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There have been several studies suggesting that protein structures solved by NMR spectroscopy 

and x-ray crystallography show significant differences. To understand the origin of these 

differences, we assembled a database of high-quality protein structures solved by both methods. 

We also find significant differences between NMR and crystal structures—in the root-mean-

square deviations of the Cα atomic positions, identities of core amino acids, backbone and side 

chain dihedral angles, and packing fraction of core residues. In contrast to prior studies, we 

identify the physical basis for these differences by modelling protein cores as jammed packings 

of amino-acid-shaped particles. We find that we can tune the jammed packing fraction by varying 

the degree of thermalization used to generate the packings. For an athermal protocol, we find 

that the average jammed packing fraction is identical to that observed in the cores of protein 

structures solved by x-ray crystallography. In contrast, highly thermalized packing-generation 

protocols yield jammed packing fractions that are even higher than those observed in NMR 

structures. These results indicate that thermalized systems can pack more densely than athermal 

systems, which suggests a physical basis for the structural differences between protein structures 

solved by NMR and x-ray crystallography. 

 

 

Section 1. Introduction 

It is generally acknowledged that protein structures determined by x-ray crystallography versus 

NMR exhibit small but significant differences. It is by no means resolved, however, whether these 

differences stem from differences in the experimental methods themselves, or if they reflect 

physical differences in proteins under the different conditions in which the measurements are 

made [1, 2, 3, 4, 5, 6, 7, 8]. To begin to answer this question, one must directly compare high-

quality structures of the same protein solved by both methods. Choosing x-ray crystal structures 

based on their resolution is a straightforward way to identify well-specified structures. In our 
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database of structures solved by both x-ray crystallography and NMR, we only include structures 

that have been solved by x-ray crystallography at a resolution of 2.1Å or less. We also show that 

our results do not depend on this resolution threshold as long as it is 3Å or less. 

There is, however, no universally accepted metric to assess the quality of NMR structures. 

We therefore defined one; we determined the number of NMR restraints per residue beyond 

which structures do not change significantly with the addition of more restraints, and only used 

structures with at least this number of restraints per residue on average. (See Fig. 1.) Applying 

these selection criteria, we created a data set of 21 proteins whose structures have been 

determined by both x-ray crystallography and NMR. We created an additional dataset of 51 high-

quality NMR protein structures (defined in the same way), for which there is no companion x-ray 

crystal structure, in an attempt to exclude any influence of ‘crystallizability’ on the NMR protein 

structures. In addition, as a reference set of high-resolution protein structures solved by x-ray 

crystallography, we use a dataset of 221 high-resolution protein structures collected by Wang 

and Dunbrack [9]. Finally, we created a dataset of structures that have been solved multiple times 

by x-ray crystallography, with resolution of 2.0Å or less and the same crystal forms and space 

groups, to allow us to assess structural variations that arise from thermal fluctuations. 

We find that the root-mean-square deviations (RMSD) of the positions of core Cα atoms 

within an NMR ‘bundle’ is greater than the RMSD of core Cα atoms of the set of protein crystal 

structures that have been solved multiple times, a result found by researchers in prior work [1]. 

Also, the difference between an x-ray crystal structure and each structure in the NMR ‘bundle’ is 

greater than the spread within the NMR bundle. To gain deeper insight into these differences, 

we performed side chain repacking studies on core residues in both x-ray crystal and NMR 

structures using the hard-sphere plus stereochemical constraint model developed in our previous 

work [10, 11]. We find that the hard-sphere plus stereochemical constraint model can predict 

the side chain dihedral angle conformations of core residues equally well in both NMR and x-ray 

crystal structures, predicting ∆𝜒𝜒 values to within 30◦ of the experimental structures. In our 
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previous work, we found that the predictability of side chain conformations is strongly correlated 

with the local packing fraction 𝜙𝜙, i.e. where we obtain almost 100% prediction accuracy of side 

chain conformations for core residues with packing fraction 𝜙𝜙 ≥  0.55. We therefore also 

calculate the core packing fractions in NMR and x-ray crystal structures, and find that the cores 

of NMR structures are more tightly packed than the cores of x-ray crystal structures [1]. 

