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Abstract

We consider a sketched implementation of the finite element method for ellip-
tic partial differential equations on high-dimensional models. Motivated by
applications in real-time simulation and prediction we propose an algorithm
that involves projecting the finite element solution onto a low-dimensional
subspace and sketching the reduced equations using randomised sampling.
We show that a sampling distribution based on the leverage scores of a tall
matrix associated with the discrete Laplacian operator, can achieve nearly
optimal performance and a significant speedup. We derive an expression
of the complexity of the algorithm in terms of the number of samples that
are necessary to meet an error tolerance specification with high probability,
and an upper bound for the distance between the sketched and the high-
dimensional solutions. Our analysis shows that the projection not only re-
duces the dimension of the problem but also regularises the reduced system
against sketching error. Our numerical simulations suggest speed improve-
ments of two orders of magnitude in exchange for a small loss in the accuracy
of the prediction.
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1. Introduction1

Motivated by applications in digital manufacturing twins and real-time2

simulation in robotics, we consider the implementation of the Finite Ele-3

ment Method (FEM) in high-dimensional discrete models associated with4

elliptic partial differential equations (PDE). In particular, we focus on the5

many-query context, where a stream of approximate solutions are sought6

for various PDE parameter fields [1], aiming to expedite computations in7

situations where speedy model prediction is critical. Realising real-time8

simulation with high-dimensional models is instrumental to enable digital9

economy functions and has been driving developments in model reduction10

over the last decade [2], including the popular and, in many cases, effective11

Reduced-Basis method, which approximates the PDE solution manifold via12

a low-dimensional reduced basis, built from solution snapshots using either13

a POD or greedy construction [3, 4, 5]. Reducing the computational com-14

plexity of models is also central to the practical performance of statistical15

inference and uncertainty quantification algorithms, where a multitude of16

model evaluations are necessary to achieve convergence [6]. When real-time17

prediction is coupled with noisy sensor data, as in the digital twins paradigm,18

a fast, somewhat inaccurate model prediction typically suffices [7].19

Our approach is thus tailored to applications where some of the accuracy20

of the solution can be traded off with speed. In these circumstances the21

framework of randomised linear algebra presents a competitive alternative22

[8]. In the seminal work [9], Drineas and Mahoney propose an algorithm23

for computing the solution of the Laplacian of a graph, making the case for24

sampling the rows of the matrices involved based on their statistical leverage25

scores. Despite aimed explicitly for the symmetric diagonally dominant sys-26

tems arising in these problems, their approach provides inspiration for the27

numerical solution of symmetric, positive definite and possibly ill-conditioned28

systems originating from the discretisation of elliptic PDEs on unstructured29

meshes. Apart from the algebraic resemblance to the Galerkin FEM systems,30

the authors introduced sampling based on leverage scores of matrices through31

the concept of ‘effective resistance’ of a graph derived by mimicking Ohmic32

relations in resistor networks. As it turns out the complexity of computing33

the leverage scores is similar to that of solving the high-dimensional prob-34

lem deterministically, however efficient methods to approximate them have35
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since been suggested [10]. More recently, Avron and Toledo have proposed36

an extension of [9] for preconditioning the FEM equations by introducing the37

‘effective stiffness’ of an element in a finite element mesh [11]. Specifically,38

for sparse symmetric positive definite (SSPD) stiffness matrices, they derive39

an expression for the effective stiffness of an element and show its equiva-40

lence to the statistical leverage scores. Sampling O(n log n) elements leads41

to a sparser preconditioner.42

In situations where a single, high-dimensional linear system is sought,43

randomised algorithms suited to SSPD systems are readily available. The44

methods of Gower and Richtarik for example randomises the row-action iter-45

ative methods by taking a sequence of random projections onto convex sets46

[12]. This algorithm is equivalent to a stochastic gradient descent method47

with provable convergence, while their alternative approach in [13] iteratively48

sketches the inverse of the matrix. In [14], Bertsekas and Yu present a Monte49

Carlo method for simulating approximate solutions to linear fixed-point equa-50

tions, arising in evaluating the cost of stationary policies in Markovian deci-51

sions. Their algorithm is based on approximate dynamic programming and52

has subsequently led to [15], that extends some of the proposed importance53

sampling ideas in the context of linear ill-posed inverse problems.54

Real-time FEM computing at the many query paradigm, is hindered by55

two fundamental challenges: the fast assembly of the stiffness matrix for each56

parameter field, unless the domain consists of a small number of regions with57

homogeneous isotropic materials, and the efficient solution of the resulting58

system to the required accuracy. To mitigate these, is to compromise slightly59

on the accuracy in order to capitalise on speed. To achieve this we first trans-60

form the linear SSPD system into an overdetermined least squares problem,61

and then project its solution this onto a low-dimensional subspace. This62

mounts to inverting a low-dimensional, dense matrix whose entries are per-63

turbed by random errors. Our emphasis and contributions are in developing64

the projected sketching algorithm, and in optimising the sampling process so65

that it is both efficient in the multi-query context and effective in suppressing66

