 

recovery are fixed at the minimum allowable values of 95 and 90 %, respectively. The model 

predicts a specific electrical energy penalty of 9.03 kJ/mol CO2 for a fixed feed processing capacity 

of 7.10 mol of feed/m3/s. The corresponding productivity of the monolithic VPSA process in terms 

of its CO2 production capacity was estimated to be 0.951 mol CO2/m
3/s. The productivity was 

found out to be almost double than the values reported in literature for state-of-the-art MDEA 

based capture plants for large-scale steam methane reforming application. A dry feed gas was 

initially assumed for modelling; the presence of moisture was found to cause a drop in CO2 

recovery by approximately 5 percentage points. The monolithic adsorbent system has also been 

compared to an equally sized fixed bed, packed with pelleted adsorbent. The pelleted adsorbent 

system was found to have a lower working capacity between the same blowdown and evacuation 

pressure. The working capacity could only be improved with reducing the regeneration 

(evacuation) pressure, resulting in a higher vacuum pump penalty.  
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1. Introduction 

Carbon capture from large-scale Steam Methane Reforming (SMR) has long been considered a 

‘low-hanging fruit’ for demonstrating carbon capture1. The carbon dioxide (CO2) emissions from 

industrial sources come in all shapes (CO2 partial pressure) and sizes (scale). The UK government 

recently passed the net-zero emissions law, making it legally binding to achieve net-zero 

greenhouse gas emissions by 20502. Carbon Capture and Storage (CCS) will be an essential part 

of any future portfolio of climate mitigation technologies. There have already been four 

demonstration plants of carbon capture from large, industrial-scale SMR3-6.  All of these 

demonstration plants capture a fraction of the total CO2 produced by the SMR process. The carbon 

in Natural Gas (NG) is the source of all of the direct CO2 emissions in an SMR process. Since 

SMR is an endothermic process, NG is used both as the feed and fuel. The fuel NG supplies the 

energy needed to reform feed NG. The CO2 from both fuel and feed NG can either be captured 

together or separately at different locations within the process flow scheme, leading to different 

scenarios for carbon capture in an SMR process. Among the different scenarios for CO2 capture, 

capture from the shifted syngas stream is thermodynamically easier due to the higher partial 

pressure of CO2 in this stream. Therefore, all of the four industrial demonstration plants have 

focused on this stream to capture CO2. None of the demonstration plants captures CO2 from the 

reformer exhaust stream, where both the mole fraction, and total pressure are significantly lower.  

The Quest CCS project in Canada and the Tomakomai CCS project in Japan use an activated 

MDEA-based solvent for carbon capture4,5. Air Liquide uses the CryocapTM cryogenic process to 

capture ~0.1 Mt (Megatonne) per year at its Port- Jérôme site6. The carbon capture facility at Port 

Arthur, Texas (USA) uses a Vacuum Pressure Swing Adsorption (VPSA), wherein, CO2 is 
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adsorbed on a Zeolite adsorbent at high partial pressure, and subsequently desorbed at vacuum. 

The site had captured approximately 4 Mt of CO2 by mid-20177. At the current rate, the project 

should have captured approximately 6 Mt of CO2 by June 2019. Even after the end of the minimum 

operation period, specified as per funding requirements, the operator (Air Products and Chemicals) 

has still been capturing the same amount of CO2. The CO2 captured from the Port Arthur facility 

is utilised in enhanced oil recovery, thereby making a viable business case.  

Small-scale modular SMR plants are kept as compact as possible and usually come only in a 

few standardised designs. These units are meant for small-scale customers who do not have access 

to an H2 distribution network; for example, glass and steel manufacturing, metal processing, H2 

refuelling stations8. Collection and transportation of captured CO2 have always been the factors 

which have restricted the economic viability of carbon capture in such small-scale on-site SMR 

units9. However, if there is a small-scale utilisation for CO2, for example, when the unit is part of 

an industrial cluster, there can be a business case for carbon capture from small-scale SMR units9. 

Since the compactness of these small-scale SMR units is one of their key selling points, the carbon 

capture system has to be as compact as possible.  

Rapid cycle VPSA systems, making use of structured adsorbents and/or rotary valves, are 

substantially smaller than the conventional VPSA systems, like the ones installed at Port Arthur. 

Conventional adsorption systems have adsorbent in the form of pellets or beads; they tend to suffer 

from a high-pressure drop at high superficial velocities. However, if the adsorbents are structured 

in a form like monoliths, the corresponding pressure drops are substantially lower. This, in 

principle, allows for shorter cycle times and thus smaller adsorbent columns. However, there is 

usually a trade-off between pressure drop and bulk porosity of monolithic adsorbent column, 

which tends to affect the heavy product’s (in this case, CO2’s) purity. Structured adsorbents are 
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already used in industrial plants, for example, in the rapid cycle pressure swing adsorption process 

jointly developed by Xebec Adsorption Inc. and ExxonMobil research and engineering10. 

Structured adsorbents also have a long track record of being utilised in a variety of different 

applications, like air dehumidification, vehicle exhaust treatment, etc. There has also been an 

interest in employing structured adsorbents in carbon capture applications. For example, 

Mohammadi11 tested a corrugated monolith for carbon capture from the flue gas of a coal-fired 

power plant. Rezaei et al.12 also investigated employing a monolithic adsorbent for post-

combustion carbon capture. Rotary valves can decrease the valve response time and system’s dead 

volume. Due to a reduction in the extent of piping and the number of valves required, they often 

represent a cost-effective option to the conventional solenoid valves. 

Recently, another complementary approach to achieve intensification of the SMR process with 

carbon capture has been reported13. The approach focusses on combining the CO2 VPSA and the 

H2 PSA into a single separation unit, capable of producing both CO2 and H2 at purities and 

recoveries greater than 95 and 90 %, respectively. Streb et al.13 report productivities in the range 

of 1.01-to-1.52 mol CO2/m
3/s, which is significantly greater than those reported in the open 

literature for absorption-based CO2 capture from H2 production plants13. The corresponding 

electrical energy consumed ranged from about 22.0-to-48.4 kJ/mol CO2
13. 

Membrane-assisted14 and chemical looping reforming15, along with their combination, are some 

of the alternative technologies that have been suggested in the literature for carbon capture from 

the SMR process. Recently, there have also been attempts at combining membrane and Pressure 

Swing Adsorption (PSA) technologies for simultaneous production of H2 and CO2 from a 

small-scale SMR process16. If a commercial adsorbent is used in the VPSA process, the technology 
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readiness level of this technology is expected to be higher than emerging technologies like 

Membrane-assisted reforming and/or chemical looping. 