To further explore the physical basis for these observations, we generated jammed 

packings of amino-acid-shaped particles computationally, and determined whether we can tune 

their packing fraction using protocols with different degrees of thermalization. We find that 

depending on the thermalization protocol we use, we can match the packing fraction to that 

which we observe in the cores of structures determined by x-ray crystallography and NMR. 

Specifically, the packing fraction of amino acid-shaped particles in the athermal limit corresponds 

to that in the cores of protein crystal structures, whereas the packing fraction we observe in cores 

of NMR structures is higher, but less than that achieved in the limit of strong thermalization. 

Thus, the core packing fraction for protein structures determined by x-ray crystallography and 

NMR are both physically reasonable, and we speculate that the higher packing fraction for NMR 

structures reflects the different conditions under which NMR structures are determined. 

 

Section 2. Methods 

Section 2.1 Protein structure datasets 

All experimental proteins used in this study were culled from the RCSB Protein Data Bank (PDB). 

We used datasets of (a) high resolution crystal structures, (b) x-ray crystal-NMR structure pairs, 

(c) duplicate x - ray crystal structures, (d) high-quality, non-paired NMR structures, (e) mutated 

crystal structures, and (f) structural prediction decoys from the 12th Critical Assessment of 

Protein Structure Prediction (CASP12). We show the full PDB id’s in the Supplementary 

Information (SI) for all datasets except the high-resolution crystal structures and the CASP12 
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decoys and targets. Detailed descriptions of the datasets are provided in the Supplementary 

Information. 

 

Section 2.2. NMR structural quality 

There is no universally accepted metric to assess the quality of NMR structures [2]. To define one, 

we determined the number of NMR restraints per residue beyond which the structures do not 

change significantly with the addition of more restraints. We measured the root-mean-square 

deviation (RMSD) of the Cα positions of a given set of residues defined by their sequence location 

on two models i and j within an NMR bundle: 

Δ(𝑖𝑖, 𝑗𝑗) = �
1
𝑁𝑁𝑆𝑆

��𝑐𝑐𝜇𝜇,𝑗𝑗 − 𝑐𝑐𝜇𝜇,𝑖𝑖�
2

𝑁𝑁𝑠𝑠

𝜇𝜇=1

 , (1) 

where 𝑐𝑐𝜇𝜇,𝑖𝑖 is the position of the Cα atom on residue µ in model i, and NS is the number of residues 

being compared. We can calculate the average RMSD ⟨∆(𝑖𝑖 , 𝑗𝑗 )⟩ by averaging over all pairs of 

models 𝑖𝑖 and 𝑗𝑗. As shown in Fig. 1, ∆ plateaus to a value near 1.5 Å when the average number of 

restraints per residue reaches 𝑁𝑁𝑟𝑟 ≥ 15. Thus, we restrict our NMR datasets (Tables S1 and S3 in 

the SI) to proteins for which the NMR structures possess on average ≥ 15 restraints per residue. 

 

Section 2.3 Relative solvent accessible surface area (rSASA) 

We define core residues based on their solvent-accessible surface area (SASA). To calculate the 

SASA, we use the NACCESS software package [12] that implements an algorithm originally 

proposed by Lee and Richards [13]. The algorithm takes z -slices of the protein, determines the 

solvent accessibility of the sets of contours using a probe molecule of a given radius, and 

integrates the SASA over the slices. We use a water-molecule-sized probe with radius 1.4 Å and 

𝑧𝑧-slices with thickness Δ𝑧𝑧 = 10−3 Å, which were used in previous work [11]. We calculate the 

SASA for a given residue µ in both the context of the surrounding protein (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) and for 
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the residue “extracted" from the protein and modeled as a dipeptide mimetic (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜇𝜇
𝑑𝑑𝑖𝑖𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝑖𝑖𝑑𝑑𝑐𝑐), 

with all bond lengths, bond angles, and dihedral angles preserved. We define the relative SASA 

(𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜇𝜇) for residue µ as the ratio 

𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜇𝜇 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜇𝜇
𝑑𝑑𝑖𝑖𝑑𝑑𝑐𝑐𝑑𝑑𝑐𝑐𝑖𝑖𝑑𝑑𝑐𝑐 . (2) 

We define core residues as those with 𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 <  10−3, which was found in previous work [11] 

to be the largest value of 𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 such that the packing fraction and side chain repacking 

predictability no longer depend on the value of the 𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 cutoff when it is decreased. 

