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Abstract: Entropy quantification algorithms are becoming a prominent tool for physiological1

monitoring of individuals through the effective measurement of irregularity in biological signals.2

However, to ensure their effective adaptation in monitoring applications, the performance of the3

algorithms needs to be robust when analysing time-series containing missing and outlier samples,4

which are common occurrence in physiological monitoring setups such as wearable devices and5

intensive care units. This paper focuses on augmenting Dispersion Entropy (DisEn) by introducing6

novel variations of the algorithm for improved performance in such applications. The original7

algorithm and its variations are tested under different experimental setups that are replicated across8

heart-rate interval, electroencephalogram and respiratory impedance time-series. Our results indicate9

that the algorithmic variations of DisEn achieve considerable improvements in performance while our10

analysis signifies that, in consensus with previous research, outlier samples can have a major impact11

in the performance of entropy quantification algorithms. Consequently, the presented variations can12

aid the implementation of DisEn to physiological monitoring applications through the mitigation of13

the disruptive effect of missing and outlier samples.14

Keywords: symbolic data analysis; nonlinear analysis; dispersion entropy; missing samples; outlier15

samples16

1. Introduction17

With the advancement of physiological recording technology deployed across a broad spectrum18

of applications, from wearable devices to intensive care units, increased amounts of data are becoming19

available for analysis [1,2]. While derived information can aid medical decision making, leading20

to personalized and prompt treatments, the successful implementation of data analysis algorithms21

is limited by challenges arising from the quality of recorded data due to the increased amount of22

missing and outlier samples which are a common occurrence due to user movement, loose equipment23

attachment and electromagnetic interference [3–5]. In the case of wearable devices low data quality24

caused by missing and outlier samples can limit the prognostic effectiveness of the algorithms while in25

the case of intensive care units it can be life threatening through the phenomenon of "alarm fatigue"26

[6,7]. That is, algorithms currently deployed in intensive care units display excessive amounts of false27

positive alarms causing clinical staff to ignore alarms that are perceived as false even when they are28

accurate, due to "alarm fatigue", thereby putting patients at risk [2,8].29
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Concurrently, entropy quantification algorithms have emerged as a prominent tool for the30

characterization of the physiological state of individuals through the measurement of irregularities of31

physiological signal segments. Building upon the initial extension of Entropy to information theory by32

Shannon [9], novel variations such as Approximate Entropy (ApEn) [10], Sample Entropy (SampEn)33

[11], Permutation Entropy (PEn) [12], Fuzzy Entropy (FuzzyEn) [13] and Dispersion Entropy (DisEn)34

[14] have been implemented as nonlinear indexes aiding disease diagnosis and prognosis. Examples35

of implementations include: the use of ApEn for the investigation of abnormalities in respiratory36

function caused by panic disorders [15], the analysis of neonatal heart rate variability using SampEn37

for improved diagnosis of sepsis [16], the analysis of electroencephalogram (EEG) signals to track38

the state of consciousness of patients while under the effect of anaesthetic drugs using PEn [17], the39

application of FuzzyEn on surface electromyography (EMG) signals for the detection of motion [13]40

and the analysis of blood pressure signals to quantify the effect of aging in the reduction of the signal’s41

irregularity using DisEn [14]. However, while the performance of these algorithms is promising, it is42

important to ensure that they are robust to increased numbers of missing and outlier samples prior to43

their deployment.44

The robustness of ApEn, SampEn, and FuzzyEn has been tested when analyzing time-series45

containing missing samples and the results indicate that while the classification capacity of the46

algorithms can be preserved under certain conditions, the fluctuations of entropy values can be large,47

affecting the accuracy of the results extracted for each analysed signal segment [18]. Furthermore, recent48

research has provided new variations of SampEn leading to improved performance when analysing49

time-series with missing samples [19]. Concerning the effect of outliers, ApEn and SampEn have been50

tested and the results indicate that outlier samples can disrupt the process of entropy quantification to51

a much greater extend than missing samples and should therefore be a key consideration when testing52

the robustness of respective algorithms [20,21].53

This study aims to expand upon this research focusing on the DisEn algorithm due to its favorable54

performance characteristics such as increased discrimination capacity and low computation time55

[22,23]. The research presented in this manuscript focuses on:56

• The quantification of the effect of missing and outlier samples on the performance of DisEn.57

• The introduction of new variations of the DisEn algorithm to improve its performance when58

applied to time-series with missing and outlier samples.59

• The assessment of the performance of the original algorithm and its variations, across different60

physiological datasets and under separate experimental setups defined by the percentage of61

missing or outlier samples and the degree to which these samples are grouped together or exist62

individually.63

The article is structured in the following manner. The Methods section provides an overview64

of the DisEn algorithm and presents its algorithmic variations developed as part of this study. It65

continues by presenting the datasets used, the process for producing time-series containing missing66

and outlier samples, the metrics used for performance assessment and the statistical analysis applied67

to the results of the designed experimental setups. The Results section provides a summary of68

the results of the implemented statistical tests, continues by presenting the performance of DisEn69

variations, for each physiological type separately, applied to time-series with missing samples and70

closes with the respective performance for time-series with outlier samples. In the Discussion71

section important insights from the study are reviewed and performance patterns are examined72

and interpreted considering the interplay between normal samples and missing or outlier samples,73

spectral characteristics of analysed time-series and operation of the respective DisEn variation. Finally74

limitations of the current study are addressed and opportunities for future work highlighted.75
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Figure 1. Algorithmic Diagram of the Original DisEn algorithm.