the variance of the solution. We also analyse the complexity of our algorithm67

and derive, probabilistic error bounds for quality of the approximation.68

Our paper is organised as follows: In section 2 we provide a concise intro-69

duction to the Galerkin formulation for elliptic boundary value problems, and70

subsequently derive the projected least squares formulation of the problem.71

We then describe the sampling distribution used in the sketching and provide72

the conditions under which the reduced sketched system has a unique solu-73
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tion. Section 4 contains a description of our algorithm, and our main result74

that describes the complexity of our algorithm in achieving an error tolerance75

in high probability. We then provide an error analysis addressing the various76

types of errors imparted on the solution through the various stages of the77

methodology, before concluding with some numerical experiments based on78

the steady-state diffusion equation.79

1.1. Notation80

Let [m] denote the set of integers between 1 and m inclusive. For a matrix81

X ∈ Rm×n, X(`) and X(`) denote its `-th row and column respectively, and82

Xij its (i, j)-th entry. X† is the pseudo-inverse of X and κ(X) its condition83

number. If m ≥ n we define the singular value decomposition X = UXΣXV
T
X84

where UX ∈ Rm×n, ΣX ∈ Rn×n and VX ∈ Rn×n. Notice that the form85

of the SVD used in this work is the more economical reduced/thin variant86

where the matrix UX is not square and due to n ≤ m the matrix ΣX is87

invertible whenever X has full column rank. Unless stated otherwise, singular88

values and eigenvalues are ordered in non-increasing order. Analogously, for89

a symmetric and positive definite matrix A ∈ Rm×m, λmax(A) is the largest90

eigenvalue, and λmin(A) the smallest. By nnz(A) we denote the number of91

non-zero elements in A. Further we write ‖ · ‖ for the Euclidean norm for a92

vector or the spectral norm of a matrix and ‖ · ‖F the Frobenius norm of a93

matrix. For matrices X and Y with the same number of rows (X|Y ) is the94

augmented matrix formed by column concatenation. The identity matrix is95

expressed as I or In to specify its dimension n when important to the context.96

We write y ⊗ 1n for the Kronecker product of vector y with the ones vector97

in n dimensions.98

2. Galerkin finite element method preliminaries99

Consider the elliptic partial differential equation100

−∇ · p∇u = f in Ω, (1)

on a bounded, simply connected domain Ω ⊂ Rd, d ∈ {2, 3} with Dirichlet101

conditions102

u = g(D) on ∂Ω, (2)

on a Lipschitz smooth boundary ∂Ω for a sufficiently smooth function g(D).103

Further let p a bounded positive parameter function in the Banach space104
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L∞(Ω) such that105

0 < pmin ≤ p ≤ pmax <∞ on Ω ∪ ∂Ω, (3)

If we consider TΩ
.
= {Ω1, . . . ,Ωk} a mesh comprising k elements, having

n interior and n∂ boundary vertices (nodes) and

S1
Ω
.
= span{φ1, . . . , φn, . . . , φn+n∂}

to comprise linear interpolation shape functions with local support over the
elements in TΩ then the weak form of (1), see [16] chapter 6, can be discretised
to yield the Galerkin system of equations for the vector {u1, . . . , un} and each
i = 1, . . . , n

n∑
j=1

( ∑
Ω`∈TΩ

∫
Ω`

dx∇φi · p`∇φj
)
uj =

∑
Ω`∈TΩ

∫
Ω`

dx f`φi

−
n+n∂∑
j=n+1

( ∑
Ωl∈TΩ

∫
Ω`

dx∇φi · p`∇φj
)
uj.

(4)

At the same time (2) gives the boundary conditions of the form106

uj = gj, j = n+ 1, . . . , n∂ (5)

with gj given by evaluating the boundary function g(D) at the j-th node.107

The coefficients in the above equation are defined as the element-average108

coefficients109

p` =
1

|Ω`|

∫
Ω`

dx p, and f` =
1

|Ω`|

∫
Ω`

dx f, ` = 1, . . . , k (6)

which correspond to the piecewise constant approximations of the parameter110

and forcing term. The linear equations in (4) and (5) are expressed in a111

matrix form as112

Au = b, (7)

where A ∈ Rn×n is the symmetric, sparse and positive-definite stiffness ma-113

trix, whose dependence on the parameters p is implicit and suppressed for114

clarity. The FEM construction guarantees the consistency of the system (7),115

thus b ∈ Rn is always in the column space of A and consequently it admits116

a unique solution uopt = A−1b. As we focus to the efficient approximation of117

uopt in the many query context we content with two challenges: the efficient118

assembly of the stiffness matrix, and the speedy solution of the resulted FEM119

system.120
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2.1. The stiffness matrix121