The present work was carried out as part of a wider project looking into developing designs of 

modular, compact, rapid-cycle adsorption units for CO2 capture from a variety of small-to-

medium-scale industrial sources. Carbon capture from small-scale SMR represents a case study 

which covers a broad spectrum of the CO2 partial pressures observed in industrial emission 

streams. The use of structured adsorbents for carbon capture from SMR process has not been 

explored in the scientific literature, even while, based on the arguments above, it appears to be one 

of the promising solutions to achieve intensification of the process; this becomes critically 

important for small-scale SMR processes. This paper aims to bridge this knowledge gap by 

designing a rapid-cycle VPSA process utilising a monolithic adsorbent. In line with the experience 

with large-scale SMR, this study also focusses on capturing the CO2 from the high partial pressure 

stream, i.e., the easy-to-capture fraction of the CO2. The carbon capture from small-scale SMR 

appears relevant, especially considering the fact that the scale of CO2 utilisation is typically small 

as well17. In principle, the same technology should also be applicable to carbon capture from a 

large-scale SMR process. 

 

2. Small-scale SMR process in brief 

Both small and large-scale SMR processes primarily use the same underlying technology. A 

small-scale SMR process differs from a large-scale SMR process with regards to the operating 

conditions and the overall system configuration. For example, the reforming conditions are less 

severe in small-scale SMR. A small-scale SMR unit has fewer unit operations to keep the system 

compact. A small-scale SMR unit also differs from a large-scale SMR plant in terms of overall 
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system configuration. Small-scale SMR units come as a ‘plug-and-play’ device and are not usually 

integrated with any other process plant on-site, which is not the case with large-scale SMR plants 

which are highly integrated both within themselves, as well as with other process plants in the 

vicinity. For a detailed explanation of the SMR process, in particular, small-scale SMR, the reader 

is referred to our prior work18. The details about the mass and energy balance (in UniSim®)  are 

also given in Sharma et al.18. 

NG (primarily methane) is the typical feedstock of the SMR process. The primary SMR reaction 

is given as reaction (1) below: 

𝐶𝐻4(𝑔) + 𝐻2𝑂(𝑔) + 𝐻𝑒𝑎𝑡 ↔ 𝐶𝑂(𝑔) + 3𝐻2(𝑔)       (1) 

CH4: Methane 

H2O: Water/Steam 

CO: Carbon monoxide 

A separate stream of fuel NG is burned to provide the energy needed to perform the reforming 

reaction (1). The CO2 thus formed is diluted in N2 and can be captured from Location III in Figure 

1. Due to the low partial pressure of CO2 in this stream, carbon capture from this stream is 

thermodynamically energy-intensive. The other source of carbon in an SMR plant is the CO2 

produced due to the carbon present in the feed NG. The Shift reactor is the next processing step 

after reforming. The water-gas shift reaction (reaction, 2) involves the reaction of CO and the 

surplus steam fed during the reforming step, in the presence of a suitable catalyst19.  

𝐶𝑂(𝑔) + 𝐻2𝑂(𝑔) ↔ 𝐶𝑂2(𝑔) + 𝐻2(𝑔) + 𝐻𝑒𝑎𝑡       (2) 

Water-gas shift reaction is followed by condensing out as much excess water as possible with 

the help of cooling water. At this stage, the maximum possible conversion of carbon to CO2 has 

been achieved. After condensate removal, the shifted syngas (primarily, H2 and CO2) is fed to the 
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H2 PSA. The H2 PSA produces the high purity H2 product, as per the downstream process 

requirement. The waste stream produced by the H2 PSA has a significant calorific value and is 

thus mixed with fuel NG to be burned in the reformer.  

The CO2 from the process stream can be captured either at location I, location II, or along with 

the CO2 from fuel stream at location III (Figure 1). Due to the thermodynamic arguments presented 

before, it makes economic sense to capture the maximum amount of CO2 at high partial pressure. 

In a typical small-scale SMR process, CO2 partial pressures at locations I and II are 1.7 bar, and 

0.5 bar, respectively18. If all of the CO2 is captured at location III, the maximum possible partial 

pressure at that location is 0.2 bar. The higher partial pressure of CO2 at location I makes it 

conducive for CO2 capture. Due to the relatively higher partial pressure of CO2 at location I, VPSA 

appears to be a promising technology for carbon capture. For carbon capture from reformer flue 

gas, a technology like Temperature Swing Adsorption (TSA) might be an alternative to the VPSA 

which requires very low regeneration pressures to maximise the working capacity. Inventys Inc., 

a Canadian firm, has recently patented a process named VeloxoThermTM (velox: fast; therm: 

thermal) for post-combustion CO2 capture via a rapid TSA cycle and structured adsorbents20. A 

monolithic adsorbent-based TSA process deserves significant attention due to the low partial 

pressure of CO2 in the stream, along with the presence of moisture. Developing such a system for 

the reformer flue gas is beyond the scope of the present study. 
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Figure 1. Typical processing steps in SMR 

 

3. Adsorbent and the VPSA process 

Zeolite 13X is the benchmark adsorbent for VPSA-based carbon capture from flue gas streams 

at near atmospheric pressure21. This is mainly due to the high working capacity and selectivity of 

13X for CO2. However, due to its high Henry’s law constant, the CO2 isotherm is almost 

rectangular (Figure 2). This implies that in order to realize the high working capacity, the 

regeneration pressures have to be extremely low. The CO2 isotherm on Zeolite NaY is, however, 

a bit less steep, as shown for a typical NaY and 13X sample at 303.15 K. 
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Figure 2. Representative CO2 isotherms at 303.15 K on NaY22 and 13X (NaX)23. 

The partial pressure of CO2 in the shifted syngas stream, after condensate removal, is higher 

than that in typical coal-based flue gas (~1.7 bar vs. 0.15 bar). NaX is the adsorbent of choice for 

carbon capture from flue gas mainly due to the shape of the isotherm, which ensures a significant 

uptake of CO2 at such low partial pressures. For the present application, NaY has been chosen as 

the adsorbent because of its higher working capacity between the feed pressure and a relatively 

moderate desorption (or evacuation) pressure. Rastelli et al.24 also noted that NaY-based zeolites 

performed better than 13X-based adsorbents in terms of higher CO2 working capacity in a similar 

application. NaY has also been investigated for other carbon capture applications25, 26. 