2. Methods76

2.1. Dispersion Entropy (DisEn)77

DisEn arises from Shannon Entropy with the integration of symbolic dynamics for the78

development of an algorithm capable of quantifying the degree of irregularity of investigated signal79

segments with low computation time while maintaining increased discrimination capacity [14]. The80

process followed by the algorithm for the analysis of a given univariate time-series xj(j = 1, 2, ..., N) of81

length N is the following:82

1. A first and optional step is the mapping of the time-series with a linear or non-linear mapping83

function. For the formulation of the majority of mapping functions the mean and standard84

deviation of the time-series are computed and used.85

2. A number of classes (c) is then mapped to the resulting signal by being distributed across its86

amplitude range. Each sample is allocated to the nearest respective class based on its amplitude.87

As a result, a classified signal uj(j = 1, 2, . . . , N) is retrieved.88

3. With the classified signal defined, an embedding dimension (m) and a time delay (d) are set89

for the creation of multiple time-series, of length m, um,c
i = {uc

i , uc
i+d, ..., uc

i+(m−1)d} for each90

i = 1, 2, ..., N − (m− 1)d. Each time-series um,c
i is mapped to its respective dispersion pattern,91

with the number of potential dispersion patterns being cm.92

4. For each dispersion pattern its relative frequency is obtained and used to calculate the DisEn93

value of the input time-series based on Shannon’s definition of Entropy.94

Therefore an input signal that could be described by a single dispersion pattern would have a minimum95

DisEn value as opposed to one requiring all possible patterns in equal probability in which case it96

will have a maximum DisEn value. The minimum and maximum DisEn value range is defined by the97

parameter values chosen for the implementation of the algorithm. Figure 1 displays an algorithmic98

block diagram presenting the computational steps for the implementation of the original DisEn99

algorithm. Further details concerning the operation of the DisEn algorithm such as suggested mapping100

approaches, optimization of parameter values and performance evaluation are available in [22].101
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Figure 2. Algorithmic Diagram of the SkipDisEn variation, added step is outlined in green.

2.2. Dispersion Entropy Variations102

The following variations of the algorithm are developed and tested for improved performance103

when used for the analysis of time-series that contain missing and outlier samples.104

2.2.1. Skip Sample Dispersion Entropy (SkipDisEn)105

The SkipDisEn variation removes samples marked as missing and connects the remaining samples106

in a continuous time-series based on the computational steps shown in Figure 2. This is the default107

approach followed in prior entropy quantification algorithms [16,18] and in this study we are interested108

in assessing the effectiveness of the respective DisEn variation when applied on time-series with109

missing samples.110

2.2.2. Linearly Interpolated Dispersion Entropy (LinInterDisEn)111

The LinInterDisEn variation uses linear interpolation to replace samples tagged as missing based112

on the equation y(x) = yo(x1−x)+y1(x−xo)
x1−xo

where y0, y1 are the amplitudes and x0, x1 are the locations113

of the nearest available samples. In this variation linear interpolation is being implemented due to114

promising results of performance improvement for entropy quantification algorithms in previous115

research [19,24]. Similarly to SkipDisEn this variation focuses on having improved performance when116

dealing with missing samples. Its computational steps are shown in Figure 3.117

2.2.3. Alternative Statistical Metrics Dispersion Entropy (AltMetDisEn)118

The AltMetDisEn variation uses alternative statistical metrics for the implementation of mapping119

functions. The originally used mean is replaced with median and standard deviation is estimated120

using the median absolute deviation multiplied by the scaling factor of 1.4826 [25]. The new statistical121

metrics are chosen for their robustness to outliers in order to reduce the disruption of classes allocation122

due to the increases in the amplitude range of the input signals caused by outliers [26]. Furthermore,123

AltMetDisEn is modified in the same manner as SkipDisEn in order to skip any samples tagged as124
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Figure 3. Algorithmic Diagram of the LinInterDisEn variation, added step is outlined in green.

missing and is therefore expected to have analogous performance on the analysis of time-series with125

missing samples. The algorithmic diagram of AltMetDisEn is shown in Figure 4.126

2.2.4. Dynamic Skip Sample Dispersion Entropy (DynSkipDisEn)127

The DynSkipDisEn variation implements a dynamic skipping approach through the use of an128

additional parameter named cutoff. DynSkipDisEn aims at replicating the performance of SkipDisEn129

when applied to time-series with outlier samples by automatically discarding any samples with values130

that deviate more than a certain number, defined by the cutoff parameter, of standard deviations from131

the mean of each analyzed signal segment as shown in Figure 5. Since the cutoff parameter of this132

algorithm is a scaled version of the standard deviation of its input window the effect of outlier samples133

in the calculated standard deviation should be taken into consideration when selecting the value of the134

cutoff parameter as discussed in Section 4.5.135

2.3. Experimental Datasets136

Aiming to develop variations of the DisEn algorithm with robust performance across a spectrum137

of monitoring applications the following physiological signals are chosen for the study.138

Heart-rate interval (RR) data are commonly monitored in a range of biometric applications from139

wearable devices to patient monitoring in intensive care units for monitoring the cardiovascular system140

of individuals [27,28]. The Fantasia Database [29] publicly available in Physionet [30] contains 40141

electrocardiogram (ECG) recordings of healthy adults sampled at 250 Hz while also providing the142

respective RR interval data which are used for this study. In total, RR interval data of 20 young adults143

are chosen for analysis.144

In addition, electroencephalograms (EEG) are chosen as a representative and commonly analyzed145

signal for monitoring the nervous system of individuals. The EEG signals used for this study are the146

FP1-F7 channel recordings of differential signals sampled at 256 Hz of 13 selected individuals retrieved147

from the publicly available CHB-MIT Scalp EEG Database [30,31].148

Finally, to measure the performance of the algorithm in monitoring the operation of the respiratory149

systems of individuals the respiratory impedance (RI) signal is chosen. A total of 15 recordings are150
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Figure 4. Algorithmic Diagram of the AltMetDisEn variation, added and modified steps are outlined
in green.

