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Abstract 

Quantitative crosslinking mass spectrometry (QCLMS) reveals structural details of protein 

conformations in solution. QCLMS can benefit from data-independent acquisition (DIA), which 

maximises accuracy, reproducibility and throughput of the approach. This DIA-QCLMS 

protocol comprises of three main sections: sample preparation, spectral library generation and 

quantitation. The DIA-QCLMS workflow supports isotope-labelling as well as label-free 

quantitation strategies, uses xiSEARCH for crosslink identification, and xiDIA-Library to create 

a spectral library for a peptide-centric quantitative approach. We integrated Spectronaut, a 

leading quantitation software, to analyse DIA data. Spectronaut supports DIA-QCLMS data to 

quantify crosslinks. It can be used to reveal the structural dynamics of proteins and protein 

complexes, even against a complex background. In combination with photoactivatable 

crosslinkers (photo-DIA-QCLMS), the workflow can increase data density and better capture 

protein dynamics due to short reaction times. Additionally, this can reveal conformational 

changes caused by environmental influences that would otherwise affect crosslinking itself, 

such as changing pH conditions. 

 

Introduction 

The structure of proteins and protein complexes can be investigated by crosslinking mass 

spectrometry (CLMS) [1–6] (also abbreviated as CL–MS, XL–MS, CX–MS or CXMS). The 

approach reveals amino acid residue pairs that are proximal in space by using a crosslinker 

of known length to form covalent bonds between them. The proteins are then proteolytically 

digested, crosslinked peptides are detected and crosslinked residue pairs are identified by 

liquid chromatography-mass spectrometry (LC-MS) paired with database searching.  

While a protein’s function is linked to its three-dimensional structure, these structures 

are intrinsically dynamic and can change [7,8]. This also influences the yield of individual 

crosslinks which is exploited in an approach termed quantitative crosslinking mass 

spectrometry (QCLMS, also abbreviated as QXL-MS) [9]. When a protein changes its 

conformation, the distance between its residue pairs may also change, as well as their solvent 

exposure or orientation towards each other. These changes affect the yield of crosslinks [10]. 

Detecting changing yields is challenging and requires sensitive instruments in addition to 

adequate quantitation software as crosslinks tend to be of low abundance in the peptide 

mixture. Nevertheless, QCLMS is evolving into a complementary tool to traditional structural 

techniques [3] and has benefited from recent methodological advances. As in linear 

quantitative proteomics, QCLMS studies comprise two major quantitative strategies: isotope 

labeling and label-free (LFQ) approaches. To date, QCLMS has been used in a wide range of 

application cases [11] with isotope label-based strategies used more widely. However, label-

free approaches are attracting increased interest. They do not require isotope-labelled 

crosslinkers, isotope-labelled proteins or isotope-labelling of peptides. Not relying on isotope 

labels reduces the initial investment in reagents of an experiment. However, conducting the 

experiment and analysis reproducibly becomes more important.  

Currently, QCLMS analysis mainly relies on data-dependent acquisition (DDA). 

Quantitation in DDA mode is usually performed using extracted ion intensities of the 

unfragmented peptides (MS1). The first studies that established QCLMS to quantify structural 

changes used this approach [12,13] and the reproducibility of CLMS was shown to be in line 

with the general reproducibility of proteomics [14]. However, DDA mode is poorly 

reproducibility for low abundance proteins and their peptides [15–17], which negatively 

influences quantitation results, especially for the frequently low abundance crosslinks. 

https://paperpile.com/c/k2mssK/rq1Y+1UrZ+Z0Mb+pK1Y+PxMx+YOjZ
https://paperpile.com/c/k2mssK/NHZsw+Uzd5c
https://paperpile.com/c/k2mssK/PaGj
https://paperpile.com/c/k2mssK/9Oigu
https://paperpile.com/c/k2mssK/Z0Mb
https://paperpile.com/c/k2mssK/6E6g
https://paperpile.com/c/k2mssK/NeG3+Qsthv
https://paperpile.com/c/k2mssK/ChC5
https://paperpile.com/c/k2mssK/GKzz+otl7+Zq7M
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Accuracy and reproducibility of QCLMS analysis can be improved by data-independent 

acquisition (DIA) [18]. DIA is an acquisition method that combines high throughput of DDA 

with the sensitivity of targeted acquisition methods (selected, parallel or multiple reaction 

monitoring; SRM, PRM, MRM) [19–21]. 

DIA workflows in general fall into two basic strategies: peptide-centric [16] and spectrum-

centric analysis [22,23]. In both strategies, precursor and fragment quantities are extracted 

from DIA data using a spectral library and retention time. In peptide-centric workflows, spectral 

libraries are acquired in DDA mode using either the same sample as for the DIA acquisitions 

or fractionated samples to increase the size of the library. In spectrum-centric workflows, 

spectral libraries are generated directly from the DIA data. MS1 and MS2 level information are 

aligned by retention time and combined in groups to generate pseudo-DDA spectra. These 

pseudo spectra are used to generate the spectral library for DIA quantitation. Although a 

spectrum-centric approach offers discovery-like DIA quantitation, it is not yet established for 

crosslinking data. This protocol therefore focuses on the peptide-centric DIA approach. 

 

Protocol development 

General considerations 

Here we describe a detailed and automated DIA-QCLMS protocol using a peptide-centric 

approach. Label-free or labeling strategies can be combined with this workflow. We particularly 

focus on the DIA method optimisation and software part of the workflow. Sample preparation 

and enrichment strategies for crosslinking experiments are described in detail by Chen et al. 

2019 [24]. Our workflow comprises three modules: sample preparation for quantitative 

crosslinking, spectral library generation and quantitation of crosslinks using DIA (Fig. 1). Note 

that this protocol uses but is not dependent on xiSEARCH for the identification of crosslinks; 

other identification software are also compatible. 

https://paperpile.com/c/k2mssK/73yY
https://paperpile.com/c/k2mssK/iZ43+pB5V+kW1D
https://paperpile.com/c/k2mssK/otl7
https://paperpile.com/c/k2mssK/uZbn+iLui
https://paperpile.com/c/k2mssK/T2Vc
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Fig.1: Data-independent quantitative crosslinking mass spectrometry workflow comprising 

three main modules: sample preparation, spectral library generation and quantitation. 