The typical feed gas properties have been summarised in Table 1. The feed contains about 

0.45 % moisture. Among all of the components present in the feed, water has the highest Henry’s 

law constant, indicating the strongest attraction, followed by CO2; all the water present in the feed 

is therefore expected to go with the CO2 product. Also, the CO2 product needs to be dehydrated 

before being fed for sequestration. The ‘effective’ CO2 purity is therefore not affected by water 

presence. The amount of moisture in the feed is also rather low as compared to typical flue gas 

streams. Therefore, in order to optimise the computational effort, the feed to the VPSA has been 

assumed to be completely dry in the first instance, followed by an estimation of the relative effect 
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of moisture presence in the feed. Table S1 (supporting information) lists the attributes of the NaY 

monolith column assumed in this study. Figure 3 shows an individual channel of the square 

monolith. 

 

Table 1. Feed gas properties at location I. 

Feed flow rate 14.3529 mol/s 

Feed temperature 303.15 K 

Feed Pressure 9.88 bar 

Composition (mol %) 

CH4 2.66  

N2 0.12 

CO2 17.24 

H2 76.69 

CO 2.84 

H2O 0.45 

 

 

 

Figure 3. An individual square channel in the NaY monolith 
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The isotherm data for different constituent species on NaY has been taken from the literature as 

follows: 

CO2 and N2- Shao et al.22, CH4- Talu et al.27, CO- Walton and LeVan28, H2- Raj et al.29 and 

H2O- Piers et al.30 

The data have been fitted to pure dual-site Langmuir isotherms and extended to predict multi-

component equilibria. The isotherm data and fits have been shown in Figure S1 (supporting 

information). 

Figure 4 shows the 8-bed, 14-step VPSA cycle, and its schedule. The cycle is based on one of 

the configurations reported in Hsu et al.31 for an 8-bed VPSA system for CO2 capture from shifted 

syngas.   
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      (a) 

Bed-1 ADS D1 R D2 D3 D4 BD Evac P4 P3 P2 RP P1 LPP 

Bed-2 D1 R D2 D3 D4 BD Evac P4 P3 P2 RP P1 LPP ADS 

Bed-3 D2 D3 D4 BD Evac P4 P3 P2 RP P1 LPP ADS D1 R 

Bed-4 D4 BD Evac P4 P3 P2 RP P1 LPP ADS D1 R D2 D3 

Bed-5 Evac P4 P3 P2 RP P1 LPP ADS D1 R D2 D3 D4 BD 

Bed-6 P4 P3 P2 RP P1 LPP ADS D1 R D2 D3 D4 BD Evac 

Bed-7 P2 RP P1 LPP ADS D1 R D2 D3 D4 BD Evac P4 P3 

Bed-8 P1 LPP ADS D1 R D2 D3 D4 BD Evac P4 P3 P2 RP 

      (b) 

Figure 4. The 8-bed, 14-step VPSA cycle (a), and its schedule (b). ADS: Adsorption, D1: First 

de-pressurisation (equalisation), R: Rinse step, D2: Second de-pressurisation (equalisation), D3: 

Third de-pressurisation (equalisation), D4: Fourth de-pressurisation (equalisation), BD: 

Blowdown, Evac: Evacuation, P4: Fourth pressurisation (equalisation), P3: Third pressurisation 

(equalisation), P2: Second pressurisation (equalisation), RP: Rinse pressurisation, P1: First 

pressurisation (equalisation), and LPP: Light product (H2) pressurisation 

The cycle starts with one of the beds (bed-1) receiving the feed mixture, and producing a light 

product almost devoid of any CO2. This is followed by the first de-pressurisation (equalisation) 

step, where the light product end exhaust is used to pressurise another bed (bed-7). The rinse step 

involves the heavy product end of the bed receiving the BD recycle stream from bed-3, undergoing 

BD step. During the rinse step, another stream is taken from the light product end of the bed and 
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is used to pressurise bed-6, undergoing rinse pressurisation step. The BD recycle stream is mainly 

composed of the heavy product (ideally, >90 % by mol). The heavy product end is enriched by the 

BD recycle. The rinse step is followed by three de-pressurisation (equalisation) steps, which are 

followed by the BD step. Next, the bed is evacuated to vacuum pressure to generate the heavy 

product. The bed further undergoes three consecutive pressurisation (equalisation) steps from the 

light product end. This is followed by the rinse pressurisation, another pressurisation, and the LPP 

step. A part of the final H2 product (>99.999 % by mol) is used to pressurise the bed up to near 

feed pressure during the LPP step. The effective working capacity of the bed is between the CO2 

partial pressure at the end of the BD step and evacuation pressure. In the sequence of steps, the 

rinse step is executed only after the first pressure equalisation step to avoid having to pressurise 

the BD recycle stream to the feed pressure. The different pressure equalisations, rinse/RP, LPP, 

and BD steps have been assumed to be of the same duration; this is based on a patent31 for CO2 

capture from a similar stream. Similarly, the duration of adsorption and evacuation steps has been 

taken to be double that for the other steps. The cycle time of a typical H2 PSA employing pelleted 

adsorbents is ~800s32. For the monolithic adsorbent VPSA, a quarter of that, i.e. 200 s, has been 

taken as the cycle time; this represents a potential four-fold decrease in column volume.  

 

4. The VPSA process model 

The authors have used their in-house cyclic adsorption process simulator, CySim, to model the 

VPSA process cycle33. The monolith column module has been added to the pool of modules 

available in CySim. CySim uses the finite volume method with a flux limiting scheme. CySim 

uses the state-of-the-art differential-algebraic equation solver SUNDIALS. The CySim simulation 
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models only one of the beds, as per the unibed approach34. The monolith column module code has 

been validated against the experimental breakthrough results reported in Ahn and Brandani35. 

Following is a summary of the CySim model assumptions: 

 Ideal gas behaviour 

 Fully developed laminar flow in individual channels. The calculated Reynolds number 

at feed inlet conditions is 82.42. 

 1-D axially dispersed plug flow in bulk fluid phase  

 The moisture content in the feed gas is assumed to go with the heavy product 

 Isothermal operation: It has been assumed that due to the high thermal mass and 

conductivity of the metal base-layer, the heat generated during adsorption is quickly 

absorbed and dissipated throughout the metal matrix, keeping the system nearly 

isothermal. With 13X, Mohammadi11 observed isothermal operation for an equal 

thickness of the adsorbent and metallic layer when experimenting with VPSA-based CO2 

capture from flue gas (from coal-firing). With NaY, in the present application, the 

amounts adsorbed are expected to be higher, given the higher partial pressure of CO2 in 

the feed. Nevertheless, the heat of adsorption for NaY is lower than that for 13X. The 

overall effect of these two contributions is challenging to estimate a priori. In any case, 

the system could be made to behave isothermally by varying the relative thickness of the 

metal layer vis-à-vis that of the adsorption layer. 