 

Section 2.4 Packing fraction 

The most direct way to characterize packing in protein cores is to measure the dimensionless 

volume fraction, or packing fraction 𝜙𝜙. The packing fraction 𝜙𝜙𝜇𝜇 of a single residue µ in a protein 

core is defined as 

𝜙𝜙𝜇𝜇 =
𝑣𝑣𝜇𝜇
𝑉𝑉𝜇𝜇𝑣𝑣

, (3) 

where 𝑣𝑣𝜇𝜇  is the volume of residue µ, and 𝑉𝑉𝜇𝜇𝑣𝑣 is the volume of the Voronoi cell surrounding residue 

𝜇𝜇. To calculate the Voronoi tessellation for a given protein core, we employ surface Voronoi 

tessellation [14], which defines a Voronoi cell as the region of space in a given system that is 

closer to the bounding surface of residue 𝜇𝜇 than to the bounding surface of any other residue in 

the system. We calculate the surface Voronoi tessellations using the POMELO software package 

[15]. This software approximates the bounding surfaces of each residue by triangulating points 

on the residue surfaces. We find that using ∼ 400 points per atom, or ∼ 6400 surface points per 

residue, gives an accurate representation of the surface Voronoi cells and the results do not 

change if more surface points are included. Note that to calculate the average packing fraction 

of a protein core, we define 
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⟨𝜙𝜙⟩ =
∑ 𝑣𝑣𝜇𝜇𝜇𝜇

∑ 𝑉𝑉𝜇𝜇𝑣𝑣𝜇𝜇
, (4) 

where the sum over µ includes only core residues. In this work, we define a protein core as the 

set of residues with 𝑟𝑟𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 <  10−3 that all share at least one surface Voronoi cell face with each 

other. 

 

Section 2.5 Side chain repacking 

To better understand the dominant forces determining the side chain conformations in protein 

cores, we have developed a protocol that can repack the side chains of core residues assuming 

that the non-bonded atomic interactions are hard- sphere-like, and that bond lengths and angles 

are tightly constrained around experimentally-observed values. The hard-sphere plus 

stereochemical constraint model has been used extensively in previous work (e.g. Refs. [10, 11] 

and references therein) to accurately place hydrophobic residue side chains in the cores of the 

crystal structures of globular proteins, transmembrane proteins, and protein-protein interfaces. 

In this model, we sample all possible combinations of the side chain dihedral angles of the core 

residues, and calculate the purely repulsive Lennard-Jones interaction energy (Eq. (6)) between 

non-bonded atoms for each combination. The backbone dihedral angles of each core residue are 

fixed to their experimental values, as well as the side chain and backbone dihedral angles of the 

rest of the protein. We obtain a probability distribution for the side chain dihedral angle 

combinations of each core residue using Boltzmann weighting, and repeat this procedure over 

an ensemble of structures with core residues given different bond-length and bond-angle 

variants constrained around the experimental values. We then average the probability 

distributions over this ensemble and identify the side chain dihedral angle combination with the 

highest probability. We employ this model to study residue packing and side chain placement in 

the cores of both x-ray and NMR structures. Additional details of the method are given in the SI. 
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Section 2.6 Jammed packings of amino-acid-shaped particles 

In previous work [16], we found that the packing fraction and void distribution of protein cores 

is well-modeled by computer simulations of jammed packings of purely repulsive, rigid, and non-

backbone-connected particles shaped like hydrophobic residues. The amino-acid-shaped 

particles include the backbone N, Cα, C, and O atoms, as well as all side chain atoms and 

hydrogens placed using the REDUCE software [17]. Atomic radii are listed in Table S6 in the SI. To 

prepare the jammed packings, we first place N amino-acid-shaped particles with random 

positions and orientations in a cubic box with periodic boundary conditions at an initially dilute 

packing fraction 𝜙𝜙0 = 0.1. The packing fraction is increased by small steps Δ𝜙𝜙, with each 

followed by energy minimization, to mimic athermal isotropic compression of the system. We 

also carry out thermalized compression protocols, where we thermalize the amino-acid shaped 