 

In QCLMS studies, the interpretation of structural changes are based on the signal intensity 

(peak area) of individual crosslinks (unique residue pairs; URPs). A unique residue pair 

designates a given combination of two residues that is counted only once, regardless of how 

many times it was detected as crosslinked in the analysis. Importantly, unique residue pairs 

are often supported by several different peptide pairs, which are in turn frequently supported 

by multiple peptide-spectrum matches (PSMs). To obtain the quantitation value for a URP, we 

take the median signal intensities of all its supporting crosslinked PSMs. In standard 

quantitative proteomics, this corresponds to combining peptide signals to a protein value [25]. 

It is worth noting that using a TopN approach for summing up crosslinked peptides to URPs 

leads to inaccurate quantitative values [18]. It is more accurate to use all supporting 

crosslinked PSMs for a UPR instead of just a subset.  

In recent years, significant progress in software development for QCLMS workflows have 

pushed the field forward [24,26]. Several software packages like xTract [27], MassChroQ [28], 

pQuant [29], XiQ [12], Skyline [14,30], Pinpoint [10] and MaxQuant [31] support crosslink 

quantitation on MS1 level in DDA data. Quantitation signals of crosslinked peptides are 

matched between MS runs through retention time alignment (match between runs), which 

increases the completeness of quantitative data sets. However, currently only Skyline provides 

an interface for easy and fast visualisation, and correction of the quantitation results obtained 

by DDA. There are currently no specialised software tools for analysis of DIA-QCLMS data. 

https://paperpile.com/c/k2mssK/Ycqg
https://paperpile.com/c/k2mssK/73yY
https://paperpile.com/c/k2mssK/Jv1w+T2Vc
https://paperpile.com/c/k2mssK/2E9z
https://paperpile.com/c/k2mssK/DQzk
https://paperpile.com/c/k2mssK/YpVh
https://paperpile.com/c/k2mssK/NeG3
https://paperpile.com/c/k2mssK/ChC5+x95Z
https://paperpile.com/c/k2mssK/9Oigu
https://paperpile.com/c/k2mssK/mCOQ
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Spectronaut [32,33] a widely used DIA quantitation tool in standard proteomics, was adapted 

by us to analyse crosslinking data [18]. This software package offers an interface for easy 

visualisation of DIA crosslinking data, and includes adaptable quantitation setting, statistics 

and plots to analyse and explore the data. Additionally, no prior programming knowledge is 

required to use Spectronaut for QCLMS analysis. Detailed manuals and tutorials on the 

general use of Spectronaut are available on the manufacturer's website 

(https://www.biognosys.com/).  

Spectronaut requires a spectral library to extract MS1 and MS2 information from the DIA 

crosslinking data. This library can be generated from DDA data by our xiDIA-library application 

[18]. Note that xiDIA-library is an open source collaborative initiative available at its GitHub 

repository (https://github.com/Rappsilber-Laboratory/xiDIA-library). ‘Linearisation’ of 

crosslinked peptide sequences as in previous protocols using Skyline is not necessary [14]. 

xiDIA-library can generate libraries for label-free and labeling experiments. Our library 

application is written in Python and can be adapted to crosslink identification tools other than 

xiSEARCH by following the instructions provided at its GitHub repository. Once the spectral 

library has been imported into Spectronaut, it is used to align retention times using iRT [34] 

values and extract the MS1 and MS2 information for quantitation.  

 

DIA acquisition 

The optimal acquisition parameters of DIA depend on the complexity and dynamic range of 

the sample. Choosing values for all DIA parameters can be challenging. This is exasperated 

by the wide range of synonyms and method designs (e.g. WiSIM [35], pSMART [36], HRM 

[32], SWATH [16], MSX [37], overlapping windows [38]). A very instructive tutorial on general 

use of DIA in proteomics can be found at Ludwig et al. [39]. In this section, we focus on the 

main features for crosslink DIA optimisation on Orbitrap instruments: the precursor m/z range 

to cover, number of isolation windows and their widths, injection time and resolution, cycle 

time and chromatographic peak width (Fig. 2). Starting values for parameter optimisation are 

given in Tables 1 and 2. 

 

 

https://paperpile.com/c/k2mssK/vnox+wPVW
https://paperpile.com/c/k2mssK/73yY
https://www.biognosys.com/
https://paperpile.com/c/k2mssK/73yY
https://github.com/Rappsilber-Laboratory/xiDIA-library
https://paperpile.com/c/k2mssK/ChC5
https://paperpile.com/c/k2mssK/4ZNM
https://paperpile.com/c/k2mssK/2zSG
https://paperpile.com/c/k2mssK/3u7G
https://paperpile.com/c/k2mssK/vnox
https://paperpile.com/c/k2mssK/otl7
https://paperpile.com/c/k2mssK/i1WX
https://paperpile.com/c/k2mssK/qQhY
https://paperpile.com/c/k2mssK/IJS7
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Fig. 2: Optimisation scheme for data-independent acquisition (DIA) methods on Orbitrap 

instruments. a: General guideline and key parameters for DIA optimisation. b: Positive and 

negative dependencies of the key parameters (orange arrow: increasing this parameter will 

influence the next parameter negatively, blue arrow: increasing this parameter will influence 

the next parameter positively). 

 

The precursor m/z range covered in a DIA acquisition is defined by consecutive isolation 

windows with a specific window width. During chromatographic separation, the instrument 

cycles repeatedly through this set of isolation windows. This mass range is dependent on the 

sample type as well as the protease used for digestion and should ideally cover the m/z space 

of crosslinked peptides. Typically, most detected tryptic linear peptides fall within 400-1200 

m/z [16], and this generally also applies to crosslinked peptides.  

The precursor isolation window width defines a precursor m/z range that will be 

fragmented for a given MS2 scan. Precursor masses falling within an isolation window are co-

isolated and co-fragmented. Hence, the width of a window influences the selectivity, dynamic 

range and, in turn, also the sensitivity of crosslinked peptide detection. Window width is one 

of the key parameters during the DIA optimisation process. Narrow isolation windows reduce 

the number of co-isolated and hence co-fragmented precursors, which results in simpler MS2 

https://paperpile.com/c/k2mssK/otl7
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spectra and reduced signal interference. However, narrow windows also increase the cycle 

time and reduce the number of data points per chromatographic peak. In contrast, choosing a 

wider isolation window allows for faster cycle times, however this increases the number of co-

fragmented precursors, resulting in convoluted MS2 spectra and lower sensitivity. Variable 

window sizes can be applied to balance the intensity distribution of precursor ions across the 

chromatographic separation and the number of co-fragmented ions. Note that this option is 

currently not available on all Orbitrap instruments.  