Figure 5. Algorithmic Diagram of the DynSkipDisEn variation, added and modified steps are outlined
in green.
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chosen by the publicly available BIDMC PPG and Respiration Dataset [30,32] each containing 8-minutes151

of impedance respiratory signal sampled at 125 Hz.152

2.4. Generation of Disrupted Time-Series153

To produce “disrupted” time-series, time-series containing missing (disruptedM) or outlier154

(disruptedO) samples, used for measuring the performance of different variations of the DisEn155

algorithm, the following processes are used. For the production of disruptedM time-series:156

1. Extraction of ground truth DisEn values. Each original time series containing N points without157

missing samples is separated in non-overlapping windows of 360 samples each. The choice of158

window length is made with the aim to test algorithmic performance under the restriction of159

small sample lengths which is considered one of the advantages of the original DisEn algorithm160

[22,33]. The original algorithm DisEn is used to calculate the ground truth DisEn value of each161

respective window.162

2. Segmentation of time-series. Copies of the initial time-series are segmented in groups of 1-5163

samples as defined by the grouping factor G. The G factor values used are 1, 2, 3, 4 and 5 samples.164

3. Marking of missing samples. Based on the percentage factor P a percentage of segments are165

uniformly drawn from each time-series and their samples are marked as missing. The P factor166

values used in this study are 10%, 20%, 30%, 40% and 50%.167

4. Production of random variations. Finally the above process is replicated 10 times for each168

combination of P and G values producing different random variations for each experimental169

setup.170

5. Total number of disrupted time-series. As a result from each initial time series 5× 5× 10 = 250171

"disruptedM" versions are produced which are used to assess the performance of the DisEn172

algorithm variations.173

The rational of choice for the above setups of "disruption" is to acquire a clear perspective of how174

increases in the number of missing samples affect the performance of DisEn algorithms and whether175

that performance changes when these missing samples are distributed individually or clustered176

together in groups considering that both events are common in physiological monitoring applications.177

For the production of "disruptedO" time-series, an almost identical process is used. However, in178

this case the modified samples are not marked as missing, instead, their amplitude is replaced with a179

value outside the physiological range of the original signal. Similarly to previous experiments testing180

the robustness of ApEn and SampEn to outliers [21], the amplitude of each outlier sample is obtained181

from a Gaussian distribution. We use a standard deviation of 0.5 and a mean defined separately for182

each physiological time-series based on the formula: outliermean = ±4×max|amplitude|. Half of the183

modified samples are given a positive value and half of them are given a negative value. For G factors184

higher than 1 all modified samples within a group share the same sign and value. The choice of setting185

the mean of the distribution to be the maximum absolute amplitude observed in the input time-series186

multiplied by a factor of 4, is made to ensure that outlier samples are outside the physiological range187

of the recorded signal while at the same time simulate the limitation of the maximum amplitude of188

the recording equipment. A standard deviation of 0.5 is chosen to allow outlier values to vary, as it189

is expected, while at the same time not allow their range of values to spread within physiological190

range. Similarly to time-series with missing samples for each original time-series 5× 5× 10 = 250191

"disruptedO" versions are produced.192

2.5. Performance Assessment193

As mentioned in Section 2.4 the initial time series is separated in windows and the ground truth194

DisEn value, for each window, is computed and stored using the original DisEn algorithm. The same195

process takes place for each disrupted time-series and the absolute percentage deviation is calculated196

using the ground truth DisEn value of a specific window versus the equivalent DisEn value calculated197
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from the "disrupted" version of the same window. This assessment is applied to each physiological198

dataset separately. To summarise the performance of the selected algorithm for a setup of P and G199

values a single value of mean absolute percentage deviation is acquired and presented alongside its200

respective standard deviation. This is achieved by averaging across:201

1. The windows of each time-series.202

2. The 10 different "disrupted" editions of each time series.203

3. The total number of time-series that have been chosen from the respective dataset records.204

Furthermore, in the case of the AltMetDisEn variation if the variation is applied to the original205

time-series the calculated DisEn values will differ from those of the original DisEn algorithm. This206

occurs because the changes implemented in the AltMetDisEn variation occur at the prior to mapping207

the input signal with a selected mapping function and therefore have an effect even when no missing208

or outlier samples exist. To maintain consistency with the rest of the performance measurements, the209

values of the original DisEn algorithm are used as ground truth in the calculation of error percentages210

for the AltMetDisEn similarly to the rest of the variations. In order to measure the amount of error that211

occurs even when AltMetDisEn is applied to the original time-series due to the difference in DisEn212

values with the original DisEn as opposed to the error that occurs due to missing or outlier samples,213

the AltMetDisEn variation is also applied to each of the original time-series and the mean absolute214

percentage deviation from the original DisEn values is calculated and reported in the respective parts215

of Section 3. Finally, for all variations of DisEn tested, including the original algorithm, the parameter216

values chosen are:217

• Embedding dimension: m = 2 samples.218

• Number of classes: c = 6 classes.219

• Mapping approach: logarithm sigmoid function.220

• Time delay: 1 sample.221

• Cutoff: 0.7 standard deviation (used only by DynSkipDisEn).222

The parameter values are selected after consulting the respective literature [14,22] and considering223

that each input window used in our study has a length of 360 samples [33]. The MATLAB codes for224

the implementation of the algorithmic variations presented in this paper are publicly available at:225

https://doi.org/10.5281/zenodo.3629475.226

2.6. Statistical Testing227

The following statistical analysis is applied for the error percentage distributions produced by228