particles between compression steps. In this method, we run molecular dynamics trajectories at 

constant temperature 𝑇𝑇 for a fixed amount of time 𝑡𝑡𝑀𝑀𝑀𝑀, and then minimize the total potential 

energy of the system 𝑈𝑈 using the FIRE minimization method [18] prior to the next compression 

step. We terminate the packing generation protocols when the minimized potential energy per 

particle satisfies 10−16  <  𝑈𝑈 /𝑁𝑁𝑁𝑁  ≤  2 × 10−16 , where 𝑁𝑁 is the energy scale of the non-

bonded atomic interactions, and the kinetic energy per particle 𝐾𝐾/𝑁𝑁𝑁𝑁 <  10−30. Further details 

of the packing-generation protocols are given in the SI. 

 

Section 3. Results 

We first compare pairs of structures determined by x-ray crystallography and NMR spectroscopy 

by quantifying the root-mean-square deviation (RMSD, Eq. (1)) of the Cα positions of a given set 

of residues defined by their sequence location on two structures 𝑖𝑖 and 𝑗𝑗. For the NMR datasets, 

𝑖𝑖 and 𝑗𝑗 represent each model within a bundle, and, for the x-ray crystal duplicate dataset, 𝑖𝑖 and 

𝑗𝑗 represent each of the duplicates. As mentioned in Sec 2.3, we define core residues as residues 
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with small (<  10−3) relative solvent-accessible surface area (rSASA), as defined in Eq. (2) in Sec. 

2.3. In Fig. 2 (a), we compare the distributions 𝑃𝑃(∆𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐) of RMSD values of core residues in x-ray 

crystal structure duplicates and RMSD values of core residues in NMR bundles. We show that the 

fluctuations among x-ray crystal structure duplicates are consistent with B-factor fluctuations of 

the Cα positions of core residues, 𝐵𝐵, which are given by Δ = �3𝐵𝐵/8𝜋𝜋2 .We also compare x-ray 

crystal and NMR structures for the same proteins by calculating the RMSD between Cα atoms of 

core residues. 

 To quantify differences between each RMSD distribution, we compute the Jensen-

Shannon (JS) divergence [19] for each distribution in Fig. 2 (a). The JS divergence between the x-

ray duplicate RMSD distribution and the B-factor distribution is 0.5, while the JS divergence 

between the NMR intrabundle RMSD and the NMR-x-ray RMSD is 1.1, which demonstrates that 

the RMSD between NMR and x-ray structures is greater than the RMSD differences within a 

bundle of NMR structures, or between duplicate x-ray structures of the same protein. Because x-

ray duplicate RMSD values are similar to B-factor RMSD values, the relatively low JS divergence 

indicates that fluctuations across duplicate crystal structures is dominated by the uncertainty in 

atomic positions arising from thermal motion. Whereas the larger JS divergence between NMR 

intrabundle RMSD and NMR-x-ray RMSD values, as well as the broad tail in the NMR-x-ray RMSD 

distribution, suggests that differences between structures solved by both NMR and 

crystallography are larger than those expected in both the ensemble of x-ray structures and in 

NMR bundles individually. That is, while the fluctuations in the ensemble of observed NMR 

structures is larger than those in the observed ensemble of crystal structures, these two 

ensembles typically occupy distinct, non-overlapping regions of configuration space. 

 We also calculate the side chain dihedral angle fluctuations ∆χ for the same pairs of 

structures; we define Δ𝜒𝜒(𝜇𝜇|𝑖𝑖, 𝑗𝑗) as the distance between the side chain conformations of residue 

𝜇𝜇 within structures 𝑖𝑖 and 𝑗𝑗, i.e. 
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Δ𝜒𝜒(𝜇𝜇|𝑖𝑖, 𝑗𝑗) = ���⃗�𝜒𝜇𝜇,𝑗𝑗 − �⃗�𝜒𝜇𝜇,𝑖𝑖�
2

 , (5) 

where �⃗�𝜒𝜇𝜇,𝑖𝑖 is the set of side chain dihedral angles (𝜒𝜒1, . . . ,𝜒𝜒𝑚𝑚 ) for residue 𝜇𝜇 on structure 𝑖𝑖. Note 

that in Fig. 2 (b), we measure ∆𝜒𝜒 between two experimental structures of the same protein, 

whereas in Fig. 3 (a) and (b) we measure ∆𝜒𝜒 between an experimental structure and a prediction 

using the hard-sphere plus stereochemical constraint model. 