Let I` be the index set of the d+1 vertices of the `th element, and consider122

D` ∈ Rd×n to be the sparse matrix holding the gradients of the linear shape123

functions φi where i ∈ I`. In this D
(i)
` is then a constant gradients vector124

associated with the ith node of Ω`, and let z` = |Ω`|p` the element of a vector125

z ∈ Rk such that Z2 = diag(z ⊗ 1d) and D ∈ Rkd×n a row concatenation of126

D` matrices for all elements. If we define as Y` =
√
z`D` and Y ∈ Rkd×n the127

concatenation of the Y` matrices as128

Y = ZD (8)

then the stiffness matrix takes the form of a high-dimensional sum or product129

of sparse matrices130

A =
k∑
`=1

Y T
` Y` = Y TY. (9)

The above construction typically leads to a stiffness matrix that is well-131

conditioned for inversion with the exception of acute element skewness [17]132

and parameter vectors with wild variation [18], which cause the condition133

number κ(A) to increase dramatically. Explicit bounds on the largest and134

smallest eigenvalues of A, and respectively the singular values of Y , are given135

in [19].136

3. A regularised sketched formulation137

Broadly speaking, the randomised sketching technique [8] provides a rig-138

orous framework for speeding up numerical linear algebra operations, such139

as regression or low-rank approximation problems, at the cost of introducing140

a provably controllable error. This is achieved by compressing high dimen-141

sional vectors or matrices to a much smaller size by multiplying them by a142

random sketching matrix S. The matrix S should ideally be such that for a143

high dimensional quantity Y , i.e. a large matrix or vector,144

• Ŷ = STY can be computed (substantially) faster than the solution to145

the original un-sketched problem and146

• Ŷ is a good enough approximation of Y in a way specific to the problem147

at hand.148
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The first criterion is very simple and ensures that computing the sketch isn’t149

prohibitively expensive. The second criterion should be understood in terms150

of the solution x of the original problem which often involves some form of151

optimisation. More specifically, an ε-accurate sketch Ŷ of Y for finding an152

approximate solution x̂ ensures that ‖x̂ − x‖ ≤ ε‖x‖. In other words, the153

sketched matrix is a good approximation of its high-dimensional counterpart154

if it can be used to solve the problem of interest subject to a small relative155

error. The acceleration from sketched methods consequently scales with the156

amount of compression that can be applied to Y while keeping the error157

acceptable.158

In the case of linear regression problems, good computational gains can159

usually be expected when the matrices that should be sketched have signif-160

icantly more rows than columns and the resulting systems are highly over-161

determined. Intuitively this observation can be explained by noticing that162

there is a certain amount of redundancy in an over-determined system and163

thus there is some hope that it can be compressed and solved more efficiently.164

In order to understand how this technique can be applied in our context we165

start by observing that the sought solution uopt = A−1b can be alternatively166

obtained by solving the over-determined least squares problem167

uopt = uLS = arg min
u∈Rn
‖Y u− (Y T )†b‖2, (10)

since

uLS = (Y TY )−1Y T (Y T )†b = A−1Y T (Y T )†b = A−1b = uopt.

The fact that the above problem is over-determined implies, at least to some168

extent, robustness against noise, such as random perturbations on the ele-169

ments of the matrix Y and vector b. A similar error is induced by randomised170

sketching where we replace (10) with171

ûLS = arg min
u∈Rn
‖Ŷ u− (Ŷ T )†b‖2, (11)

and look for a random approximation Ŷ of Y in the sense that ûLS ≈ uLS.
We note that Ŷ and Y don’t have to be similar as such, e.g. have the
same dimensions, as long as the problems are well defined and the optimisers
remain similar. Following [9] and [20] we seek to approximate Y with some
sketch Ŷ by sampling and scaling rows according to probabilities that will
be specified later. The number of rows in Ŷ in that case equals the number
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of drawn samples. Clearly Ŷ must have at least n rows as otherwise the
problem (11) will be under-determined and, due to the non-uniqueness of
the solution, the error could become arbitrarily large. On the other hand, if
around n log(n) rows are sampled from a suitable distribution, then Drineas
and Mahoney [9] show that the resulting sketch is a good approximation
with high probability. However, if substantially less than n log(n) samples are
drawn then the sketching induced error outweighs its computational benefits.
In order to understand how this issue can be addressed we note that, if Ŷ
has full column-rank and thus the optimiser of (11) is unique, the solution
of the sketched problem can be obtained by solving the linear system

Ŷ T Ŷ u = b,

which is equivalent to solving172

Y TY u = b+ (Y TY (Ŷ T Ŷ )−1 − I)b = b̂. (12)

From (12) it becomes clear that the sketching induced error can be regarded
as an error on the right-hand side of the linear system (7) or the least squares
problem (10). We can easily obtain a bound for the relative error given by

‖b̂− b‖
‖b‖

≤ ‖Y TY (Ŷ T Ŷ )−1 − I‖

A standard way of dealing with noise as in (12) is regularisation [21]. Suppose173

that there exists a low-dimensional subspace174

Sρ
.
= {Ψr | r ∈ Rρ}, (13)

spanned by a basis of ρ� n orthonormal functions arranged in the columns175

of matrix Ψ, and assume that is sufficient to approximate uopt within some176

acceptable level of accuracy, in the sense of incurring a small subspace error177