 1-D diffusion in the adsorbent layer with mass transfer rate given by the LDF model. 

Ahn and Brandani36 demonstrated that the 3-D mass diffusion in the adsorbent layer 

could in-effect be modelled as a 1-D phenomenon if the adsorbent layer thickness is 

corrected to take into account the extra path a molecule has to diffuse through at the four 
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corners of a monolith made up of rectangular channels. The diffusivity of the constituent 

species in the adsorbent layer (𝐷𝑠) is assumed to be given by Eq. (3). The molecular 

diffusivities at feed Temperature have been taken from Luberti et al.37. 

𝐷𝑠 =
𝜀𝑎𝑑

𝜏𝑎𝑑
𝐷𝑚          (3)  

 Mass transfer in the micropores has been assumed to be fast, with the entire adsorbent 

crystal being at equilibrium with the fluid at the surface. 

 The pressure gradient in the axial direction is given by Eq. (4)38:  

𝑑𝑃

𝑑𝑧
= 28.47

𝑣 𝜂

ℎ2          (4) 

The model equations are as follows:  

For j = 1, 2…NC 

Component mass balance: 

𝜕𝑐𝑗

𝜕𝑡
+

(1−𝜀𝑏𝑢𝑙𝑘)

𝜀𝑏𝑢𝑙𝑘

𝜕𝑄𝑗̅̅ ̅

𝜕𝑡
+

𝜕(𝑣.𝑐𝑗)

𝜕𝑧
+

𝜕𝐽𝑗

𝜕𝑧
= 0        (5) 

𝜀𝑎𝑑
𝜕𝑐𝑎𝑑,𝑗

𝜕𝑡
+ (1 − 𝜀𝑎𝑑)

𝜕𝑞𝑗̅̅ ̅

𝜕𝑡
=

𝜕𝑄𝑗̅̅ ̅

𝜕𝑡
        (6) 

𝜕𝑄𝑗̅̅ ̅

𝜕𝑡
= 𝑘𝐿𝐷𝐹,𝑗(𝑐𝑗 − 𝑐𝑎𝑑,𝑗)          (7) 

𝑘𝐿𝐷𝐹,𝑗 =
3𝐷𝑠,𝑗

𝑤𝑐
2   

𝑤𝑐 = 𝑤 (1 +
𝑤

ℎ
)  

𝑞�̅� = 𝑞𝑗
∗(𝑐𝑎𝑑,𝑗)           (8) 

𝜕𝐽𝑗

𝜕𝑧
= −𝐷𝑚,𝑗𝑐𝑇

𝜕𝑦𝑗

𝜕𝑧
          (9) 

Boundary conditions: 

𝐽𝑗|
𝑧=0

=   (
𝑣+|𝑣|

2
)|

𝑧=0
(𝑦𝑗,0− − 𝑦𝑗(0)) 𝑐𝑇  

 

𝐽𝑗|
𝑧=𝐿

=   (
𝑣+|𝑣|

2
)|

𝑧=𝐿
(𝑦𝑗,𝐿+ − 𝑦𝑗(𝐿)) 𝑐𝑇                (10) 
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Dual-site Langmuir isotherm: 

𝑞𝑗
∗ =

𝑞𝑗,𝑠
1 𝑏𝑗

1𝑝𝑗

1+∑ 𝑏𝑘
1𝑝𝑘

𝑁𝐶
𝑘=1

+
𝑞𝑖,𝑠

2 𝑏𝑖
2𝑝𝑖

1+∑ 𝑏𝑘
2𝑝𝑘

𝑁𝐶
𝑘=1

;  

𝑏𝑗
𝑙 = 𝑏𝑗,0

𝑙 𝑒𝑥𝑝 (
∆�̃�𝑗

𝑙

𝑅𝑇
)          (11) 

The extended dual-site Langmuir isotherm has been used to predict the multi-component 

isotherms. The procedure detailed in Farmahini et al.39 has been used to fit the isotherm 

parameters. The pure component isotherm data for CO2 was fitted first at the lowest temperature 

i.e., 303.15 K, to obtain the saturation capacity for both the sites. Assuming that every component 

has access to each of the adsorbent sites, the saturation capacity (𝑞𝑗,𝑠
1 , and 𝑞𝑗,𝑠

2 ) of both the sites is 

taken to be the same for all the species (except water, which has a much higher saturation capacity). 

Furthermore, since the isotherms for N2 and CO are straight lines, the affinity parameters (𝑏𝑗,0
1 , and 

𝑏𝑗,0
2 ) for both the sites have been taken to be the same. The fitted dual-site Langmuir isotherms are 

listed in Table S2 (supporting information). 
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5. Results and discussion 

After fixing the monolith geometry and step times, as explained above, and assuming complete 

pressure equalisation during the different equalisation and rinse/RP steps, there remain two degrees 

of freedom which could be used to fine-tune the unit’s performance to achieve 95 % purity and 

90 % recovery of CO2. The two degrees of freedom are the BD and evacuation pressure (𝑃𝐸𝑣𝑎𝑐), 

respectively. In the CySim model, the BD pressure is regulated by the flow through the BD 

compressor, which is given by Eq. (12) as follows: 

𝐹𝐵𝐷 = 𝐹𝑚𝑎𝑥 − 𝜒(∆𝑃)2         (12)    

A 3×3 factorial design has been considered here to analyse the effect of 𝐹𝑚𝑎𝑥 and 𝑃𝐸𝑣𝑎𝑐 on CO2 

purity, recovery, specific energy penalty and productivity of the VPSA system. The productivity 

of the unit can either be calculated on the system’s ability to process feed (Eq. 13) or to produce 

CO2 product (Eq.14). Since 𝜅𝐹𝑒𝑒𝑑 is based on feed flow rate, it would stay fixed, once the cycle 

time and the volume have been fixed. 