 In Fig. 2, we show that the conformations of both the backbone and side chains of core 

residues fluctuate less in x-ray crystal structures compared to the conformations within an NMR 

bundle, but that the fluctuations within an NMR bundle are smaller than those between the x-

ray crystal and NMR structure pairs [1, 7, 8]. The inset to Fig. 2 (b) illustrates the proportion of 

configuration space sampled for structures solved by both NMR and x-ray crystallography. 

Structures determined by x-ray crystallography sample states in a relatively small volume of 

configuration space compared to that sampled by structures in an NMR bundle. Moreover, these 

two ensembles are separated by a characteristic distance that is larger than the scale of 

fluctuations in either ensemble. 

 To put these structural differences in context, we also analyze fluctuations in a database 

of pairs of x-ray crystal structures of wild-type proteins and the same protein with a single core 

mutation and also high-scoring submissions from a recent Critical Assessment of Protein 

Structure Prediction (CASP) competition [20]. In the SI (see Fig. S3), we show that the fluctuations 

of single-site core mutants relative to wildtype structures is similar to that in x-ray crystal 

structure duplicates. In contrast, submissions to CASP12 exhibit much larger fluctuations. 

Because CASP12 submissions are computational predictions, not experimentally determined 

structures, one might expect larger fluctuations. The fluctuations among CASP12 submissions is 

also larger than those between structures of the same protein determined by x-ray 

crystallography or NMR. In the SI, we report additional measures of structural fluctuations, such 

as fluctuations in identities of core residues (Fig. S2). We also show in Figs. S4 and S5 that the 
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global and core RMSD of the Cα positions do not depend on the resolution of the x-ray crystal 

structures, as long as the resolution is less than 3Å. 

 To understand the origin of differences between x-ray crystal and NMR structures, we 

investigated if these differences are due to physical forces governing sidechain placement of core 

residues. In previous work, we showed that the hard-sphere plus stereochemical constraint 

model uniquely specifies the sidechain dihedral angles of core residues in protein crystal 

structures [11]. One potential source of differences in fluctuations in NMR and crystal structure 

cores could be that the cores in NMR structures are less well-resolved, and the sidechains are 

poorly placed due to insufficient information to uniquely define their conformations. Such 

methodological inaccuracies have been suggested by previous studies, where computational 

refinement moves NMR backbone and sidechain dihedral angles towards those of x-ray crystal 

structures [1, 2, 3, 4]. However, as shown in Fig. 3 (a) and (b), we find that we can repack 

sidechains of core residues in NMR structures just as accurately as we can repack the same 

sidechains in high-resolution x-ray crystal structures. The side chain repacking protocol is 

described in Sec. 2.5 and in further detail in the SI. For side chain repacking, we calculate the 

repulsive Lennard-Jones potential energy of overlap 𝑈𝑈𝑅𝑅𝑅𝑅𝑅𝑅 between side chains of core residues 

in the pairs of structures. The potential energy of a single residue 𝜇𝜇 with side chain confirmation 

�⃗�𝜒𝜇𝜇 is defined by 

𝑈𝑈𝑅𝑅𝑅𝑅𝑅𝑅 = ��
𝑁𝑁

72
�1 − �

𝜎𝜎𝑖𝑖𝑗𝑗
𝜇𝜇𝜇𝜇

𝑟𝑟𝑖𝑖𝑗𝑗
𝜇𝜇𝜇𝜇�

6

�

2

Θ�𝜎𝜎𝑖𝑖𝑗𝑗
𝜇𝜇𝜇𝜇 − 𝑟𝑟𝑖𝑖𝑗𝑗

𝜇𝜇𝜇𝜇�
𝑖𝑖,𝑗𝑗

 ,
𝑁𝑁

𝜇𝜇

(6) 

where the potential energy is evaluated as a sum over all non-bonded atomic interactions. 𝑟𝑟𝑖𝑖𝑗𝑗
𝜇𝜇𝜇𝜇 is 