‖(I − Π)uopt‖. The orthogonal projection operator Π=̇ΨΨT maps vectors178

from Rn onto the subspace Sρ. Of course, such a subspace can’t accommodate179

all but rather only sufficiently regular u ∈ Rn. For that reason Sρ has to be180

constructed using prior information (e.g. degree of smoothness) about the181

solution. Orthogonality of Ψ ensures for any uopt = Πuopt + (I − Π)uopt the182

existence of a unique, optimal low-dimensional vector ropt satisfying183

Ψropt = Πuopt. (14)
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In these conditions we can pose a projected-regularised least-squares problem184

replacing (10) by185

Πuopt ≈ ureg = arg min
u∈Sρ
‖Y u− (Y T )†b‖2, (15)

in order to improve the robustness of the solution against sketching-induced186

errors. The problem in (15) still involves high-dimensional quantities such187

as Y and b, but the solution is unique as soon as Sρ and the null-space of Y188

have {0} intersection. We start by introducing the low dimensional problem3
189

190

rreg = arg min
r∈Rρ
‖YΨr − (Y T )†b‖2. (16)

A solution rreg of (16) yields a solution ureg = Ψrreg of (15) because the191

columns of Ψ form an orthonormal basis (ONB) of its column-space Sρ by192

construction. In addition, we have the following.193

Lemma 3.1. If Y has full column rank and the columns of Ψ form an ONB194

of Sρ so that Π = ΨΨT is the projection onto Sρ, then195

arg min
u∈Sρ
‖Y u− (Y T )†b‖2 = arg min

u∈Sρ
‖YΠu− (ΨTY T )†ΨT b‖2. (17)

In particular, both problems have a unique solution.196

Proof. Both problems have unique solutions because Sρ is convex and Y has
(by assumption) full column rank. Therefore it suffices to show that there
exists an element ureg ∈ Sρ that solves both problems. The solution rreg of
(16) can be found explicitly by solving the linear system

ΨTY TYΨr = ΨTY T (Y T )†b ⇐⇒ rreg = (ΨTY TYΨ)−1ΨT b.

3We emphasise the contrast between the projected equations in (16) and the projected
variable least squares problem

r′ = arg min
r∈Rρ

∥∥AΨr − b
∥∥2,

whose solution is

r′ = (ΨTA2Ψ)−1ΨTAb = ΨTu+ (ΨTA2Ψ)−1ΨTA2(I −Π)u,

and incurs a subspace regression error term that is quadratic in A. Moreover, note that
the right hand side vector in the normal equations ΨTATAΨr′ = ΨTAT b has dependence
on the parameter through A.
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We have used that Y has full column rank so that Y T (Y T )† = I and
ΨTY TYΨ is invertible. Similarly we may consider

arg min
r∈Rρ
‖YΠΨr − (ΨTY T )†ΨT b‖2,

which produces solutions rΨ such that ΨrΨ is a solution of the right-hand
side of (17). Since ΠΨ = Ψ and YΨ has full column rank we can write rΨ as

ΨTY TYΨrΨ = ΨTY T (ΨTY T )†ΨT b ⇐⇒ rΨ = (ΨTY TYΨ)−1ΨT b.

We conclude that Ψ(ΨTY TYΨ)−1ΨT b is a solution to both sides of (17) which197

completes the proof.198

The right hand side of (17) has a very natural interpretation and is ob-199

tained by embedding the rows of Y , the vector b and the variable u in Sρ using200

its low dimensional representation from the basis induced by the columns of201

Ψ. In view of Lemma 3.1 we may regularise the problem from (11) and obtain202

an embedded sketched counterpart to (15) as203

ûreg = arg min
u∈Sρ
‖ŶΠu− (ΨT Ŷ T )†ΨT b‖2. (18)

We argue that (18) is much more robust to the noise imparted by the approx-204

imation Ŷ and produces solutions with controlled errors even if substantially205

less than n suitably drawn samples are used for the approximation. In order206

to see why, notice that the problem (18) can be expressed in terms of the207

low-dimensional vector of coefficients208

r̂reg = arg min
r∈Rρ
‖ŶΨr − (ΨT Ŷ T )†ΨT b‖2. (19)

so that Ψr̂reg = ûreg. Recalling that A = Y TY , it is convenient to introduce209

X = YΨ and G = XTX = ΨTAΨ, (20)

together with their sketched approximations210

X̂ = ŶΨ and Ĝ = X̂T X̂. (21)

Lemma 3.2. If X̂ = ŶΨ has full column rank then the solution of the least-211

squares problem (19) is given by r̂reg = Ĝ−1ΨT b and we have212

ûreg = Ψr̂reg = ureg + Ψ(Ĝ−1G− I)ΨTureg. (22)

where ureg and ûreg are the solutions of (15) and (18) respectively.213
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Proof. If ŶΨ has linearly independent columns then ΨT Ŷ T (ΨT Ŷ T )† = I and
the solution r̂reg of (19) solves

Ĝr = ΨT b.