DisEn variations during each experimental setup.229

• Kolmogorov-Smirnov Test. Each separate distribution is standardized and compared to a standard230

normal distribution using a Kolmogorov-Smirnov Test.231

• Mann-Whitney U Test. Based on the results of the Kolmogorov-Smirnov Test a Mann-Whitney232

U Test is chosen and applied to all distribution pairs produced within the same experimental233

setup to test whether the distribution of error percentages produced by one DisEn variation is234

significantly different from the distributions produced from the other variations tested under the235

same experimental setup.236

https://doi.org/10.5281/zenodo.3629475
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3. Results237

3.1. Summary of Statistical Testing Results238

The results of the Kolomogorov-Smirnov Test applied to all error percentage distributions239

after they have been standarized indicate that all distributions reject the null hypothesis at the 1%240

significance level. Therefore, their error percentages do not come from a Gaussian distribution.241

The Mann-Whitney U Test, which is chosen after taking into consideration the non-Gaussian242

nature of the distributions, indicates that out of the total 450 distribution pairs tested, 441 U Tests reject243

the null hypothesis with a strict threshold of a p-value lower than 10−3. Actually, 97% of p-values are244

lower than 10−7. The 9 error percentage distribution pairs that do not display statistically significant245

difference are signified in their respective sections that follow.246

3.2. Experimental Setups for Time-Series with Missing Samples247

The variations SkipDisEn, AltMetDisEn and LinInterDisEn are tested on the three separate248

physiological datasets of RR, EEG and RI time-series that have been modified to contain missing249

samples as described in Section 2.4. Their performance is assessed under 25 different experimental250

configurations as defined by the percentage of missing samples, P factor, and the grouping of missing251

samples, G factor. The original version of the DisEn algorithm would return an invalid output if a252

single sample within the input time-series is marked as missing resulting in very low performance253

when dealing with time-series containing missing samples. Therefore in this part of our analysis, only254

the performances of new variations are presented and compared.255

3.2.1. Performance for RR Time-Series with Missing Samples256

As shown in Figure 6, SkipDisEn and AltMetDisEn display similar performance when analysing257

RR time-series. The mean percentage error for SkipDisEn in within the range of 0.98% and 4.70%258

with minimum value at P = 10%, G = 5 and maximum at P = 50%, G = 1 respectively. The mean259

percentage error for AltMetDisEn is within the range of 2% and 4.12% observed at P = 10%, G = 1260

and P = 50%, G = 1 respectively. Furthermore, the mean percentage deviation of the ground truth261

values for AltMetDisEn from the original ground truth values is calculated at 2.41% with a standard262

deviation of 1.23%.263

LinInterDisEn, displays significantly higher average error rate within the range of 1.15% and264

16.29% with minimum deviation at P = 10%, G = 1 increasing significantly especially in cases265

of "clustered" missing samples (higher G-Factor values) to reach a maximum average error rate of266

16.29% observed at P = 50%, G = 5. The effect of "clustered" missing samples in the performance of267

LinInterDisEn is expected due to the reduced accuracy of synthetic samples produced using linear268

interpolation when a higher number of adjacent samples are missing.269

Out of the 75 U Test results retrieved in this group of experimental setups, 4 distribution pairs270

do not display statistically significant difference. These consist of the error percentage distributions271

acquired from the SkipDisEn and the AltMetDisEn variations for the experimental setups of:272

• P = 40%, G = 4 with a p-value of 0.19.273

• P = 50%, G = 4 with a p-value of 0.03.274

• P = 40%, G = 5 with a p-value of 0.01.275

• P = 50%, G = 5 with a p-value of 0.19.276

3.2.2. Performance for EEG Time-Series with Missing Samples277

As shown in Figure 7, SkipDisEn and AltMetDisEn maintain similar levels of performance.278

However, in this analysis LinInterDisEn displays better performance for lower P and G factor values.279

SkipDisEn’s error is within the range of 1.38% and 7.59% observed at P = 10%, G = 3 and P = 50%,280
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Figure 6. Performance of Dispersion Entropy variations on RR time-series with missing samples. Mean
and standard deviation of the percentage error are shown for each tested variation. The distribution
pairs of SkipDisEn and AltMetDisEn for: P = 40%, G = 4 ; P = 50%, G = 4 ; P = 40%, G = 5 ;
P = 50%, G = 5 do not display statistically significant difference based on the Mann-Whitney U Test.

G = 1 and similarly AltMeDisEn’s error is within the range of 2.28% and 7.39% observed at P = 10%,281

G = 1 and P = 50%, G = 1 respectively. The mean absolute deviation of ground truth values of282

AltMetDisEn from the original ground truth values is calculated at 2.42% with a standard deviation of283

0.60%.284

LinInterDisEn achieves improved performance for lower values of P,G compared to SkipDisEn285

and AltMetDisEn. It’s error is within the range of 0.74% and 8.79% observed at P = 10%, G = 1 and286

P = 50%, G = 5 respectively. With increases in the values of experimental factors, particularly that287

of G, its initially superior performance eventually drops to lower than that of the aforementioned288

variations in the analysis of EEG time-series.289

From the 75 U Tests retrieved from this experimental setup only 2 do not display statistical290

significance. The U Test between the error percentage distributions of AltMetDisEn and LinInterDisen291

for P = 50%, G = 2 with a p-value of 0.59 and the U Test between SkipDisEn and LinInterDisEn292

distributions for P = 10%, G = 5 with a p-value of 0.01.293

3.2.3. Performance for RI Time-Series with Missing Samples294

As shown in Figure 8, there is significant performance difference between SkipDisEn and295

AltMetDisEn. SkipDisEn has mean percentage error in the range of 0.93% and 5.72% for P = 10%,296