the distance between atoms 𝑖𝑖 and 𝑗𝑗 on residues 𝜇𝜇 and 𝜈𝜈, 𝜎𝜎𝑖𝑖𝑗𝑗
𝜇𝜇𝜇𝜇 = (𝜎𝜎𝑖𝑖

𝜇𝜇 + 𝜎𝜎𝑗𝑗𝜇𝜇)/2, and 𝜎𝜎𝑗𝑗
𝜇𝜇 is the 

diameter of atom 𝑖𝑖 on residue 𝜇𝜇. The Heaviside step function Θ enforces the potential to be 

purely-repulsive. We find that the distribution of repulsive Lennard-Jones energies between core 

side chains are almost identical when comparing x-ray crystal and NMR structures, which 
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indicates that the NMR and crystal structure cores are statistically at the same energies. (See Fig. 

3 (c).) 

However, when we investigate the packing fraction 𝜙𝜙 of core residues for x-ray crystal 

and NMR structures, we find important differences. In Fig. 4, we plot the probability distribution 

P (φ) of the packing fraction for core residues in x-ray crystal and NMR structures. The average 

packing fraction of core residues in the protein structures in the datasets determined by x-ray 

crystallography is ⟨𝜙𝜙⟩ =  0.55 ±  0.01, a value that is consistent with our previous results for the 

packing fraction of core residues in globular and transmembrane protein cores and the cores of 

protein-protein interfaces solved by x-ray crystallography [11, 16]. For core residues of protein 

structures in the NMR database, the average packing fraction is higher with ⟨𝜙𝜙⟩ =  0.59 ±  0.02. 

We believe that this is the first time that such a difference in the packing fraction of core residues 

in high-quality protein structures determined by both x-ray crystallography and NMR has been 

reported. 

We were concerned that the higher packing fraction of core residues in protein structures 

determined by NMR could be an artifact of improperly-placed sidechains that overlap with 

neighboring residues, which would artificially increase the observed packing fraction. However, 

comparison of the distribution of overlap energies measured by 𝑈𝑈𝑅𝑅𝑅𝑅𝑅𝑅 (Eq. (6)) in Fig. 3 (c) 

demonstrates that the two methods result in almost identical energies, and therefore almost 

identical atomic overlaps. The difference in the packing fraction of core residues was at first 

surprising, because our previous studies showed that the cores of x-ray crystal structures pack as 

densely as jammed packings of purely-repulsive amino-acid-shaped particles without backbone 

constraints generated using a protocol of successive compressions followed by energy 

minimization [21, 16]. 

We therefore revisited the protocol with which we prepared jammed packings of amino-

acid-shaped particles [16]. In our previous work, packings were prepared using an “athermal” 

protocol, where kinetic energy was drained rapidly from the system during the packing 
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preparation. For the athermal protocol, amino acids were initialized in a cubic simulation box at 

a small initial packing fraction 𝜙𝜙0 and compressed by small increments ∆𝜙𝜙 with each followed by 

energy minimization (see Sec. 2.6 and SI for additional details.) Because the amino-acid-shaped 

particles were not allowed to translate and rotate significantly between each compression step, 

the jammed packings at 𝜙𝜙 ≈ 0.55 were obtained at the first metastable jammed state that the 

protocol encounters. However, the packing fractions that can be achieved in packings of amino-

acid-shaped particles are protocol-dependent; we next investigated more thermalized protocols 

to see how different protocols lead to different jammed packing fractions. 

We chose a family of annealing packing-generation protocols. We initialize the system in 

a dilute configuration, and compress the system in small increments ∆φ between periods of 

molecular dynamics simulations of purely repulsive amino acids-shaped particles in the canonical 

ensemble for a time period 𝑡𝑡𝑀𝑀𝑀𝑀 at thermal energy 𝑘𝑘𝐵𝐵𝑇𝑇. (See SI for details.) We find that 

temperature only acts to renormalize 𝑡𝑡𝑀𝑀𝑀𝑀, i.e. a longer simulation at a lower temperature will 

yield the same results as a shorter simulation at higher temperatures. Thus, there is another time 