The time required to collect ions for the Orbitrap analysis is called ‘injection time’. This injection 

time is determined by the automatic gain control (AGC), which ensures that the mass 

spectrometer collects the desired number of ions before recording a spectrum. The user-

defined ‘maximum injection time’ limits this time and should be adjusted with respect to the 

sample complexity. Low sample complexity (e.g. single proteins) often require a higher 

injection time to fill the trap than complex samples (whole cell lysates).  

Together, the injection time, scan time (resolution), and defined window size influence the 

cycle time. The cycle time (synonyms: duty cycle, sampling rate) refers to the time that is 

needed to acquire an MS1 spectrum and its subsequent corresponding MS2 sprecra. The 

cycle time determines how often ions of the same peptide are scanned along a 

chromatographic peak. A short cycle time leads to an increased number of data points per 

chromatographic peak, which enhances the accuracy of quantitation results. It is 

recommended to use at least 6 data points per peak for quantitation. Increasing the number 

of data points per peak also enhances reconstruction of the peak shape [40]. Liquid 

chromatography performance also influences the number of data points per peak. A cycle time 

of e.g. 3 seconds is appropriate for an average peak width of 30 seconds, but LC with better 

resolution reduces the peak width and hence the data points along the chromatographic peak. 

In this case, the gradient length should be adapted instead.  

 

Table 1: Starting values for MSX-DIA method optimisation. 

 

Parameter Setting 

Isolation window 15 

Number of multiplexed ions 2 

Collision energy  30 % 

Detector type  Orbitrap 

Scan range 300-1600 

Precursor mass range 400-1200 

Max. injection time 90 ms 

AGC target 2x105 

Isolation mode  Quadrupole 

Resolution MS2 30000 

Resolution MS1 120000 

https://paperpile.com/c/k2mssK/pVMo
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Table 2: Starting values for fixed window DIA method optimization. 

 

Parameter Setting 

Isolation window 12 

Number of multiplexed ions 0 

Collision energy  30 % 

Detector type  Orbitrap 

Scan range 300-1600 

Precursor mass range 400-1200 

Max. injection time 50 ms 

AGC target 1x105 

Isolation mode  Quadrupole 

Resolution MS2 30000 

Resolution MS1 120000 

 

 

Applications and limitations 

QCLMS data can provide information on protein folding and interactions, and can also reveal 

regions that exhibit conformational changes. Changes in crosslinked peptide intensities can 

elucidate protein dynamics [13,26,41–44]. Studies using quantitative crosslinking mass 

spectrometry (QCLMS) have provided concepts and techniques for studying changing protein 

states [9] including activation [45], regulation of protein networks [10,41,46,47], maturation of 

complexes [42], regulation of enzyme activity [13,48,49], protein-protein interactions [50,51] 

and interactome analysis of cancer cell lines [52]. Quantitative crosslink data have also been 

applied to support structural modelling and docking experiments to generate high-resolution 

models of individual protein states [27,43,47]. Particularly for modelling of protein states, it is 

important to provide accurate and reproducible data while avoiding missing values. DIA-

QCLMS improves on DDA based quantitation data [18] and provides higher coverage and 

fewer missing values [17]. Currently, just a few studies have been published using DIA in 

conjunction with crosslinking [18,53,54]. DIA-QCLMS is capable of detecting changing 

abundances of crosslinked peptides, even with the ratio compression encountered with 

increased sample complexity [18]. In combination with photoactivatable crosslinkers, DIA-

QCLMS (photo-DIA-QCLMS) was able to distinguish pH-dependent conformers of Human 

serum albumin and Cytochrome C [54]. Although DIA-QCLMS has widened the scope of 

quantitative crosslinking in structural biology, it has been restricted by a lack of software tools 

supporting DIA crosslink data analysis. This is improving thanks to software development by 

the fast-growing DIA community. 

https://paperpile.com/c/k2mssK/Qsthv+Tiun7+l2McD+islL+H14G+Jv1w
https://paperpile.com/c/k2mssK/PaGj
https://paperpile.com/c/k2mssK/Gq73n
https://paperpile.com/c/k2mssK/r4Hop+n8lBF+9Oigu+Tiun7
https://paperpile.com/c/k2mssK/l2McD
https://paperpile.com/c/k2mssK/Qsthv+wBaTT+5BOgg
https://paperpile.com/c/k2mssK/dytI3+eaC1O
https://paperpile.com/c/k2mssK/xvgHE
https://paperpile.com/c/k2mssK/n8lBF+2E9z+islL
https://paperpile.com/c/k2mssK/73yY
https://paperpile.com/c/k2mssK/Zq7M
https://paperpile.com/c/k2mssK/H9kj+73yY+mjhA
https://paperpile.com/c/k2mssK/73yY
https://paperpile.com/c/k2mssK/mjhA
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Materials 

To avoid contamination during the sample preparation, it is recommended to work in a laminar 

flow hood wearing appropriate gloves and lab coat. When using highly sensitive mass 

spectrometers, sample contaminations increase the dynamic range problem, which can 

disturb spectral library matching to crosslink DIA data.  

 

Reagents 

● PAGE gel (NuPAGE Bis-Tris precast gels; Thermo Fisher Scientific, cat. No. 

NP0321BOX) 

● NativePAGE™ 3-12% Bis-Tris Protein Gels (Thermo Fisher Scientific, cat. No. 

BN1001BOX) 

● NativePAGE™ Cathode Buffer Additive (20X) (Thermo Fisher Scientific, cat. No. 

BN2002) 

● NativePAGE™ Running Buffer (20X) (Thermo Fisher Scientific, cat. No. BN2001) 

● NativePAGE™ Sample Buffer (4X) (Thermo Fisher Scientific, cat. No. BN2003) 

● NativeMark™ Unstained Protein Standard (Thermo Fisher Scientific, cat. No. LC0725) 

● Reagents for SDS gel electrophoresis (LDS sample buffer; MOPS SDS running buffer 

(20x); MES SDS running buffer (20x); NuPAGE , cat. No. NP0008, NP0001, NP0002, 

respectively) 

● Coomassie staining solution (InstandBlue; Expedeon, cat. No. ISB1L) 

 

 

Equipment  

● Gel electrophoresis chamber (XCell SureLock Mini-Cell electrophoresis system; 

Thermo Fisher Scientific, cat. No. EI0001) 

● Protein LoBind sample tubes (0.5 mL and 1.5 mL; Eppendorf, cat. No. 022431064 

and 022431081) 

● Thermal mixer for 1.5 mL tubes (Eppendorf, ThermoMixer C medel) 

● Self-made C18 StageTips [55] 