Again Ĝ is invertible because ŶΨ has linearly independent columns and the
first claim follows. The matrix A is positive definite which implies that G
is positive definite and ureg = ΨG−1ΨT b. The matrix Ψ has orthonormal
columns which implies ΨT b = GΨTureg. Since ûreg = Ψr̂reg we can use the
formula we have just shown and obtain

ûreg = Ψr̂reg

= ΨĜ−1ΨT b

= ΨĜ−1GΨTureg

= ΨĜ−1(Ĝ+ (G− Ĝ))ΨTureg

= Πureg + Ψ(Ĝ−1G− I)ΨTureg

= ureg + Ψ(Ĝ−1G− I)ΨTureg

where the last identity is due to ureg ∈ Sρ.214

In order to understand the effect of row sampling and why it can be a good215

approximation, recall that k is the number of elements and d the dimension,216

we can start by writing217

G =
kd∑
j=1

XT
(j)X(j) = XTX and A =

kd∑
j=1

Y T
(j)Y(j) = Y TY (23)

as a sum of outer products of rows. Introduce for some sample size c ∈ N218

the iid random indices i1, . . . , ic taking values in [kd] with distribution219

P(ij = i) = qi (24)

for each j ∈ [c] and i ∈ [kd]. Instead of (23) we may consider the sketch220

Ĝ =
1

c

c∑
j=1

1

qij
XT

(ij)
X(ij). (25)
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If we define the random matrix R ∈ Rkd×c and the random diagonal matrix221

W ∈ Rc×c via222

Rij =

{
1 if ij = i

0 if ij 6= i
, Wjj =

1
√
cqij

, (26)

then can put S = RW and construct the sketch Ĝ as223

Ĝ = XTSSTX = XTRW 2RTX. (27)

Lastly, we can write Ŷ = STY as well as X̂ = ŶΨ = STYΨ for the sketches224

of Y and X. A simple computation together with an application of the strong225

law of large numbers shows the following.226

Proposition 3.3 (Lemma 3 and 4 in [22]). Assume that the sampling prob-227

abilities satisfy the consistency condition228

X(j) 6= 0 =⇒ qj > 0 ∀j = 1, . . . , kd. (28)

In this case we have for the matrix Ĝ as defined in (25) that E[Ĝ] = G and229

E[‖Ĝ−G‖2
F ] = O (c−1). As a consequence, Ĝ→ G almost surely for c→∞.230

Proposition 3.3 summarises the asymptotic properties of the used sketch.231

The condition (28) is very mild and holds for a wide range of distributions232

such as sampling from scaled row norms or uniform sampling. The con-233

vergence rate of c−1 cannot be improved although the constant depends on234

the chosen probabilities qj. In other words, as long as we sample all non-235

zero rows with positive probability we will obtain a sketch that has good236

asymptotic properties when considered as an approximation for G. How-237

ever, in order to find good sampling probabilities qj we have to consider the238

non-asymptotic behaviour of the sketch. In fact, the main purpose of the reg-239

ularisation/dimensionality reduction was to avoid situations where sampling240

a large number of rows is necessary. If ρ� n, then the regularised problem241

(16) has substantially fewer degrees of freedom than the high dimensional242

formulation in (10). Consequently, the dependence of G on the rows of X243

is a lot smoother than the dependence of A on Y(j). In other words, ap-244

proximating X by row sampling has a much smaller effect on the regularised245

solution ureg than an approximation of Y with the same sample size c would246

have on the solution u of the full system (7). For example, a much smaller247
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number of rows needs to be sampled to obtain the correct null-space which248

results in a full-rank approximation of G. Note that, conditional on Ĝ being249

invertible, ureg ∈ Sρ in combination with Lemma 3.2 implies250

‖ureg − ûreg‖
‖ureg‖

≤ ‖Ĝ−1G− I‖, (29)

so the randomisation error of the regularised problem is entirely controlled
by low dimensional structures. This property is the key to a small sketching
error and thus to an overall accurate approximation when only few samples
are drawn. Using the notation from before and letting X = UXΣXV

T
X be the

singular value decomposition of X, we can write the bound from (29) as

‖Ĝ−1G− I‖ = ‖Σ−1
X (UT

XSS
TUX)−1ΣX − I‖.

From the above formulation it becomes apparent that the error will be small251

if the sketch is constructed such that (UXSS
TUX)−1 ≈ I in spectral norm.252

We argue that this is essentially equivalent to UXSS
TUX ≈ I. Indeed, we253

have the following.254

Lemma 3.4. If ‖UT
XSS

TUX − I‖ < ε < 1 then

1− ε ≤ ‖UT
XSS

TUX − I‖
‖(UT

XSS
TUX)−1 − I‖

≤ 1 + ε.

Proof. Under the condition of the lemma we know that UXSS
TUX is invert-

ible and that

‖UT
XSS

TUX‖ ≤ ‖I‖+ ‖UT
XSS

TUX − I‖ < 1 + ε

which implies the upper bound by considering the estimate

‖UT
XSS

TUX − I‖ ≤ ‖UT
XSS

TUX‖‖(UT
XSS

TUX)−1 − I‖
≤ (1 + ε)‖(UT

XSS
TUX)−1 − I‖.