𝜅𝐹𝑒𝑒𝑑 =  
𝑚𝐹𝑒𝑒𝑑

(𝐶𝑇)(𝑉𝑏𝑒𝑑)
          (13) 

𝜅𝐶𝑂2
=  

𝑚𝐶𝑂2

(𝐶𝑇)(𝑉𝑏𝑒𝑑)
          (14) 

The specific energy (electricity) penalty (�̇�𝐶𝑂2
) has been estimated using Eq. (15) as follows: 

�̇�𝐶𝑂2
=

𝐸𝐵𝐷+𝐸𝐸𝑣𝑎𝑐

𝑚𝐶𝑂2

          (15) 

Table 2 reports the performance parameters listed above for different combinations of 𝐹𝑚𝑎𝑥 and 

𝑃𝐸𝑣𝑎𝑐 within the range of 6.8-to-7.4 and 0.25-to-0.4, respectively. The ranges were determined by 

a trial and error procedure. All the operating points have the same feed processing ability (𝜅𝐹𝑒𝑒𝑑) 

of 7.10 mol of feed/m3/s. The overall efficiencies of the BD compressor and the vacuum pump 

have been assumed to be 0.7 and 0.5, respectively. The CySim simulation only pressurises the CO2 
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product up to atmospheric pressure; pressurisation of CO2 to supercritical state has not been 

included here. 

 

Table 2. The 3×3 factorial design for 𝐹𝑚𝑎𝑥 and 𝑃𝐸𝑣𝑎𝑐. 𝑃𝐶𝑂2
- Purity of CO2 product stream (%), 

and 𝑅𝐶𝑂2
- Overall recovery of CO2 in CO2 product stream (%). 

 
 

𝑃𝐸𝑣𝑎𝑐 = 0.25 bar 𝑃𝐸𝑣𝑎𝑐 = 0.325 bar 𝑃𝐸𝑣𝑎𝑐 = 0.4 bar 

 

 

𝑃𝐶𝑂2
 

(%) 

𝑅𝐶𝑂2
 

(%) 

�̇�𝐶𝑂2
 

(kJ/mol 

CO2) 

𝑃𝐶𝑂2
 

(%) 

𝑅𝐶𝑂2
 

(%) 

�̇�𝐶𝑂2
 

(kJ/mol 

CO2) 

𝑃𝐶𝑂2
 

(%) 

𝑅𝐶𝑂2
 

(%) 

�̇�𝐶𝑂2
 

(kJ/mol 

CO2) 

𝐹𝑚𝑎𝑥 = 7.4 

mol/s 

95.12 94.29 11.61 96.88 89.52 9.98 98.11 82.98 9.02 

𝐹𝑚𝑎𝑥 = 7.2 

mol/s 

94.47 94.57 11.40 96.13 90.12 9.75 97.33 83.50 8.58 

𝐹𝑚𝑎𝑥 = 6.8 

mol/s 

93.58 94.71 11.04 95.01 90.68 9.34 96.08 84.07 8.15 

 

From the solutions reported in Table 2, a general trend is evident that �̇�𝐶𝑂2
 tends to decrease 

with decreasing 𝐹𝑚𝑎𝑥 and increasing 𝑃𝑒𝑣𝑎𝑐 . Typically, �̇�𝐶𝑂2
 also tends to decrease with decreasing 

quality (purity) and quantity (recovery) of the CO2 product. The minimum specific energy penalty 

is expected to be at the minimum allowable CO2 purity and recovery of 95 % and 90 %, 

respectively. Starting from the solution at 𝐹𝑚𝑎𝑥 = 6.8 mol/s and 𝑃𝑒𝑣𝑎𝑐 = 0.325 bar, another 

operating point can be obtained by slightly decreasing 𝐹𝑚𝑎𝑥 and increasing 𝑃𝑒𝑣𝑎𝑐 , simultaneously. 

At 𝐹𝑚𝑎𝑥 = 6.72 mol/s and 𝑃𝑒𝑣𝑎𝑐 =  0.337 bar, the CO2 product’s purity and recovery are 94.94, 

and 89.96 %, respectively; the corresponding �̇�𝐶𝑂2
for this point is 9.03 kJ/mol CO2 (electrical). 

Figures 5 shows the pressure profile of the bed during the 14-step cycle, respectively. The strange 
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trajectory of the column pressure during the rinse step is due to the manner in which the inflow 

and outflow to the column have been defined in this work; both of them have been expressed as a 

different function of the pressure difference during the rinse and rinse pressurisation step. While 

the incoming flow is given by Eq. (11), the outgoing flow is proportional to the square root of the 

pressure difference. As a result, at the start of the rinse step, there is a net outflow from the monolith 

column which decreases the column pressure to a minimum, after which it starts to receive a net 

inflow due to the now decreased pressure difference.  

 

Figure 5. The pressure profile of the bed, during the VPSA cycle, as predicted at the heavy product 

end. 

The energy for carbon capture is provided in the form of electricity to the BD compressor and 

evacuation pump. The evacuation pump accounts for 70% of the energy input, while the BD 

compressor accounts for the rest. Furthermore, compressor and pump inefficiencies account for 

~40 % of the total electrical energy penalty. Efficiency improvements could result in significant 

savings in terms of energy penalty. Since the capture unit requires energy in the form of electricity, 

renewable electricity could directly be utilised, if available; this should limit the CO2 emissions 

associated with electricity production. 
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The light product (H2) produced from the CO2 VPSA unit still has 8.74 % impurities. In a 

Greenfield design of the small-scale SMR unit, the CO2 VPSA can drastically reduce the load on 

the H2 PSA. As a result, a significantly smaller H2 PSA can be designed to meet the purity 

specifications. Ideally, the H2 PSA could also employ monolithic adsorbents to intensify the 

process further. In a Brownfield design, the CO2 VPSA can be placed in between the condensate 

removal step and H2 PSA. In this case, the original H2 PSA can still be used for H2 purification, as 

is done at a large-scale SMR facility at Port Arthur.  

 

Penalty due to the presence of water vapour in feed- 

Water is more strongly attracted by the NaY adsorbent, compared to CO2. Since the 14-step 

cycle includes the counter-current evacuation step, the water adsorption front is expected to stay 

confined towards the feed end. In order to estimate the impact of water vapour presence, the CySim 

model is re-evaluated for a moist feed (Table 1). The water isotherm at 303 K has been sourced 

from Piers et al.30. The isotherm has been shown in Figure S1 (f) (supplementary information).  