● HPLC column (e.g. EASY-Spray column 50 cm x 75 µm ID, PepMap C18, 2 µm 

particles, 100 Å pore size, Thermo Fisher Scientific, Germany) 

● 96-Well sample plate for LC-MS/MS injections (e.g. PCR microplate, cat. No. 38099 

and silicone sealing mat, cat. No. 38107; Axygen Scientific) 

● Vacuum centrifuge (e.g. Eppendorf, model No. Concentrator 5301) 

● HPLC-mass spectrometer system (e.g. Thermo Fisher Scientific, Ultimate 3500-RS 

Nano Orbitrap Fusion Lumos Tribrid) 

● 3M Empore C18 Extraction Disk (Fisher Scientific, cat. No. 14-386-2) 

● Pipettes (0.1-2 µL, 1-10 µL, 2-20 µL, 20-200 µL, 100-1000 µL, Gilson) 

● Scarpel (Cutfix disposable scalpels, Carl Roth, art. No. T988.1) 

 

 

Reagent setup 

Crosslink buffer for NHS-ester crosslinkers 

The crosslink buffer should preserve the native structure of a target protein or protein complex 

but also be compatible with the crosslinking reaction. A suitable buffer substance for NHS- 

https://paperpile.com/c/k2mssK/yTQD
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crosslinking is HEPES at a concentration of 20 mM. The pH of the buffer solution should be 

adjusted to 7.8 using KOH. Salts (e.g. NaCl, Mg2Cl) and other protein-stabilising reagents 

such as glycerol (up to 10% v/v) or common additives (10mM DTT, 1mM EDTA) are 

compatible with the crosslinking reaction. Buffer additives containing e.g. primary amines can 

react with the crosslinker and must be avoided.  

 

100 mM Ammonium bicarbonate (ABC, NH4HCO3) 

The 100 mM NH4CO3 stock solution needs to be diluted, using bidest water, to 50 mM prior to 

in-gel digestion. NH4HCO3 should be stored at 4°C to avoid decomposition into NH3, CO2 and 

H2O over time, following an increase in pH. 

 

Destaining solution for in-gel digestion 

The destaining solution should always be prepared fresh using MS-grade acetonitrile (ACN), 

since this solution is used to destain and clean the gel bands prior to trypsin digestion to avoid 

contamination of the sample. 30% ACN in 50 mM ABC buffer is used for lightly stained protein 

gel bands. If protein bands are heavily stained, the ACN proportion can be increased up to 

50% in ABC buffer combined with heating at 30°C.  

 

Reduction buffer, 10 mM Dithiothreitol (DTT) 

The 1 M stock solution needs to be diluted using 50 mM ABC buffer to 10 mM DTT prior to 

usage. DTT stock solutions are affected by hydrolysis, but can be stored at -20°C in small 

aliquots for up to six months. 

 

Alkylation buffer, 55 mM Iodoacetamide (IAA) 

IAA solutions for in-gel digestion should always be prepared fresh in 50 mM ABC buffer prior 

to usage. IAA is sensitive to light, therefore solutions should be stored in the dark e.g. wrapped 

in aluminum foil. 

 

Digestion buffer 

The in-gel digestion buffer should be prepared using 50 mM ABC buffer and 5% ACN (v/v). 

This buffer should always be prepared fresh. 

 

Trypsin stock 

Trypsin stock solutions can be prepared using either 0.1% (v/v) TFA or 0.1% (v/v) HCl to avoid 

self-digestion of the protease, at a concentration of 0.5 µg/µL. The stock can be stored at -

80°C in small aliquots (see also specification sheet of the chosen company). Repeated 

thawing and freezing cycles are not recommended. 

 

10% (v/v) Trifluoroacetic acid (TFA) 

The TFA stock solution should be diluted using bidest water to 10% (v/v) TFA. The solution 

can be stored at room temperature.  

 

0.1% (v/v) Trifluoroacetic acid (TFA) 

The 10% TFA solution should be diluted using bidest water to 0.1% (v/v) TFA. The solution 

can be stored at room temperature.  
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80% (v/v) Acetonitrile (ACN) in 0.1% (v/v) Trifluoroacetic acid (TFA) (StageTip eluent) 

The StageTip eluent solution can be prepared by mixing ACN with 10% (v/v) TFA solution to 

a final percentage of 80% ACN and 0.1% TFA. The solution can be stored at room 

temperature. 

 

LC-MS mobile phase A 

As mobile phase A, 0.1% formic acid (FA) in water was used. This solution can be stored at 

room temperature for up to two weeks. 

 

LC-MS mobile phase B 

As mobile phase B, 80% (v/v) ACN in 0.1% formic acid (FA) was used. This solution can be 

stored at room temperature for up to two weeks. 

 

Equipment setup 

C18 StageTips 

We used self-assembled StageTips for peptide desalting. Further details are described in the 

protocol by Rappsilber et al. [55,56]. In brief, C18 Empore extraction disks were assembled in 

a 200 µL pipette tip. The number of extraction disks stacked on top of each other depend on 

protein amount in the sample. Each extraction disk has an estimated peptide-binding capacity 

of 15 µg. Several extraction disks or/and a larger disk diameter can be used to increase 

peptide loading amount. Prior to peptide loading, C18 StageTips must be freshly activated 

using methanol and equilibrated with 0.1% (v/v) TFA. The disks must be kept wet during the 

desalting process in order to prevent peptide loss. 

 

LC-MS 

A wide range of HPLC instruments in combination with high resolution reverse-phase columns 

can be used to study crosslinked peptides. Our DIA-QCLMS protocol followed a standard 

setup for bottom-up proteomics using an Ultimate 3500-RS Nano LC system coupled with a 

tribrid Orbitrap mass spectrometer (Orbitrap Fusion™ Lumos, Thermo Fisher Scientific, 

California, USA). Good resolution and high reproducibility of retention times are especially 

important for studying crosslinked peptides. Therefore, we applied a commercially available 

EASY-Spray column (50 cm x 75 µm ID, PepMap C18, 2 µm particles, 100 Å pore size, Thermo 

Fisher Scientific, Germany) using a column temperature of 45-50°C. iRT peptides (Biognosys, 

Switzerland) were added to each sample before MS acquisition for retention time alignment 

prior to peptide quantitation. Peptides were separated using a linear 150 min gradient with 

increasing amounts of ACN. A detailed description of recommended gradients and DDA 

acquisition strategies for QCLMS can be found in Chen et al. 2019 [24]. In short, precursor 

ions were detected in the Orbitrap at 120,000 resolution using m/z range 400-1600. Ions with 

charge states from 3+ to 7+ were selected for fragmentation. Selected ions were isolated and 

fragmented by high energy collision dissociation (HCD) and detected in Orbitrap at 30K 

resolution [57].  