Denote by λi(UXSS
TUX) the i-th eigenvalue of UXSS

TUX . Then we may
write

‖(UXSSTUX)−1 − I‖ =
ρ

max
i=1
|1− λ−1

i (UT
XSS

TUX)|

=
ρ

max
i=1

|1− λi(UT
XSS

TUX)|
λi(UT

XSS
TUX)

≤ ‖1− U
T
XSS

TUX‖
λmin(UT

XSS
TUX)
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where λmin(UXSS
TUX) is the smallest eigenvalue. By assumption of the

lemma

|1− λmin(UT
XSS

TUX)| ≤ ε =⇒ λmin(UT
XSS

TUX) ≥ 1− ε

which implies the claim after dividing by ‖1 − UT
XSS

TUX‖ and taking the255

inverse.256

An approximation of UT
XSS

TUX can be obtained by sampling with prob-257

abilities that are proportional to the statistical leverage scores258

`i(X) = `i(UX) = ‖(UX)(i)‖2, (30)

i.e. the row norms of the left singular vectors of X [10]. At first sight it seems259

that taking sampling probabilities proportional to the leverage scores in (30)260

in order to obtain a sketch of (16) is very similar to using the leverage scores261

of Y to obtain (11) from (10) as was proposed by Drineas and Mahoney in262

[9] for a similar problem. A key difference is that X is tall and dense while263

Y is sparse and thus G is quite different to the initial stiffness matrix A.264

Consequently, an interpretation of the leverage scores from (30) in terms of265

effective stiffness [11] is, to the best of our knowledge, not possible. The266

following Lemma will be useful for our further developments.267

Lemma 3.5 ([23] section 6.4). Assume that S is constructed as before with268

sampling probabilities qi satisfying269

qi ≥ β
`i(X)

ρ
i = 1, . . . , kd (31)

for some β ∈ (0, 1]. Then we have ∀ε > 0270

P
(
‖UT

XSS
TUX − I‖ ≥ ε

)
≤ 2ρ exp

(
− 3cβε2

12ρ+ 4ρε

)
(32)

An important corollary of the above lemma is that a sketch which is con-271

structed by sampling from leverage score probabilities will virtually always272

be invertible and therefore the sketched problem (19) has a unique solution.273

The following result states that this property is preserved even when the rows274

are re-weighted, an operation which changes the leverage scores.275
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Proposition 3.6. Let Γ ∈ Rkd×kd be a diagonal matrix with positive entries,276

i.e. Γii > 0 for each i = 1, . . . , kd. Assume that the sketching matrix S is277

constructed with sampling probabilities qi = ρ−1`i(X). For the scaled sketch278

Ĥ = XTΓSSTΓX we have279

P(Ĥ is invertible) = P(Ĝ is invertible) ≥ 1− 2ρ exp

(
− 3c

16ρ

)
(33)

Proof. It is sufficient to show that

Ĥ is invertible ⇐⇒ Ĝ is invertible ⇐⇒ UT
XSS

TUX is invertible

because the probability bound follows immediately from

P(UT
XSS

TUX is invertible) ≥ 1− P
(
‖UT

XSS
TUX − I‖ ≥ 1

)
after applying (32) from Lemma 3.5. The above matrices are always positive
semi-definite and therefore invertibility is equivalent to positive definiteness.
For any diagonal matrix Γ it holds that STΓ = Γ̂ST where Γ̂ is a random
diagonal matrix with entries Γ̂jj = Γij ij . Thus for any x ∈ Rρ we have

xT Ĥx = (ΣXV
T
X x)TUT

XSΓ̂2STUX(ΣXV
T
X x).

Since X has full column rank we know that ΣXV
T
X corresponds to a change280

of basis and ΣXV
T
X x 6= 0 whenever x 6= 0. It follows that Ĥ is positive281

definite if and only if UT
XSΓ̂2STUX is positive definite. As Γ̂ is a diagonal282

such that Γ̂jj > 0 with probability 1, the latter is equivalent to UT
XSS

TUX283

being positive definite. The case of Ĝ is covered by Γ = I.284

Proposition 3.6 states that re-scaling of rows doesn’t affect the quality of285

the sketching matrix regarding its invertibility and after sampling ρ log(ρ)286

rows the probability of the sketch being singular decays exponentially fast287

with each additional draw. In practice this makes knowledge of `i(X) valu-288

able because we only need to sample ρ log(ρ) +M rows for some moderately289

large M and obtain a sketch that is virtually never singular. On the other290

hand, we need at least ρ samples so that there is any hope in obtaining a291

non-singular matrix. The remarkable thing about Proposition 3.6 is that292

the failure probability is independent of both, the inner dimension kd of the293

product XTX as well as the scaling matrix Γ and equivalent to the bound294

which could be obtained by sampling from `i(ΓX). This suggests that a295
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sketch which is constructed by drawing samples from `i(X) is not too dif-296

ferent compared to sampling from `i(ΓX). This intuition is supported by297

the following result which describes the change in the leverage scores after298

re-weighting a single row.299

Proposition 3.7 ([24] Lemma 5). Let Γ〈i〉 ∈ Rkd×kd be a diagonal matrix300

with Γ
〈i〉
ii =

√
γ ∈ (0, 1) and Γ

〈i〉
jj = 1 for each j 6= i. Then301

`i(Γ
〈i〉X) =

γ`i(X)