G = 1 and P = 50%, G = 5 respectively, while AltMetDisEn displays inferior performance with a297

mean percentage error in the range of 3.64% and 8.14% for P = 10%, G = 1 and P = 50%, G = 1. The298

mean absolute deviation between the ground truth values of AltMetDisEn and the original ones is299

calculated at 3.03% with a standard deviation of 1.47%. Both SkipDisEn and AltMetDisEn variations300

continue to follow a pattern of low error percentages that increase for higher P,G values across all301

tested physiological signals.302

In the analysis of RI time-series LinInterDisEn significantly outperforms SkipDisEn and303

AltMetDisEn unlike in the case of RR and EEG time-series. Its mean percentage error is limited304

in the range of 0.03% and 1.11% with minimum and maximum values observed at P = 10%, G = 1305
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Figure 7. Performance of Dispersion Entropy variations on EEG time-series with missing samples.
Mean and standard deviation of the percentage error are shown for each tested variation. The
distribution pairs of AltMetDisEn and LinInterDisEn for P = 50%, G = 2 and SkipDisEn and
LintInterDisEn for P = 10%, G = 5 do not display statistically significant difference based on the
Mann-Whitney U Test.

and P = 50%, G = 5 respectively. Unlike in the cases of SkipDisEn and AltMetDisEn, it can be seen306

that the performance of LinInterDisEn changes based on the physiological signals analyzed. All U Test307

results in this group of experimental setups indicate statistical significance between the distributions.308

3.3. Experimental Setups for Time-Series with Outlier Samples309

In contrast with the case of missing samples the original version of the DisEn algorithm returns a310

valid DisEn value when applied to a window containing multiple outlier samples. Therefore in this311

part of the study the original version of the DisEn algorithm is used and its performance results are312

reported providing a starting point for measuring the effects of outliers on the calculation of DisEn313

values. The original DisEn algorithm and its AltMetDisEn and DynSkipDisEn variations are tested on314

the RR, EEG and RI datasets under the same experimental configurations for factors P and G described315

in Section 3.2 and using the same values for the DisEn parameters as defined in Section 2.5. In this316

experimental setup the analyzed time-series have been modified to contain outlier samples outside the317

physiological range of each signal as described in Section 2.4.318

3.3.1. Performance on RR Time-Series with Outlier Samples319

Figure 9 shows that the original DisEn displays poor performance on the analysis of RR time-series320

especially for lower values of the P factor. Its mean absolute error is in the range of 24.35% and 72.58%321

for the configurations P = 50%, G = 1 and P = 10%, G = 5 respectively. AltMetDisEn displays322

improved performance in the cases of low P values however for higher P values its performance is323

similar to that of the original DisEn. Its percentage error is in the range of 22.64% and 55.78% observed324

at P = 50%, G = 1 and P = 30%, G = 5 respectively. DynSkipDisEn achieves the best performance325

with an error percentage in the range of 14.58% and 17.84% for P = 40%, G = 1 and P = 10%, G = 3.326

For the original DisEn and the AltMetDisEn variation, a certain amount of performance improvement327

is noticed as the percentage of outlier samples increases which indicates that a deeper analysis on the328
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Figure 8. Performance of Dispersion Entropy variations of RI time-series with missing samples. Mean
and standard deviation of the percentage error are shown for each tested variation. All distribution
pairs display statistically significant difference based on the Mann-Whitney U Test.

effect of oulier values on the performance of DisEn is required. This is discussed in Section 4.4 of the329

study.330

The only distribution pair that does not display statistically significant difference for this group of331

experimental setups consists of the original DisEn and AltMetDisEn distributions for P = 40% and332

G = 5 with a p-value of 0.20.333

3.3.2. Performance for EEG Time-Series with Outlier Samples334

In the case of EEG time-series the performance of all variations seems to improve compared to335

RR time-series. As shown in Figure 10 the original DisEn displays an error rate in the range of 16.37%336

and 62.55% for P = 50%, G = 2 and P = 1, G = 5. AltMetDisEn achieves improved performance337

for lower P and G values with percentage error rate in the range of 14.11% and 40.47% for P = 30%,338

G = 1 and P = 10% and G = 5. Once more the best performance is achieved by DynSkipDisEn with339

percentage error limited in the range of 8.34% and 11.89% for P = 40%, G = 1 and P = 10%, G = 5.340

All distribution pairs for this group of experimental setups display statistically significant difference.341

3.3.3. Performance RI Time-Series with Outlier Samples342

As shown in Figure 11, when applied to RI time-series the original DisEn algorithm percentage343

error is in the range of 16.31% and 51.89% for P = 50%, G = 5 and P = 50%, G = 1. The AltMetDisEn344

performance in the range of 14.02% to 56.65% percentage error for P = 20%, G = 2 and P = 50%,345

G = 1 respectively. DynSkipDisEn achieves significantly improved performance with a percentage346

error limited in the range of 3.70% to 7.65% for P = 10%, G = 1 and P = 50, G = 5. For this group of347

experimental setups two distribution pairs do not display statistically significant difference. These348

consist of the original DisEn and the AltMetDisEn distributions for P = 50, G = 5 with a p-value of349

0.01 and the AltMetDisEn and DynSkipDisEn distributions for P = 50, G = 5 with a p-value of 0.01.350
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Figure 9. Performance of Dispersion Entropy variations on RR time-series with outlier samples. Mean
and standard deviation of the percentage error are shown for each tested variation. The distribution pair
of the original DisEn and AltMetDisEn distributions for P = 40%, G = 5 does not display statistically
significant difference based on the Mann-Whitney U Test.
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Figure 10. Performance of Dispersion Entropy variations on EEG time-series with outlier samples.
Mean and standard deviation of the percentage error are shown for each tested variation. All
distribution pairs display statistically significant difference based on the Mann-Whitney U Test.
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Figure 11. Performance of Dispersion Entropy variations on RI time-series with outlier samples. Mean
and standard deviation of the percentage error are shown for each tested variation. The distribution
pairs of the original DisEn and AtlMetDisEn for P = 50%, G = 5 and AltMetDisEn and DynSkipDisEn
for P = 50%, G = 5 do not display statistically significant differences based on the Mann-Whitney U
Test.