DDA acquisition was only used for spectral library generation. For high quality QCLMS 

analysis, we optimised DIA strategies for a reasonable amount of data points per elution peak 

(MS1 and MS2) and number of quantified-to-identified crosslinked peptides and intensity of 

crosslinked features. In our protocol, we focused on fixed window DIA strategies and 

https://paperpile.com/c/k2mssK/4qNu+yTQD
https://paperpile.com/c/k2mssK/T2Vc
https://paperpile.com/c/k2mssK/SIseR
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multiplexing DIA (MSX). For the fixed window acquisition, precursor ions were acquired using 

a MS1 master scan (m/z range: 400-1200, max. injection time: 60 ms, AGC target: 4×105, 

detector: Orbitrap, resolution: up to 120,000 K), followed by 66 DIA scans for MS2 within a 

fragmentation range of m/z 120-1200 using an isolation window width of m/z 12 and a max. 

injection time of 50 ms. Selected ions were isolated in the quadrupole, fragmented using HCD 

(normalised collision energy 30%) and detected in Orbitrap at 30,000 resolution. For the MSX 

strategy, we acquired two windows (m/z 15) in parallel across a fragmentation range of m/z 

120-1200. The injection time was set to 80 ms whereas other MS2 settings were left as for 

fixed window DIA. 

 

Software 

MSconvert, a module of the ProteoWizard Toolkit [58] (http://proteowizard.sourceforge.net) 

was used to process data into peak lists and convert raw files into mgf files. 

 

xiSEARCH [59] (https://github.com/Rappsilber-Laboratory/xiSEARCH) was used for 

identifying crosslinked peptides. 

 

xiFDR [60] (https://github.com/Rappsilber-Laboratory/xiFDR) was used for crosslink 

validation and error estimation. 

 

Preprocessing Python script (https://github.com/Rappsilber-Laboratory/preprocessing) was 

used to convert raw into mgf files and recalibrate precursor masses.  

 

xiAnnotator (https://github.com/Rappsilber-Laboratory/xiAnnotator) was used to include 

fragment annotation into the spectral library. 

 

MaxQuant [25] (https://www.maxquant.org/) was used to read out the retention time of spiked 

in iRT peptides.  

 

xiDIA-library script (https://github.com/Rappsilber-Laboratory/xiDIA-library, which is 

compatible with Python 2.7 or higher) was used to create the spectral library. 

Spectronaut v. 11 or 12 (https://biognosys.com) was used to for crosslink quantitation. 

Python v. 3.6 (https://www.python.org/) was used for data processing and visualisation of 

quantitation results. 

 

PC Hardware 

A personal computer with quad-core processor (3.2 GHz), 64-bit Windows system (Win 10) 

and 8 GB RAM was used to develop this protocol. The minimum requirements for software 

installations are 4 GB RAM and Windows XP. 4 GB enabled database searches using 

xiSEARCH to study large protein complexes or simple protein mixtures containing up to seven 

proteins. 

 

Description of procedure 

Preparative label-free quantitative crosslinking (sample preparation) 

https://paperpile.com/c/k2mssK/B7Gcs
http://proteowizard.sourceforge.net/
https://paperpile.com/c/k2mssK/Nhae
https://github.com/Rappsilber-Laboratory/XiSearch
https://paperpile.com/c/k2mssK/AjsK
https://github.com/Rappsilber-Laboratory/xiFDR
https://github.com/Rappsilber-Laboratory/preprocessing
https://github.com/Rappsilber-Laboratory/xiAnnotator
https://paperpile.com/c/k2mssK/Ycqg
https://www.maxquant.org/
https://github.com/Rappsilber-Laboratory/xiDIA-library
https://biognosys.com/shop/spectronaut-x
https://www.python.org/
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For optimal reactivity of the crosslinker, it is crucial to consider the right protein-to-crosslinker 

ratio, the composition of crosslinking buffer and pH dependence of the protein/protein 

complex. Detailed considerations and descriptions are reported by Chen et al. 2019 [24]. 

Ideally, the crosslinking buffer should maintain the native fold of the target protein/protein 

complex and should not interfere with the crosslink reaction. The final protein concentration of 

a crosslink reaction should aim for 0.5-1 µg/µL. Additionally, this concentration needs to be in 

consonance with the critical protein concentration of the target protein to avoid aggregation. 

The temperature and reaction time during the crosslink reaction should be adjusted to support 

stability of the target protein/protein complex, but also to minimise the hydrolysis rate of NHS-

ester groups of the crosslinker in solution. 

For label-free quantitation, a minimum of 10 µg protein is necessary to acquire DIA data in 

triplicates and construct the spectral library using DDA. If enrichment or fractionation steps are 

needed, the amount of starting material needs to be adjusted. 

1) Transfer the protein sample to crosslinking buffer, if not done during the last step of 

protein purification. Split sample into aliquots if “reaction” replicas are needed (use 15 

µg starting material in this case). Adjust the desired temperature prior to the 

crosslinking reaction (e.g. on ice at 4°C). 

2) Prepare a fresh stock of crosslinker (e.g. BS3 at 30 µg/µL) in crosslinking buffer. 

3) Dilute the crosslinker stock into each sample to reach the predetermined optimal 

protein-to-crosslinker ratio. 

4) Incubate on ice for one hour and stop the reaction using reagents that interfere with 

the crosslinker (e.g. 2.5 M ABC solution). Primary amines should be added with a 100-

fold excess to the crosslinker in order to enhance efficient quenching of the reaction. 

5) Incubate 30 min at 4°C. 

6) Mix the sample with NuPAGE LDS sample buffer (dilute the 4x sample buffer into the 

sample to reach 1x concentration). Add DTT to a final concentration of 50 mM to the 

sample and incubate for 5 min at 75-90°C. Note that high temperatures (e.g. 90°C) 

can result in precipitation of hydrophobic proteins. 

7) Load the protein samples onto the desired NuPAGE Tris-Bis gel and separate proteins 

with a constant voltage of 190 V using an appropriate running buffer (e.g. MES or 

MOPS SDS buffer). Note that lowering the voltage may reduce smearing artifacts, but 

also reduces the resolution of the separation due to “blurred” protein bands.  

8) Remove the gel from the electrophorese tank and wash with bidest water for 5 min on 

a shaker.  