1− (1− γ)`i(X)
≤ `i(X) (34)

and for i 6= j302

`j(Γ
〈i〉X) = `j(X) +

(1− γ)`2
ij(X)

1− (1− γ)`i(X)
≥ `j(X) (35)

where `ij(X) = (UXU
T
X)ij are the cross leverage scores.303

Since UX has orthogonal columns, we have ‖v‖ = ‖UXv‖ for any v ∈ Rρ
304

and thus the cross leverage scores from the above Lemma satisfy305

`i(X) =
kd∑
j=1

`2
ij(X). (36)

For a general diagonal matrix Γ as in Proposition 3.6 we may without loss306

of generality assume that each entry lies in (0, 1] since we can divide the307

elements by their maximum. The re-weighting can thus be considered as a308

superposition of single row operations309

Γ =
kd∏
i=1

Γ〈i〉 (37)

where the Γ〈i〉 are as in Proposition 3.7. Since the Γ〈i〉 commute we can apply310

them in any order without changing the outcome. Considering Lemma 3.5,311

if we could ensure that `i(X) isn’t substantially smaller than `i(ΓX) then312

sampling from qi = ρ−1`i(X) will produce good sketches for ΓX.313

Large leverage scores `i(X) ≈ 1. Equation (34) shows that the relative314

change of the i-th leverage score after a re-weighting of the i-th row shrinks315

when `i(X) → 1. In the extreme case when `i(X) = 1 the re-weighting316

has no effect. In addition to this stability property it trivially holds that317

`i(X) ≤ 1 which suggests that large leverage scores are fairly stable when318

rows are re-weighted.319
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Small leverage scores `i(X) � 1. From Equation (35) we know that the
increase of `j(X) after re-weighting of row i is proportional to `ij(X). If the
entries of the scaling matrix Γ don’t vary too much, then (36) suggests that
we can expect the total increase, i.e. after applying Γ〈j〉 for each j 6= i to be
roughly of order `i(X)− `2

i (X) ≈ `i(X). On the other hand, small `i(X) are

fairly sensitive to re-weighting of row i since `i(Γ
〈i〉X) ≈ (Γ

〈i〉
ii )2`i(X) in that

case. Thus we can expect that the re-weighting of row i will counterbalance
the effects from re-weighting the other rows. In addition, we know that

kd∑
i=1

`i(X) =
kd∑
i=1

`i(ΓX).

Since large leverage scores will likely be quite stable and `i(ΓX) ≥ 0 we320

would expect that not too many small leverage scores will become large.321

So far we have discussed the projection of the high-dimensional system322

without providing explicit details on how the basis Ψ is selected. A desired323

property is to sustain a small projection error for all admissible parameter324

choices under the constraint ρ � n. Suitable options include subsets of325

the right singular vectors of A or orthogonalised Krylov-subspace bases [25],326

however these have to be computed for each individual parameter vector327

which can be detrimental to the speed of the solver. Alternatively, we opt328

for a generic basis exploiting the smoothness of u on domains with smooth329

Lipschitz boundaries. A simple choice is to select the basis among the eigen-330

vectors of the discrete Laplacian operator331

∆
.
= DTZ2

∆D, (38)

for Z2
∆ = diag

(
[|Ω1|, . . . , |Ωk|] ⊗ 1d

)
. From UT

∆∆U∆ = Σ∆ and splitting the
eigenvectors as

U∆ =
(
U∆

(1:n−ρ−1)|Ψ
)
,

such that the columns of Ψ correspond to the last ρ columns of U∆, and
respectively to the ρ smallest eigenvalues {λn−ρ−1(∆), . . . , λn(∆)}. In effect,
with ∆ constrained by the Dirichlet boundary conditions, the norm ‖∆Ψ(i)‖
provides a measure of the smoothness of Ψ(i) in the interior of Ω. It is not
difficult to see that this basis satisfies

‖∆Ψ(i)‖ ≥ ‖∆Ψ(j)‖ for ρ ≥ i > j ≥ 1.
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We remark that the computation of the basis is computationally very ex-332

pensive for large n, as the eigen-decomposition of ∆ is necessary, however333

this is only computed once, prior to the beginning of the simulation (offline334

stage) in an offline stage. After the matrix Ψ has been obtained we can com-335

pute the leverage scores `i(Z∆DΨ). The Laplacian ∆ differs from a general336

stiffness matrix A only by different diagonal weights, i.e. Z2
∆ is replaced by337