scale associated with the annealing protocol, 𝑡𝑡𝑄𝑄𝑄𝑄 = 𝑐𝑐(𝑇𝑇)𝑡𝑡∗, where 𝑐𝑐(𝑇𝑇) is a dimensionless 

quantity that depends on temperature, 𝑡𝑡∗ = �𝑚𝑚𝑅𝑅𝜎𝜎𝑅𝑅
2

𝜖𝜖
  and 𝑚𝑚𝑅𝑅 and 𝜎𝜎𝑅𝑅 are the mass and diameter 

of the smallest residue. We find that plotting the ensemble-averaged packing fraction ⟨𝜙𝜙⟩ of 

jammed packings of amino acid-shaped particles versus  𝜏𝜏 = 𝑐𝑐𝑀𝑀𝑀𝑀
𝑐𝑐𝑄𝑄𝑄𝑄

= 𝑛𝑛 �𝑘𝑘𝐵𝐵𝐵𝐵
𝜖𝜖
�
𝛼𝛼

  , collapses the data 

for different temperatures and time periods onto a single curve (Fig. 5). The exponent 𝛼𝛼 = 0.4 ±

 0.01 and 𝑛𝑛 is the number of time steps between compression increments. 

Two limits of packing fractions emerge over the range of annealing protocols we tested; 

an athermal limit, which corresponds to packing fractions in cores of x-ray crystal structures [11], 

and the thermalized limit with ⟨𝜙𝜙⟩ ≈ 0.62. The packing fraction in the cores of protein structures 

solved by NMR fall between these two extremes with ⟨𝜙𝜙⟩ = 0.59. The states at exceedingly high 
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packing fractions exist only in the limit of extremely long annealing times. The results of 

simulations using different protocols are consistent with the differences observed in cores of 

protein structures solved by x-ray crystallography and NMR. The fact that thermalized packing 

protocols yield NMR-like packing fractions, and that athermal protocols generate x-ray crystal-

like packing fractions, suggests that fluctuations are distinct for these two methods. 

 

Section 4. Discussion & Conclusions 

In this work, we compare the fluctuations of protein structures characterized by both NMR and 

x-ray crystallography, and find several key results: first, we found that RMSD values between core 

residues in duplicated x-ray crystal structures are smaller than RMSD values between core 

residues across multiple structures in NMR bundles, but these RMSD values are still smaller than 

the RMSD values between core residues in NMR and x-ray crystal structure pairs. These findings 

suggest that NMR and x-ray crystal structures occupy distinct regions in configuration space. 

However, we also showed that the hard-sphere plus stereochemical constraint model is 

extremely accurate in side chain conformation prediction for core residues in both x-ray crystal 

and NMR protein structures. Measurements of the core packing fraction show that NMR 

structures possess denser cores, even though the cores in x-ray crystal and NMR structures 

possess the same overlap energy. To resolve this apparent discrepancy, we prepare jammed 

packings of amino-acid-shaped particles both athermally and with thermal agitation, and find 

that packings produced in the athermal limit resemble the cores of x-ray crystal structures, while 

thermalized packings resemble cores in NMR structures. This result suggests that there are subtle 

yet real differences in the fluctuations between structures characterized by x-ray crystallography 

and NMR spectroscopy. The fluctuations are larger in NMR structures than in x-ray crystal 

structures, and these fluctuations lead to slightly denser packing in the core. 
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 A previous study that also compared protein structures determined by x-ray 

crystallography and NMR suggested that the crystal environment restricts dynamical 

fluctuations, whereas bundles of NMR structures in solution contain the full dynamics one would 

expect from elastic network models for proteins [6]. The work we present here provides further 

evidence to support this conclusion, but whether the differences are due to crystalline contacts 

[6, 7, 22] or the different temperatures at which the protein structures are characterized [23] 

remains to be determined. Interestingly, several structures used in our dataset of duplicate 

crystal structures were resolved at room temperature (∼ 300 K), as opposed to the cryogenic 

temperatures typically used in x-ray crystallography. We found that core RMSD values do not 

change significantly when considering duplicate x-ray crystal pairs solved at different 

temperatures, which suggests that the crystal environment is the dominant cause of the 

differences between structures solved by NMR and x-ray crystallography. To fully resolve this 

question, however, further characterization of protein structure fluctuations at different 

temperatures is required. 
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Figure Captions 

Figure 1. Average root-mean-square deviations (RMSD) in the Cα positions ⟨∆(𝑖𝑖, 𝑗𝑗)⟩ (in Å) of all 

residues in the larger database of NMR structures without x-ray crystal structure pairs, plotted 

as a function of the number of restraints on each residue 𝑁𝑁𝑟𝑟. The average is taken over the 

multiple structures (∼ 20) in each bundle. 