9) Stain the gel using coomassie staining (e.g. IstandBlue) until protein bands are visible 

(approximately 30 min) or use silver staining for low abundance protein bands. 

10) Destain the gel using water until the protein bands stand out from the background. At 

this point, crosslinking products can be subjected to in-gel digestion. 

 

Optional: Native-gel electrophoresis for protein complexes > 200 kDa 

A. Mix the sample with NativePAGE™ Sample Buffer (dilute the 4x sample buffer into the 

sample to reach 1x concentration).  

B. Place the NativePAGE Bis-Tris Gel System into a cool cabinet (~ 4°C). 

C. Load the protein samples onto the desired NativePAGE Bis-Tris gel and apply a 

voltage of 120 V for about 30 min for gentle migration of the complex into the gel. 

Separate the proteins using a constant voltage of 160 V for ~ 3h and an appropriate 

https://paperpile.com/c/k2mssK/T2Vc
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anode and cathode buffer (e.g. NativePAGE™ Running Buffer (20x) and 

NativePAGE™ Cathode Buffer Additive (20X)) 

D. Remove the gel from the electrophorese tank and wash with bidest water for 5 min on 

a shaker.  

E. Place gel in fixing solution (40% Methanol, 10% acetic acid) and incubate for 30 min. 

Stain the gel using coomassie staining (~ 30 min). 

F. Destain the gel using water or 8% acetic acid until the protein bands stand out from 

the background. At this point, crosslinking products can be subjected to in-gel 

digestion. 

 

In-gel digestion of crosslinked protein bands  

To minimise peptide loss during digestion, LoBind tubes should be used from step 21 on. 

11) Excise desired crosslinked protein bands using a scalpel. 

12) Transfer the complete band into a 1.5 mL reaction tube and wash the gel band by 

adding bidest water. The volume of liquid should always cover the gel bands. Incubate 

the sample for 10 min. in a ThermoMixer at RT and 700 rpm. Remove the supernatant 

after incubation. Repeat this step.  

13) Add the destaining solution until gel bands are covered with solution and incubate at 

RT and 700 rpm for 20 min. Discard the supernatant and repeat this step until gel 

bands are completely destained.  

14) Add pure ACN until the gel bands are covered and incubate for at least 10 min at RT 

and 700 rpm. Gel bands will shrink during this process (white colour of the bands 

indicate successful destaining). Discard the supernatant. Dehydration of the gel bands 

is important to increase the reaction interface of the gel after rehydration with reduction 

or alkylation solution. Some protocols even recommend shrinking the gel bands further 

using a Vacufuge Concentrator. 

15) Add the same volume of reduction buffer as used during the washing steps. Incubate 

at 50°C and 700 rpm for 30 min. Incubation with reduction solution will rehydrate the 

gel pieces by absorbing the solution. Complete hydration will increase the reaction 

interface and hence enhance the reduction of disulphide bonds of the protein by DTT. 

Discard the supernatant. 

16) Add pure ACN to shrink and clean the gel bands prior to the alkylation step. Incubate 

at RT and 700 rpm for at least 10 min (gel bands need to dry before adding alkylation 

solution). Discard the supernatant. 

17) Add the same volume of alkylation buffer as used during the washing steps. Incubate 

at RT and 700 rpm in the dark (IAA is light sensitive!) for 30 min. This step will alkylate 

the thiol group of cysteine side chains. Discard the supernatant afterwards. 

18) Add destaining buffer to wash the gel bands. Incubate at RT (23°C) and 700 rpm for 

at least 10 min. Discard the supernatant. Cut the gel bands within the reaction tube 

into small cubes using a scalpel or a small spatula. 

19) Add pure ACN to shrink the gel bands. Incubate at RT and 700 rpm for at least 10 min. 

Discard the supernatant. 

20) Prepare the digestion solution on ice by adding trypsin to the digestion buffer. The 

amount of trypsin depends on the amount of protein in the sample. A final protease to 

protein ratio of 1:20 to 1:100 (w/w) is recommended. Incubate at 37°C and 700 rpm 

overnight (~ 15 h).  
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21) Collect the supernatant after overnight digestion and transfer it to a LoBind tube 

(extract tube). 

22) Add 80% (v/v) ACN in 0.1% (v/v) TFA to the gel pieces until they are covered with 

liquid and incubate for 20-30 min at RT and 700 rpm. This step will increase the 

extraction yield of peptides through enhanced diffusion from the gel to the supernatant. 

Additionally, reducing the pH using TFA will stop trypsin digestion as well as self-

digestion of the protease to avoid dilution of target peptides with linear tryptic peptides. 

Collect the supernatant and transfer it to the extraction tube. 

23) Add pure ACN to shrink the gel pieces completely. Incubate for 10 min at RT and 700 

rpm. Collect the supernatant and transfer it to the extraction tube. 

24) Reduce the final ACN proportion of the extract to less than 5% using a vacuum 

concentrator to support optimal binding of crosslinked peptides to the C18 StageTip 

column.  

25) Add 0.1% (v/v) TFA to adjust pH of the extract to 3 prior to the desalting. For a detailed 

description of desalting using StageTips, follow the published protocol of Rappsilber et 

al. 2007 [55].  

 

LC-MS/MS analysis 

26) Elute desalted crosslinked peptides from the C18 StageTip column using 20 µL 

StageTip eluent (Reagent setup) into a LoBind tube. Repeat this step once to a final 

volume of 40 µL. Dry down the peptides completely using a vacuum concentrator at 

45 or 60°C. 

27) Resuspend crosslinked peptides using 2% (v/v) ACN in 0.1% (v/v) FA. Adjust the final 

concentration according to your peptide amount to get 0.5-1 µg peptides per injection. 

28) Analyse the sample using LC-MS/MS as described in the equipment setup section. 2 

µL (1 µg) of peptides is injected for each DDA and DIA acquisition. The injection 

volume can be adjusted according to individual LC setups. 

 

Crosslinked peptide identification and spectral library generation 

Use the whole set of DDA acquisitions, including all replica, for crosslinked peptide 

identification. In general, any available crosslink identification tool can be used for spectral 

library generation. Note that this protocol focuses on xiSEARCH and provides a detailed 

description on how to setup the pipeline using tools from the Rappsilber laboratory.  

29) Optional: download the preprocessing Python script from GitHub (see Software 

section) and follow the setup instructions for the preprocessing tool. 

30) Copy your raw files into the folder called “rawfiles” and insert your desired fasta file into 

the global folder. Rename your fasta file to “DATABASE” in order to use the original 

batch file (“command_dev”). If you don't want to rename your fasta file, change the 

name in “command_dev” by opening the batch file using an editor tool. If the target 

sample contains several proteins, combine all fasta files into a single file. 