The Henry’s law constant (the product of saturation capacity and Langmuir affinity parameter) for 

water isotherm is about 572 times that of CO2. The BD and evacuation pressure levels have been 

kept at 1.250 and 0.337 bar, respectively, the same as for dry feed conditions. Figure 6 (a) shows 

the approach to cyclic steady state in terms of recovery and purity (on a dry basis). These vary 

rapidly over the initial 200 cycles and then change very slowly approaching approximately 85% 

and 97%, respectively. The improvement on the purity is a result of the fact that under moist 

conditions the main impurity of the CO2 rich stream is water, which can be condensed and removed 

before compression. The slight fall in CO2 recovery is primarily due to the substitution of CO2 by 

H2O in the adsorbed phase. To counter the loss of CO2 from the light product’s end, during the 
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adsorption step, the adsorption time can be slightly reduced, while sacrificing a bit in terms of the 

effective CO2 purity. Figure 6 (b) shows the adsorbed phase concentration of CO2 and H2O for 

moist feed conditions after over 1300 cycles; for comparison, the CO2 adsorbed phase profile for 

dry feed conditions has also been shown. The adsorbed water front is restricted to the initialportion 

of the column’s length due to the high Henry’s law constant and low amounts of water vapour 

present in the feed.  

   

Figure 6. (a) Approach to CSS for moist feed conditions; (b) CO2 and H2O adsorbed phase 

concentration at the end of the adsorption step for moist and dry feed conditions. 

 

Temperature swing management- 

The mass balance of CO2 and H2O at cyclic steady state provides the moles of CO2 and H2O 

getting adsorbed during the adsorption step. Fast heat dissipation across the adsorbent and metallic 

layer can be assumed because of the small thickness (of the adsorbent layer) and high thermal 

conductivity (of the metallic layer). Assuming a constant heat of adsorption of about 30 and 75 

kJ/mol for CO2 and water, respectively, a temperature swing of approximately 13 °C is estimated 

during the adsorption step. The temperature swing can however be curtailed by increasing the 

thermal mass of the metallic layer. For example, doubling the metallic thickness leads to a 

(a) (b) 
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temperature swing of approximately 7.5°C. However, the increased metallic layer thickness also 

leads to a fall in the productivity of the system by about 14 % (0.951 from 1.107 mol CO2/m
3/s). 

 

Pelleted vs. monolithic- column 

The performance of the monolithic column is assessed in comparison to an equally sized pelleted 

column. The radius of such a pelleted column, occupying the same volume as that of the structured- 

column, comes out to be 0.353 m; this is assuming a metal layer half-thickness of 14 mm (i.e. 

double of that in Figure 3). Other characteristics of the adsorbent and the packed bed have been 

summarised in Table S3 (supplementary material). Unlike the structured-adsorbent, the pelleted 

adsorbent column has been modelled under the non-isothermal assumption, due to the absence of 

a heat ‘sink’, like the metallic layer. Another fundamental difference between the two cases is that 

the characteristic diffusional length in case of monolithic adsorbent (i.e., the adsorbent layer 

thickness) is about an order of magnitude smaller than in the case of pelleted adsorbent (i.e., the 

pellet radius); this implies that for the same pore diffusivity, the LDF mass transfer co-efficient for 

structured-adsorbent should be a hundred times larger than that for pelleted adsorbent. The rate of 

mass transfer from the gas-phase to adsorbed-phase has been assumed to be macropore diffusion 

controlled, with the pore diffusivity estimated from molecular diffusivities at feed temperature37. 

The fixed bed has been assumed to follow the same sequence and duration of steps as in the case 

of monolithic column. The BD and evacuation pressure levels have been kept the same as that for 

the monolithic solution. The CO2 purity and recovery thus obtained are 83.63 and 84.62 %, 

respectively. It is important to note here that due to the difference in bulk porosities, the pelleted 

column would have more adsorbent than monolithic column; this is because both of them have the 
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same volume. The fall in purity is primarily an indication of the pelleted column being 

underutilised, as evident from the CO2 adsorbed phase concentration profile in Figure 7.  

  

Figure 7. CO2 adsorbed phase concentration profile in the axial direction. 

The temperature swings observed in the case of the pelleted column are significantly higher, as 

shown in Figure 8. The low thermal conductivity of zeolite, in comparison to metal, is the primary 

reason for such higher, localised swings. 

 

Figure 8. Temperature profile in the axial direction for pelleted column. 

 

The CO2 purity can be improved by increasing the cycle time, thereby also leading to a further 

reduction in CO2 recovery. Table 3 shows a sensitivity analysis with respect to the cycle time.  
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Table 3. Sensitivity analysis with respect to the cycle time (pelleted column). 

𝑃𝐵𝐷 =1.25 bar 

𝑃𝐸𝑣𝑎𝑐 =0.337 bar 

𝑃𝐶𝑂2
(%) 𝑅𝐶𝑂2

(%) 

𝐶𝑇 = 240 86.77 81.97 

𝐶𝑇 = 300 95.99 79.99 

𝐶𝑇 = 400 99.84 70.25 

The CO2 recovery can simultaneously be increased only with a decrease in evacuation pressure 

(𝑃𝐸𝑣𝑎𝑐). Therefore, to achieve the same CO2 product purity and recovery in the pelleted column, 

the evacuation pressure has to be lower, as compared to the monolithic column. A lower evacuation 

pressure implies a higher specific energy penalty for the vacuum pump. Since the total volume of 

the pelleted and the monolithic column is the same, a CO2 recovery of 95 % in both the cases, 

implies the same productivity as well (irrespective of the cycle times). Therefore, for the same 

purity, recovery and productivity of the two cases, the monolithic column should exhibit a lower 

specific energy penalty for the vacuum pump, as compared to the pelleted column. It is important 

to note here that as per the preceding discussion, the vacuum pump is responsible for the majority 

(70 %) of the energy penalty.  

 

Comparison with literature values- 

Out of the four industrial CO2 capture demonstration projects in large-scale SMR plants, two 

use a variant of MDEA solvent18. Information is available in open literature for one of them, i.e. 

the Quest carbon capture and storage project40. A recent IEAGHG study has also looked into the 

design of an MDEA-based CO2 capture unit for large-scale SMR process41. To ensure that the 

comparison between different forms of energies is meaningful, the thermal energy (reboiler duty) 
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is converted to exergy with the help of Carnot factor13. The total exergy input to the MDEA process 

is thus given by Eq. 16. In contrast, the exergy input to the VPSA process is only in the form of 

shaft work. 

𝐸�̇�𝑀𝐷𝐸𝐴 = (𝑄𝑅𝑒𝑏 (1 −
𝑇𝑎𝑚𝑏

𝑇𝑅𝑒𝑏
)) �̇�𝐶𝑂2

⁄ + 𝐸�̇�𝑆ℎ𝑎𝑓𝑡 𝑊𝑜𝑟𝑘      (16) 

Table 4 shows examples of the specific exergy input and productivity values from literature for 

MDEA-based capture in SMR processes. The system volume used for productivity calculations is 

the total volume of absorber(s) and stripper. 