3.4. Computation Time351

To ensure that the variations presented and tested in this study preserve the low computation time352

of the original DisEn algorithm [22] we measure their computation time for the analysis of time-series353

with length 360 and 9000 samples on randomly selected signal segments from all three physiological354

datasets and the results are presented in Table 1 and Table 2, respectively. The computations are carried355

out using a PC with Intel(R) Core(TM) i7-8750H CPU @ 2.2GHZ, 16 GB RAM running MATLAB356

R2018b. The computation time of the original DisEn algorithm is measured when applied to randomly357

selected segments of the original time-series, SkipDisEN and LinInterDisEn are applied to disruptedM358

time-series while the AltMetDisEn and DynSkipDisEn are applied to disruptedO time-series. As359

the results indicate, no significant difference in the computation time is noted across the algorithmic360

variations apart from a small expected increase in the case of the LinInterDisEn variation observed361

at the signal segments of 9000 sample length due to the additional linear interpolation mechanism362

introduced.363

Table 1. Computation time in milliseconds for signal segments of 360 samples.

RR EEG RI

DisEn 1.6 1.5 1.9
SkipDisEn 1.5 1.4 1.9

AltMetDisEn 1.7 1.8 1.9
LinInterDisEn 1.6 1.7 2
DynSkipDisEn 1.5 1.4 1.5
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Table 2. Computation time in seconds for signal segments of 9000 samples.

RR EEG RI

DisEn 2.1 2.3 2.3
SkipDisEn 2.4 2.5 2.2

AltMetDisEn 2.6 2.8 2.7
LinInterDisEn 3.1 3.3 3.2
DynSkipDisEn 2.5 2.5 2.6

4. Discussion364

As part of this study, novel variations of the DisEn algorithm are introduced to improve its365

performance when applied to time-series with missing and outlier samples. Time-series from three366

different physiological signals: RR, EEG and RI are modified to produce multiple variations of367

time-series containing missing samples (disruptedM) and time-series containing outlier samples368

(disruptedO). Each produced variation of disruptedM and disruptedO time-series corresponds to369

a different experimental setup in order to assess the performance of algorithmic variations under370

different percentages of missing or outlier samples and under different degrees of grouping of these371

samples. The results of our analysis indicate that while low-data quality, especially when it arises372

from artifactual outlier samples, can cause disruption in the entropy quantification mechanisms of the373

DisEn algorithm, significant improvements in its performance can be achieved with corresponding374

modifications.375

4.1. Differences in the Effect of Missing versus Outlier Samples376

An initial finding of the study concerns the effectiveness of DisEn when applied to disruptedM377

time-series verus its limited performance during the analysis of disruptedO time-series. In the case of378

disruptedM time-series, the SkipDisEn variation, which requires minimal modification of the initial379

DisEn algorithm, is capable of achieving a mean percentage error which remains lower than 7.6%380

across all examined physiological signals even when up to 50% of the original samples are missing.381

Furthermore, the LinInterDisEn variation’s performance can surpass that of SkipDisEn as shown in382

the analysis of disruptedM RI time-series. However, it is important to consider that LinInterDisEn’s383

performance is significantly affected by the spectral characteristics of the investigated signal and384

should therefore only be used when respective information is available.385

On the other hand, from the results on disruptedO time-series we can verify that in the case386

of DisEn, similarly to ApEn and Sampen [20,21], outlier samples have a much more disruptive387

effect than missing samples. Taking into consideration the effectiveness of SkipDisEn in acquiring388

viable DisEn values we recommend when possible to label outlier samples as missing in order to389

achieve performance close to that observed in the analysis of disruptedM time-series. However when390

the removal of all outlier samples is not guaranteed, the DynSkipDisEn variation is recommended.391

DynSkipDisEn is designed to tackle the disruption of class allocation through the removal of samples392

that deviate from the mean more than a certain degree of standard deviation, as defined by the393

additional cutoff parameter.394

4.2. Effect of Signal’s Spectral Characteristics on the Performance of LinInterDisEn395

As noticed in Section 3.2 of our study the performance of LinInterDisEn is primarily affected396

by two factors. The clustering of missing samples on the analysed time-series, controlled by the G397

factor of the defined experimental setups, and the spectral characteristics of the physiological signal398

analysed. The clustering of missing samples has an expected negative effect on the performance of399

LinInterDispEn due to the reduced quality of synthetic samples produced using linear interpolation400

when a larger amount of adjacent samples are missing.401

Furthermore, the spectral characteristics of the physiological signal analysed are expected to affect402

the performance of the linear interpolation mechanism when considering that RR time-series contain403
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more high frequency components [34] leading to rapid fluctuations in the amplitude of the signal404

which are harder to estimate using linear interpolation. RI time-series are dominated primarily by405

low-frequency components [35,36] leading to a larger number of linear signal segments that can be406

more accurately estimated. Finally, EEG time-series fall in between with a significant amount of high407

frequency components [37] leading to amplitude fluctuations that can challenge the LinInterDispEn408

algorithm especially in experimental setups with high P and G factor values.409

4.3. Standard Deviations of Performance Measurements410

The standard deviations recorded throughout the presented experimental setups signify411

fluctuations in the performance of each tested variation on a window by window basis. This deviation412

occurs primarily due to two factors. The first one being that the disrupted time-series were formulated413

by introducing missing and outlier samples on the original time-series randomly, at the entire length of414

the time-series in order to more realistically simulate the phenomenon instead of equally distributing415

them across each window. Therefore, some windows would have more missing or outlier samples416

then others leading to inevitable fluctuations in the tested performance.417

However, the second factor that leads to increased standard deviations of the mean performance418

error is the small sample length of the analysed windows. An important advantage of the original DisEn419

algorithm is its capacity to acquire valuable insights even when applied to time-series windows with420

small sample lengths [22,33] and for that reason we chose to test the performance of the original DisEn421

algorithm and its variations using 360 samples per window, which is a considerably smaller sample422

length than what was commonly used in similar studies concerning the performance of ApEn and423