31) Execute the “command_dev” file to start the preprocessing. Results will be collected in 

the “processed” folder. 

32) Steps 29-31 are optional and can be replaced by simply opening MSConvert and 

converting raw files to mgf. Select “Peak Picking” in filter options in profile mode during 

MS2 acquisition. 

33) Set up xiSEARCH on a PC as described on GitHub or in Chen et al. 2019 [24]. 

https://paperpile.com/c/k2mssK/yTQD
https://paperpile.com/c/k2mssK/T2Vc
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34) Open xiSEARCH, go to the “Peak Lists” tab, click the select button and select all 

recalibrated or non-recalibrated mgf files.  

35) Go to the “Fasta Files” tab and upload the desired fasta file. 

36) All search parameters can be set up in the “Config” tab. Search for the parameters you 

want to change by pressing Ctrl+F. The Config is set up by default for BS3 but contains 

descriptions on how to set up other crosslinkers. Detailed parameters are listed in 

Table 3.  

37) Define the directory for results in the “Run” tab and press “Start”. Results are saved as 

a .csv file. 

 

Table 3: Parameters for database search for crosslink identification using XiSeach. 

Parameter Settings 

Digest Trypsin\P 

missedcleavages: 3 

MINIMUM_PEPTIDE_LENGTH: 6 

tolerance:precursor: 6 ppm (adjust according to instrument 
performance) 

tolerance:fragment: 20 ppm (adjust according to instrument 
performance) 

crosslinker: BS3 

modification:fixed: Carbamidomethyl (C) 

modification:variable: Oxidation (M), crosslinker modifications 

fragment: b-, y-, precursor-ions 

loss: -CH3SOH, -H2O, -NH3 

missing_isotope_peaks: 3 (adjust according to instrument 
performance) 

 

38) Open xiFDR [60] and navigate to the “CSV” tab within the “Input” tab. Import the result 

file from xiSEARCH by pressing the “...” button. 

39) Navigate to the “FDR Settings” tab and choose the desired FDR settings. Detailed 

settings can be changed by selecting “complete FDR”. A 1% or 5% link level FDR is 

commonly used. Start FDR calculations by pressing “Calculate”. 

40) A summary of the results is displayed in the “Result” tab. Export the results by using 

the “CSV/TSV” tab, selecting an output path, a name for the file and clicking the “Write” 

button. It is also recommended to convert the resulting file to mzIdentML for 

publication. Results can be visualised and explored using xiVIEW by uploading the 

resulting .csv file to https://xiview.org/xiNET_website/index.php. Follow the instructions 

on the website to ensure correct importing.  

41) Download the xiDIA-library tool and follow the instructions on GitHub for installation 

and setup. Open the Python script called “create_spectronaut_lib.py” and “config.py”. 

https://paperpile.com/c/k2mssK/AjsK
https://xiview.org/xiNET_website/index.php


17 

Modify the config file according to the GitHub instructions and save it. If a labeled 

experiment was performed, set “label_experiment” to True and specify the labeled 

settings. 

42) Select the “*_PSM_xiFDR*” file from your xiFDR results and copy it to the directory 

specified under “psm_csv_path = baseDir + "psm_csv/"”. 

43) Convert all DDA raw files, used in xiSEARCH, to mzML files and copy the files to the 

directory specified under “mzml_path = baseDir + "mzml/"”. 

44) In order to calculate iRT values for each identified crosslinked peptide, determine the 

retention time of iRT peptides within DDA runs. Perform a linear search using 

MaxQuant (default setting) and the iRT fasta file from Biogosys. Skyline can be also 

used to obtain the retention times from iRT peptides in DDA runs. Plot the retention 

time of iRT peptides (y-axis) against the iRT values (x-axis) (obtained from the 

Biognosys webseite) and perform a linear fit of the curve. Insert the slope and y-

intercept value into the config file (slope = iRT_m, interception = iRT_t).  

45) If all settings in the config file are specified, press the “Run file” button to start library 

generation. The spectral library file will be saved in the defined output folder. 

 

MS1 and MS2-based quantitation of DIA-QCLMS data using Spectronaut 

The DIA-QCLMS workflow is based on a peptide-centric approach, which uses a spectral 

library to extract MS1 and MS2 information from DIA data. To align different LC-gradients iRT 

peptides are spiked into each sample and used for retention time alignment. 

46) Open the HTRMS converter provided by the Spectronaut software package. Click “Add 

Files” to import DIA files for converting. Press OK to start the process.  

47) Open Spectronaut and set up all modifications that were used during xiSEARCH. To 

do this, navigate to the “Modifications” tab within the “Databases” tab. Click “New” in 

the lower left corner to open a new modification entry. Provide a name for the 

modification, specify the composition, modification site and special ions (if necessary). 

Click “save” or “save as” to save the new entry. 

48) Navigate to the “Analysis” tab and start the wizard by clicking “Set up a DIA Analysis 

from File”. Select the HTRMS files that were generated in step 1 and click open. 

Navigate to “Assign Spectral Library” following “from File” to import the external 

spectral library created by xiDIA-Library. Select “Browse” and search for the desired 

.csv file. The library will be displayed within the wizard as a table. Navigate to the 

column named “cl_residue_pair” and choose “PrecursorComment” from the dropdown 

menu. This step ensures that crosslinked peptides will be assigned to unique residue 

pairs (unique links) in the export table after quantitation. Click “Load”. A new window 

will open to assign synonyms to modifications. Modifications with a red “x” can be 

assigned by dragging the right modification name to the entry. Click “Apply” to finish 

this step. The library will now be associated with the DIA files.  

49) Click “Next” and choose the quantitation settings for your analysis. Example 

parameters for a DIA-QCLMS analysis are shown in Table 4. Note that if decoys are 

not provided in the library, tick “Generate Decoys” in the Identification tab. 

 

Table 4: Example settings for DIA-QCLMS in the Quantification tab. 

 

Parameter Setting 
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Major (Protein) Grouping by Protein Group Id 

Minor (Peptide) Grouping by Modified Sequence 

Major Group Quantity unticked 

Minor Group Quantity Mean precursor quantity 

Minor Group Top N ticked (Max: 10, Min: 1) 

Quantity MS-Level MS2 (or MS1) 

Quantity Type Area 

Data Filtering Qvalue 

Normalization Strategy  Local Normalization 

 

50) Click “Next”, skip the fasta file selection if no background library (linear peptides) are 

used in the analysis, and set up conditions of the samples in the following tab. Skip the 

gene annotation tab and check the analysis setup in the summary tab before clicking 

“Finish”. Spectronaut will start extracting peptide information and iRT calibration after 

clicking the “Finish” button.  