 

Table 4. Specific exergy input and productivity of MDEA process from literature. 

 Specific exergy 

input, 𝐸�̇�𝑀𝐷𝐸𝐴 

(𝑇𝑎𝑚𝑏 =303 K) 

Productivity, 

𝜅𝐶𝑂2
 

Remarks 

Quest carbon 

capture project40 

(CO2 partial 

pressure in feed = 

5.05 bar)  

26.55 kJ/mol 

CO2 

0.425 mol 

CO2/m
3/s 

𝑄𝑅𝑒𝑏~ 82 MW (thermal) 

𝑇𝑅𝑒𝑏 = 414.15 K 

�̇�𝐶𝑂2
~ 1 Mt/y 

Total absorber (three in number) and 

stripper column volume-  1695.80 m3 

𝑅𝐶𝑂2
= 82 % (@ ~ 1.5 bar) 

𝑃𝐶𝑂2
= 99.27 % 

IEAGHG Technical 

Report41  

(CO2 partial 

pressure in feed = 

4.23 bar) 

18.25 kJ/mol 

CO2 

 

0.531 mol 

CO2/m
3/s 

Electricity generation penalty due to 

CO2 capture ~ 5.369 MW (electrical) 

�̇�𝐶𝑂2
~ 0.40 Mt/y 

Total absorber and stripper column 

volume-  553.51 m3 

𝑅𝐶𝑂2
= 98.61 % (@ ~ 2.9 bar) 

𝑃𝐶𝑂2
= 99.94 % 

 

The monolithic VPSA process’s productivity is approximately twice as that for MDEA 

solvent-based capture processes. The specific exergy input (9.03 kJ/mol CO2) to the VPSA process 

is also predicted to be lower than those for MDEA-based capture. 



 27 

As mentioned in the introduction, Streb et al.13 have also recently looked at intensification of 

carbon capture in SMR process by combining the H2 PSA and CO2 VPSA in a single unit. Streb 

et al.13 looked at the trade-offs between the specific exergy input and productivity for this single 

VPSA unit under the following set of constraints- 𝑅𝐶𝑂2
, 𝑅𝐻2

≥ 90 % and 𝑃𝐶𝑂2
, 𝑃𝐻2

≥ 95 %. In 

comparison, the operating point reported in this article corresponds to hydrogen recovery and 

purity of 99.7 % and 91.26 %, respectively. Another significant difference between Streb et al.13 

and the present analysis is the difference in feed pressure. The CO2 partial pressure in the present 

case is 4.4 times smaller than that in Streb et al.13 (1.70 bar vs. 7.5 bar). Figure 9 compares the 

performance reported by Streb et al.13 and the present study.  

 

Figure 9.  A comparison of monolithic adsorbent VPSA designed in this work and the exergy-

productivity trade-offs reported by Streb et al.13. 

 

The specific exergy input for the structured VPSA design is lower than the range reported in 

Streb et al.13. It is important to note here that the working capacity of the adsorbent (activated 

carbon) chosen by Streb et al.13 is typically lower than NaY. Therefore, the evacuation pressure 

needed to achieve the same CO2 working capacity is also typically lower for activated carbon, as 

compared to NaY. Indeed, the evacuation pressures reported by Streb et al.13 (<0.1 bar) are lower 



 28 

than those reported in this work (0.337 bar). The lower evacuation pressure might be the primary 

reason for the higher energy consumption reported in Streb et al.13. Nevertheless, the idea of using 

a single separation unit, instead of two, appears to be a promising approach to further intensify the 

SMR process, with carbon capture.  Even though the fluid interstitial velocity, during the 

adsorption step, for the monolithic column is higher than that reported by Streb et al.13 (0.18 vs. 

0.10 m/s, respectively), the productivity of the monolithic VPSA process is lower than the range 

reported by Streb et al.13. One of the reasons for this might be the different systems pressures; the 

feed pressure in Streb et al.13 is approximately three time greater. Nevertheless, the productivity 

of the monolithic VPSA process can be further increased by decreasing the cycle time and the 

number of channels, while also increasing the thickness of the adsorbent layer. As the adsorbent 

layer thickness increases, the mass transfer co-efficient decreases; at one point it should start to 

significantly degrade process performance. To identify this tipping point is outside the scope of 

the present study. However, the encouraging performance predicted by these simulations does 

indicate that monolithic adsorbents might be a worthwhile option to investigate for carbon capture 

applications, particularly where intensification of such processes is a requirement. 

 

6. Conclusions 

This study has presented a design for a modular CO2 capture process capable of separating up 

to 60% of the emissions from a small-scale SMR process, which can be captured efficiently due 

to the higher partial pressure of CO2 in the shifted syngas stream. The use of NaY zeolite allows 

to run the process with high productivity and reasonable requirements on the vacuum system 

(approximately 0.33 bar). The design includes the use of a monolithic adsorbent, which is critical 

here as it allows the cyclic adsorption-based separation processes to operate at shorter cycle times 
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and faster interstitial velocity, thereby reducing the amount of adsorbent required, and thus the 

system volume as well. The cycle time for the monolithic column-equipped VPSA process is 200 s, 

representing a four-fold drop from the cycle time of a typical H2 PSA. An 8-bed, 14-step VPSA 

cycle has been modelled in our in-house adsorption process simulator, CySim. The system is 

modelled initially assuming a dry feed; the effect of moisture presence in the feed has been 

quantified later. Two degrees of freedom have been identified in the design exercise: the 

evacuation and blowdown pressures. A 3×3 factorial design has been used to analyse the 

individual, and the combined effect of these two parameters on CO2 purity, recovery, and specific 

energy penalty. Based on the trends observed, an operating point has been chosen which satisfies 

the purity and recovery constraints, while also minimising the specific energy penalty. This 

operating point corresponds to an energy (electricity) penalty of 9.03 kJ/mol. The moisture 

presence in the feed, using the same conditions for the dry feed, has been found to decrease the 

CO2 recovery by approximately 5 % while the purity on a dry basis increases by 2 %. This indicates 

that the process can be run under moist conditions and achieve both high purity and recovery. .  