 

Figure 2. (a) Probability distributions 𝑃𝑃 (∆𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐) of the root-mean-square deviations (RMSD) in the 

positions of the Cα atoms (in Å) for core residues in duplicate x-ray crystal structures (solid black 

line), in the NMR model ensemble for each structure (solid red line), and in paired x-ray crystal 

and NMR structures (dot-dashed blue line). We also plot the distribution for Δ = �3𝐵𝐵/8𝜋𝜋2 from 

the B-factor of core Cα atoms in the duplication x-ray crystal structures (dashed black line). The 

inset shows an example of one of the proteins in the paired x-ray crystal and NMR structure 

dataset, with the x-ray crystal structure on the left and the bundle of 20 NMR structures on the 

right (PDB codes 3K0M and 1OCA, respectively). The α -helices are colored purple, the β -sheets 

are yellow, and the loops are gray. (b) The fraction of core amino acids 𝐹𝐹(∆𝜒𝜒) with root-mean-

square deviations of the side chain dihedral angles less than ∆𝜒𝜒 (in degrees) for the pairwise 

comparisons in (a). The inset is a schematic in two dimensions of the high-dimensional volume in 

configuration space that the Cα atoms in core residues in x-ray crystal structures and NMR 

ensembles sample. X-ray crystal structures sample a smaller region than NMR ensembles, but 

the distance between these regions of configuration space is larger than the fluctuations of both 

the x-ray crystal and NMR structures. The relative lengths of the arrows are drawn to scale, with 

⟨∆𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐⟩ ≈  0.1, 0.5, and 0.8Å for the x-ray duplicates, NMR models, and pairs of x-ray crystal and 

NMR structures, respectively. 
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Figure 3. (a) Fraction of side chain conformations of core residues with predictions from the hard-

sphere plus stereochemical constraint model that deviate from the experimentally observed 

values by less than ∆𝜒𝜒 (in degrees) in the dataset of x-ray crystal (solid black line) and NMR (solid 

red line) structure pairs, and the Dunbrack 1.0 dataset of 221 high resolution x-ray crystal 

structures (dashed black line) [9, 24]. (b) Fraction of core hydrophobic side chains, grouped by 

residue type, that can be predicted to within 30◦ of the corresponding experimental structure 

using the hard-sphere plus stereochemical constraint model for x-ray (black bars) and NMR 

structures (red bars). (c) Distribution of the overlap potential energy 𝑈𝑈𝑅𝑅𝑅𝑅𝑅𝑅/𝑁𝑁, calculated using 

Eq.6 for core residues in the x-ray crystal (black line) and NMR structures (red line) in the paired 

dataset. 

 

Figure 4. Distribution 𝑃𝑃(𝜙𝜙) of the packing fraction of core residues in the Dunbrack 1.0 dataset 

of high-resolution x-ray crystal structures (black dashed line), the dataset of high-resolution NMR 

structures for which there is not a corresponding x-ray crystal structure (red dashed line), and x-

ray crystal structures (black solid line) and NMR structures (red solid) from the paired dataset. 

 

Figure 5. Ensemble-averaged packing fraction �𝜙𝜙𝑅𝑅� of jammed packings of amino-acid-shaped 

particles versus the dimensionless timescale 𝜏𝜏 for 𝑁𝑁 = 16 particles. The colors represent 

simulations with different temperatures 𝑘𝑘𝐵𝐵𝑇𝑇/𝑁𝑁, logarithmically spaced from 10−7 (blue) to 1 

(red). The dashed black line at �𝜙𝜙𝑅𝑅� = 0.55  is the average packing fraction of core residues in x-

ray crystal structures, and the dashed red line at �𝜙𝜙𝑅𝑅� = 0.59 is the average packing fraction of 

core residues in NMR structures. 
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