SampEn when applied to time-series containing missing and outlier samples [18,19,21]. Considering424

the observed fluctuations in the algorithmic performance recorded in our study we recommend that for425

field applications where the DisEn value of each window is considered individually, a larger sample426

length is used when the analysed time-series is expected to contain missing and outlier samples.427

4.4. Effect of Outlier Sample Percentage Across Physiological Signals428

In order to acquire a better perspective on the effect of outlier samples in the performance of429

DisEn variations across different physiological signals, it is important to consider the mechanism430

through which outlier samples disrupt the Dispersion Entropy calculation process. As mentioned in431

Section 2.1, during the second operational step of DisEn a number of classes (c = 6 in our experiments)432

are allocated across the amplitude range of the mapped input signal. With the introduction of outlier433

samples, this range expands significantly, resulting in fewer classes being allocated within the range of434

the original signal. Instead the majority of classes are allocated in the extended amplitude range. As a435

result, amplitude dynamics existing in the original signal that would previously be represented using436

multiple dispersion patterns are now classified under a single dispersion pattern category leading to a437

much lower output DisEn value. This phenomenon is shown in the supportive appendix Figures A1 -438

A6 where examples of disrupted dispersion patterns for P = 10% , G = 1 are shown in green and for439

P = 50% , G = 1 are shown in red.440

For high percentages of outlier samples, new dispersion patterns arise which do not represent441

physiological dynamics that occur within the original samples of the time-series but instead represent442

the amplitude dynamics that occur between original and outlier samples. This can lead to an increase443

in the irregularity of the input signal and therefore to an increase in the calculated DisEn value for444

disruptedO time-series with high P factor values. This is an important phenomenon to consider during445

the analysis of the performance of DisEn variations when tested on disruptedO time-series446

It is observed that in the case of RR and EEG DisruptedO time-series, with the effect being more447

prevalent in the case of RR, the performance of the original DisEn and the AltMetDisEn is actually448

increasing as the percentage of outlier samples increases which at first can seem counter intuitive.449

However, in the case of RI time-series the performance of DisEn variations does not follow a clear450

pattern. Taking into consideration the existence of rapid amplitude fluctuations in RR and EEG451
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time-series, as opposed to the RI time-series which contain primarily gradual changes in amplitude, as452

discussed in Section 4.2, the number of unique dispersion patterns used to describe each window of453

the original time-series is expected to be higher for RR followed by EEG and then by RI time-series454

and therefore their respective DisEn values are expected to follow a similar pattern.455

As mentioned previously for small values of the P factor the mean DisEn value drops significantly456

in all three cases of physiological signals due to the time-series apparently becoming more regular as457

shown in green in the appendix Figures A1 - A6. As the outlier percentage increases, more dispersion458

patterns are introduced, as shown in red in the appendix Figures A1 - A6, in order to describe the now459

multiple amplitude fluctuations that occur between normal and outlier samples. Consequently, the460

DisEn values of all three physiological signals increase for higher P factor values . In the cases of RR461

and EEG time-series the increase in DisEn values that occurs brings them closer to their respective462

ground truth values resulting in the performance "increase" observed in Sections 3.3.1 and 3.3.2 .463

Therefore this increase in performance is not achieved due to an internal mechanism of the algorithm464

but rather from the acquisition of DisEn values closer to the ground truth arising from amplitude465

fluctuations occurring between outlier and normal samples.466

In the case of the original RI time-series, their corresponding DisEn are values lower compared467

to those for RR and EEG time-series. Therefore increases in DisEn values for disruptedO time-series468

occurring from the aforementioned phenomenon do not necessarily bring the calculated DisEn values469

closer to the ground truth and therefore algorithmic performance does not follow a pattern similar to470

that of RR and EEG disruptedO time-series.471

Finally in the case of DynSkipDisEn, the calculation of DisEn is not affected significantly by472

dispersion patterns arising from the interaction between original and outlier samples due to the473

significant amount of outlier samples that are removed.474

4.5. Setting the Cutoff Parameter of DynSkipDisEn475

When setting the value of the cutoff parameter for the DynSkipDisEn variation it is important to476

balance two opposing sources of error. A high value of cutoff, such as close to 2 standard deviations477

from the mean, can allow an extensive amount of outliers within the range of samples analysed by478

the algorithm, leading to a significant reduction in its performance. On the other hand, a strict low479

value of cutoff can lead to the false positive removal of valid samples. Considering the more disruptive480

nature of outliers as opposed to that of missing valid samples a more conservative approach towards481

choosing lower values for the cutoff parameter is recommended when considering multiple options.482