An equally-sized packed bed, filled with the pelleted adsorbent, has also been modelled and found 

to be unable to achieve the minimum recovery requirements between the same BD and evacuation 

pressure levels. The recovery can be increased by increasing the working capacity of the bed by 

going lower in evacuation pressure, implying a higher vacuum pump penalties. Further 

improvements to the monolithic process design are still possible by increasing the adsorbent 

density in the column (for example, by increasing the adsorbent layer thickness) and further 

increasing the interstitial velocity, until a point where the increased mass transfer resistance starts 

to significantly affect the performance. The monolithic CO2 VPSA process design reported here 

has been focused primarily on retrofitting a small-scale SMR system. Further improvements in 
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overall efficiencies could be obtained considering a “greenfield” development where the H2 PSA 

unit could be redesigned to take into account the reduction in overall flowrate and the increased 

H2 concentration in the feed. 
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ABBREVIATIONS 

ADS: Adsorption 

BD: Blowdown 

CCS: Carbon Capture and Storage 

D1: First de-pressurisation (equalisation) 

D2: Second de-pressurisation (equalisation) 
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D3: Third de-pressurisation (equalisation) 

D4: Fourth de-pressurisation (equalisation) 

Evac: Evacuation 

LDF: Linear Driving Force 

LPP: Light product (H2) pressurisation 

Mt: Megatonnes 

NG: Natural Gas 

P1: First pressurisation (equalisation) 

P2: Second pressurisation (equalisation) 

P3: Third pressurisation (equalisation) 

P4: Fourth pressurisation (equalisation) 

PSA: Pressure Swing Adsorption 

R: Rinse step 

RP: Rinse pressurisation 

SMR: Steam Methane Reforming 

VPSA: Vacuum Pressure Swing Adsorption 

SYMBOLS 

𝐴𝑓𝑟𝑒𝑒: Free cross-sectional area of a channel (m2) 

𝐴𝑎𝑑𝑠: Absorbent area of a channel (m2) 

𝑏𝑗,0
𝑙 : Langmuir affinity parameter for component j on site l (1/bar) 

𝑐𝑎𝑑,𝑗: Concentration of component j in the adsorbent layer voids (mol/m3) 

𝑐𝑗: Concentration of component j in bulk fluid phase (mol/m3) 

𝑐𝑇: Total concentration in the bulk fluid phase (mol/m3) 

𝐶𝑇: Cycle time (s) 

𝑑𝑃

𝑑𝑧
: Pressure gradient along the axial length (Pa/m) 

𝐷𝑚,𝑗: Molecular diffusivity of component j (m2/s) 
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𝐷𝑠,𝑗: Diffusivity of component j in the adsorbent layer (assumed to be the same as molecular 

diffusivity) (m2/s) 

𝐸𝐵𝐷: Energy (electricity) consumed during BD step (kJ) 

𝐸𝐸𝑣𝑎𝑐 : Energy (electricity) consumed during the evacuation step (kJ) 

�̇�𝐶𝑂2
: Energy (electricity) consumed per unit mol of CO2 captured (kJ/mol CO2) 

𝐸�̇�: Specific exergy input (kJ/mol CO2) 

𝐸�̇�𝑀𝐷𝐸𝐴: Specific exergy input to the MDEA process (kJ/mol CO2) 

𝐸�̇�𝑆ℎ𝑎𝑓𝑡 𝑊𝑜𝑟𝑘: Specific exergy input in the form of shaftwork (kJ/mol CO2) 

𝐹𝐵𝐷: Flow through the BD compressor (mol/s) 

𝐹𝑚𝑎𝑥: Maximum flow through the BD compressor (mol/s) 

ℎ: Free cross-sectional side length (individual channel) (m) 

𝐽𝑗: Diffusive flux of component j (mol/m2/s) 

𝑘𝐿𝐷𝐹,𝑗: LDF mass transfer co-efficient for component j (1/s) 

𝐿: Length of the monolith column (m) 

𝑚𝐶𝑂2
: Moles of CO2 obtained during evacuation step (mol) 

�̇�𝐶𝑂2
: Rate of CO2 capture in MDEA literature sources (Mt/y) 

𝑚𝐹𝑒𝑒𝑑: Moles of feed processed per cycle (mol) 

𝑁𝐶: Number of components 

𝑝𝑗: Partial pressure of component j (bar) 

𝑃𝐵𝐷: Pressure at the end of the BD step (bar) 

𝑃𝐸𝑣𝑎𝑐: Pressure at the end of the evacuation step (bar) 

𝑃𝐶𝑂2
: Purity of CO2 product stream (%)  

𝑄𝑅𝑒𝑏: Reboiler duty in MDEA process (MW) 

𝑅𝐶𝑂2
: Overall recovery of CO2 in CO2 product stream (%) 

𝑞𝑗
∗: Adsorbed phase concentration of component j at equilibrium (mol/m3) 

𝑞𝑗: Adsorbed phase concentration of component j (mol/m3) 
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𝑞𝑗,𝑠
𝑙 : Saturation capacity of component j for site l (mol/m3) 

𝑞�̅�: Average adsorbed phase concentration of component j (mol/m3) 

𝑄𝑗
̅̅ ̅: Average concentration of component j in the adsorbent layer (mol/m3) 

𝑅: Universal gas constant (J/mol/K) 

𝑡: Time (s) 

𝑇: Temperature (K) 

𝑇𝑅𝑒𝑏: Reboiler temperature for MDEA process (K) 

𝑇𝑎𝑚𝑏: Ambient Temperature (K) 

𝑣: Interstitial velocity in channels (m/s) 

𝑉𝑏𝑒𝑑 : Total volume of the adsorption beds (m3) 

𝑤: Adsorbent layer thickness (individual channel) (m) 

𝑤𝑐: Corrected adsorbent layer thickness (individual channel) (m) 

𝑤𝑚: Metal layer half-thickness (individual channel) (m) 

𝑦𝑗: Mole fraction of component j in bulk fluid phase 

𝑧: Axial length (m) 

Greek  

∆�̃�𝑗
𝑙: Heat of adsorption of component j on site l (J/mol) 

∆𝑃: Pressure difference across the BD compressor (bar) 

𝜀𝑎𝑑 : Porosity of the adsorbent layer 

𝜀𝑏𝑢𝑙𝑘: Bulk porosity for channels 

𝜂: Dynamic viscosity of the gas (Pa s) 

𝜅𝐹𝑒𝑒𝑑: Productivity of the VPSA unit in terms of feed processed (mol/m3/s) 

𝜅𝐶𝑂2
: Productivity of the VPSA unit in terms of CO2 produced (mol/m3/s) 

𝜏𝑎𝑑: Tortuosity of the adsorbent layer pore network 

𝜒: A constant (mol/s/bar2) 
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