51) After data extraction, select the “Analysis” tab if not done automatically. Click the right 

mouse button within the window showing the DIA run names to open additional 

options. Navigate to the “Group By” option and select “Protein Group Id”. Crosslinked 

peptides are now grouped according to the “ProteinId” column in the library and are 

displayed in the dropdown menu when clicking the arrow beside the run and protein 

name. 

52) Choose “Qvalue”, “Condition CVs” or other options in the dropdown menu in the lower 

left corner of the window to filter and explore the data. 

53) Click right in the window to open options and save the analysis. 

54) The “Post Analysis” tab will give an overview of some general features and results of 

the analysis. Be aware that not all plots are entirely suitable to represent crosslinking 

data. 

55) Navigate to the “Report” tab to export the data for further processing. Include the 

“FG.Comment” column in the export scheme to show the residue pairs for each 

crosslinked peptide. 

 

Transition from quantified unique crosslinked peptides to residue pairs 

56) Open the quantitation report file in either a spreadsheet application or Python, and 

calculate the median of normalised MS1 and/or MS2 signals of all crosslinked peptides 

(column: “EG_ModifiedSequence”) that support one crosslinked residue pair (column: 

“FG.Comment”). Note: if replica were acquired, calculate the median between replica 

for each crosslinked peptide first, followed by the median per residue pair and 

condition.  

57) The final table should now contain one value for each residue pair and each condition  

 

Processing crosslink quantitation results 
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Quantification data from crosslinked peptides needs to be consolidated into crosslinked 

residue pairs. It has been shown that alternative proteolytic cleavages and post-crosslinking 

modifications may lead to variations in quantified signal [10]. Therefore, the peak area 

corresponding to a crosslinked residue pair is calculated as the median value of the peak 

areas of all its supporting crosslinked peptide pairs. Contrary to standard proteomics, it is 

beneficial to use all supporting peptides instead of just Top N to calculate the residue pair 

signal [18] and reduce the impact of outliers. However, compared to proteins, crosslinked 

residues are usually supported by fewer peptide features. Therefore, a high reproducibility 

between replicates is needed when quantifying using isotope labelling or label-free 

quantitation. A low coefficient of variation (CV) for replicates implies a reliable quantitation 

results.  

Changes in relative peptide abundance can not only represent actual biological 

changes but also changes as a function of bias and noise. Both bias and noise can lead to 

variability among replica and can affect accuracy and precision of biological conclusions. 

Hence, normalisation of the quantitation data is required to account for variabilities. In 

Spectronaut, two normalisation strategies are available: Central Tendency Normalization 

(Global Normalization) and Local Regression Normalization (Local Normalization). Central 

Tendency Normalization centres peptide abundance ratios around a median, mean or a 

constant to adjust for the effects of independent systematic bias [61]. Local Regression 

Normalization on the other hand, assumes that systematic bias correlates nonlinearly to 

peptide abundance. This nonlinear correlation could result from ion suppression on measured 

abundances, with abundances reaching the detector limit or background (small S/N ratio) [61]. 

After normalisation of crosslinked peptides and calculation of the median value for each unique 

residue pair, statistical analyses are necessary to extract significant changes in crosslink 

abundances over several conditions (protein complex conformations). The ANOVA test can 

be used to analyse differences between the means of unique residue pairs from different 

conditions. Significantly changed residue pairs can be displayed in structures or used for 

modeling purposes. There are different ways to display significantly changing residue pairs. 

To compare two samples or conditions, a volcano plot is an appropriate way to visualise 

significant residue pairs (Fig. 3 b). If there are more than two conditions, a cluster plot or 

heatmap enhances the visualisation of results (Fig. 3 c). Finally, changing residue pairs can 

be displayed directly in pdb structures to point to regions of interest within a protein (Fig. 3 a). 

In this protocol, we also provide example raw files, library and result files that can be used to 

follow the protocol and compare the analysis. Using the provided files, the protocol can be 

started either from the raw files by performing a xiSEARCH for crosslinked peptide 

identification (step 29) or from the library file (HSA_sulfoSDA_xiDIA_library_file.csv) to follow 

the quantitation part (step 46). The “HSA_sulfoSDA_PSMfile_xiFDR1.0.22.46.csv” file can be 

used to follow the protocol after crosslinked peptide identification (step 41 onwards). Results 

after quantitation analysis in Spectronaut are collected in the 

“HSA_sulfoSDA_Spectronaut_Report.xls” file. Note that the results could slightly change 

when using different versions of Spectronaut (check also release notes).  

 

https://paperpile.com/c/k2mssK/9Oigu
https://paperpile.com/c/k2mssK/73yY
https://paperpile.com/c/k2mssK/wLin
https://paperpile.com/c/k2mssK/wLin
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Fig. 3: Visualisation examples of significantly changing residue pairs. a: Residue pairs with 

maximum abundance at pH 7 (green) mapped on the structure of human serum albumin (PDB 

accession code 1AO6). b: Residue pairs with maximum abundance at pH 10 (blue) mapped 

on the structure of human serum albumin (PDB accession code 1AO6). c: Volcano plot after 

performing a two sided t-test of triplicate datasets of pH 7 and pH 10 using p-value cutoff of 

0.05 and fold change cutoff of 1 (blue: significantly changing unique residue pairs for pH 10, 

green: significantly changing residue pairs for pH 7, grey: residue pairs that have no significant 

change). d: cluster plot adapted and modified from Müller et al. 2019 [54] showing median 

abundances of URPs and statistically significant shifts as a function of pH (p<0.05)(red: pH 7, 

green: pH 10). 

 

Concluding remarks 

Our DIA-QCLMS workflow ensures high accuracy and precision of quantitation results 

compared to previous workflows. Particularly low coefficients of variation of peak areas 

suggest that even small changes in protein states could be detected by QCLMS [18]. 

Structural changes in proteins can now be monitored across a wide range of environmental 

changes, including pH [54] but presumably also temperature, pressure or concentration. The 

https://paperpile.com/c/k2mssK/mjhA
https://paperpile.com/c/k2mssK/73yY
https://paperpile.com/c/k2mssK/mjhA
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DIA-QCLMS workflow widens the scope of crosslinking applications and makes the analysis 

of protein complex topologies or protein networks in cellular systems possible. 
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