Therefore, when setting the value of the cutoff, the quality of the data to be analysed should be taken483

into consideration when corresponding information is available.484

Within the scope of this study, the cutoff parameter is set to the strict value of 0.7 standard485

deviations due to the high percentage of outlier samples introduced in the majority of our experimental486

setups. Furthermore, due to the range of values that outliers can cover, those with values further from487

physiological range increase the calculated standard deviation of the input window while those with488

values closer to physiological range have a higher probability of passing through the cutoff threshold489

making a strict cutoff value a necessity. As shown in the supportive appendix Figures A7 - A15, when490

comparing the capacity of DynSkipDisEn with a cutoff of 0.7 standard deviations versus a cutoff of 1491

standard deviation to reconstruct the class allocation pattern of the original signal from its disruptedO492

versions, having a strict value of 0.7 standard deviation leads to significantly improved performance,493

especially in the cases of higher outlier percentages where a cutoff of 1 leads to highly disrupted class494

allocation patterns. However, for applications where DynSkipDisEn is combined with preprocessing495

for the removal of outlier samples, we recommend a higher cutoff parameter in the range of 1 to 2496

standard deviations since in that case the percentage of remaining outliers in the time-series should be497

significantly lower and therefore a higher cutoff value would provide improved performance.498
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4.6. Limitations of Current Study and Future Work499

As indicated by the results of our study, the spectral characteristics of the investigated500

physiological signal have a direct effect on the performance of DisEn and its variations. Therefore, while501

the physiological signals used in our study, RR, EEG and RI, are commonly used for health monitoring502

applications the study can be expanded to verify our observations in additional physiological signals503

such as EMG, blood pressure and potentially intracranial pressure signals. As a result, we suggest that504

similar experimental setups are adopted to assess the performance of DisEn variations prior to their505

deployment in respective applications.506

Furthermore, the DisEn algorithm can be implemented using a wide variety of mapping507

functions. Within the scope of this study the logarithmic sigmoid function is used due to its successful508

implementation in previous studies of physiological signal analysis [22,33]. However, as mentioned in509

Section 4.4 outlier samples tend to disrupt the process of class allocation which follows the mapping510

of the original time-series with the chosen mapping function. It would therefore be valuable, to511

expand the study on measuring the robustness of different mapping functions to outliers such as the512

normal cumulative distribution function. Consequently, when optimizing a DisEn variation for a513

specified implementation the mapping function should be chosen by considering both the spectral514

characteristics of the input signal and the mapping function’s robustness to outlier samples.515

Furthermore, while DynSkipDisEn is a promising variation trying to automatically remove outlier516

samples, there are two points that should be taken into consideration. The first one is that even if the517

samples of the original time-series follow a Gaussian distribution the existence of outliers will change518

the distribution in a non-Gaussian form, this should be taken into consideration since it will affect the519

calculated mean and standard deviation based on which the DynSkipDisEn filters the samples of the520

input window. Finally, as suggested in section 4.5, the correct choice of value for the cutoff parameter521

should consider the amount of outliers located in the analysed time-series, this information might not522

be available in certain applications. When that is the case, we recommend the choice of a relatively523

low cutoff value considering the more disruptive nature of outliers when compared to valid missing524

samples.525

5. Conclusions526

This study investigates the effect of missing and outlier samples in the operation of DisEn and527

presents algorithmic variations to minimize their effect and improve its performance. The results528

indicate that the effect of missing samples can be effectively reduced with the addition of a skipping529

step in the operations of DisEn while linear interpolation can further improve its performance when530

operating on time-series containing primarily low-frequency components. Outlier samples affect531

to a larger extend the performance of DisEn by disrupting the amplitude range during the class532

allocation step of the algorithm. A significant mitigation of the disruptive effect of outliers is achieved533

with the introduction of a cutoff parameter in the DynSkipDisEn variation. The presented DisEn534

variations operate using information only from within the signal segment that is used as input at a535

time to allow for a real-time entropy quantification process. However, upon availability, information536

concerning time-series’ dominant frequency components and estimations of missing and outlier537

samples’ percentages can aid in the selection of the appropriate DisEn variation and the optimization538

of its parameter values. We aspire that the insights and algorithmic variations presented in this study539

will aid the implementation of DisEn in physiological monitoring applications.540
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Appendix A558
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Figure A1. Original and Disrupted Signal Segments of RR in support of Section 4.4.
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Figure A2. Original versus Disrupted Dispersion Patterns of RR using the original DisEn algorithm in
support of Section 4.4.
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Figure A3. Original and Disrupted Signal Segments of EEG in support of Section 4.4.
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Figure A4. Original versus Disrupted Dispersion Patterns of EEG using the original DisEn algorithm
in support of Section 4.4.
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Figure A5. Original and Disrupted Signal Segments of RI in support of Section 4.4.
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Figure A6. Original versus Disrupted Dispersion Patterns of RI using the original DisEn algorithm in
support of Section 4.4.
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Figure A7. Original and Disrupted Signal Segments of RR in support of Section 4.5.
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Figure A8. Original versus Disrupted Dispersion Patterns of RR using DynSkipDisEn with Cutoff = 0.7
in support of Section 4.5.
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Figure A9. Original versus Disrupted Dispersion Patterns of RR using DynSkipDisEn with Cutoff = 1
in support of Section 4.5.
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Figure A10. Original and Disrupted Signal Segments of EEG.
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Figure A11. Original versus Disrupted Dispersion Patterns of EEG using DynSkipDisEn with
Cutoff = 0.7 in support of Section 4.5.
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Figure A12. Original versus Disrupted Dispersion Patterns of EEG using DynSkipDisEn with Cutoff = 1
in support of Section 4.5.
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Figure A13. Original and Disrupted Signal Segments of RI in support of Section 4.5.
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Figure A14. Original versus Disrupted Dispersion Patterns of RI using DynSkipDisEn with Cutoff = 0.7
in support of Section 4.5.
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Figure A15. Original versus Disrupted Dispersion Patterns of RI using DynSkipDisEn with Cutoff = 1
in support of Section 4.5.
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