the diagonal matrix Z2 = Z2
∆diag

[
(p1, . . . , pk) ⊗ 1d

]
where the pi contain338

information about the parameter from (1). Propositions 3.6 and 3.7 along339

with the developments thereafter suggest that the Laplacian leverage scores340

`i(Z∆DΨ) can nonetheless be used to construct sketches Ĝ = XTSSTX of341

the projected matrix G = XTX = ΨTY TYΨ because the difference in the342

stiffness matrices is just a diagonal weighting.343

4. Complexity and error analysis344

Motivated by the developments from the previous sections we propose345

the following algorithm for computing solutions to a sequence of N problem346

of the form (1). We assume that each problem is specified by its parameter347

vector z(t) ∈ Rkd for t = 1, . . . , N (see section 2.1).348

The complexity and approximation error of Algorithm 1 are obviously349

linked. The more samples we draw the better we expect our solutions to be.350

Although the size of the reduced system matrix G (and therefore its sketched351

counterpart Ĝ as well) is independent of c, the computational burden for352

building Ĝ is higher when drawing more samples. More precisely, we need:353

• O(c) operations in order to find i1, . . . ic
iid∼ q. This is possible because354

q is fixed and we can perform the necessary pre-processing offline [26].355

• O(c) operations for computing the sampled indices {j1, . . . , jc′} and356

their frequencies mj as this requires a single loop through the set357

{i1, . . . , ic} of initial samples.358

• O(c′) operation for assembling the diagonal matrices M and Ẑ.359

• O(c′ρ) operations for computing MẐD(J)Ψ. This can be achieved since360

computing MẐD(J) requires nnz(D(J)) = O(c′) multiplications and361

ρ · nnz(MẐD(J)) = ρ · nnz(D(J)) = O(ρc′) multiplications are enough362

for computing [MẐD(J)]Ψ due to sparsity of D.363
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input : Matrices D ∈ Rkd×n, Ψ ∈ Rn×ρ, data vector ΨT b ∈ Rρ, and
sampling probabilities qi = ρ−1`i(Z∆DΨ) (offline)

output: Parameter dependent solutions r̂(t) ∈ Rρ where t = 1, . . . , N
Online Simulation;
for t← 1 to N do

input : Parameter vector z(t) ∈ Rk, sample size c

draw row indices i1, . . . ic
iid∼ q from [kd];

get the sampled indices J =
⋃c
j=1{ij};

set c′ = |J | and write J = {j1, . . . , jc′};
compute the frequencies mj =

∑c
k=1 δ(ik = jj) for j = 1, . . . , c′;

find M2
jj = c−1mjq

−1
jj

for j = 1, . . . , c′ and the diagonal matrix M ;

find Ẑ2
jj = z

(t)
jj

for j = 1, . . . , c′ and the diagonal matrix Ẑ2;

assemble the c′ × ρ matrix X̂ = MẐD(J)Ψ;

compute reduced system Ĝ = X̂T X̂;

compute and store r̂(t) ← solve(Ĝ,ΨT b);

end
.

Algorithm 1: Algorithm for simulating the low-dimensional projected so-
lution of the FEM equations for different choices of parameter vectors p.
Note that as we are sampling with replacement, c′ ≤ c. In the above δ(·)
denotes the indicator function where δ(E) = 1 if the event E has occurred
and it is zero otherwise otherwise. D(J) is the sub-matrix of D whose rows
are the (ordered) elements of J

• O(c′ρ2) operations in order to build Ĝ which corresponds to the cost364

of multiplication for dense matrices.365

• O(ρ3) operations for solving Ĝr = ΨT b with a direct method.366

The sketch Ĝ will be singular if we draw c′ < ρ distinct samples which367

means that building the sketch Ĝ dominates the complexity of Algorithm368

1. In particular, the worst case complexity doesn’t exceed O(cρ2) since we369

require c ≥ c′ ≥ ρ. If the sampling probabilities are a good approximation370

in the sense that β in Lemma 3.5 can be chosen close to 1, then we need371

c = O(ε−2ρ log(ρ)) samples in order to have a provably controlled error. The372

worst case, i.e. the the largest increase of `i(X), will be observed if z
(t)
j � z

(t)
i373

for j 6= i. A parameter p corresponding to such a situation essentially renders374
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the implementation of the classical Galerkin FEM problematic, as κ(A) scales375

to pmax/pmin, see Theorem 5.2 in [19] The following theorem summarises the376

findings of this section.377

Theorem 4.1. Let ε ∈ (0, 1) and β ∈ (0, 1] is such that the sampling proba-
bilities qi from Algorithm 1 satisfy (31), i.e.

qi ≥ β
`i(ZDΨ)

ρ
i = 1, . . . , kd

where Z2 = diag(z(t)). Let G = XTX = ΨTDTZ2DΨ be the reduced system378

matrix corresponding to parameter z(t) and κ(G) its condition number. For379

the choice c = 15ρ log(15ρ)β−1ε−2 Algorithm 1 requires O(ρ3 log(ρ)β−1ε−2)380

operations and outputs, with probability exceeding 0.999, a vector r̂(t) that381

satisfies382

‖r̂(t) −G−1ΨT b‖
‖G−1ΨT b‖

≤
√
κ(G)

ε

1− ε
. (39)

Proof. As stated before, the complexity of Algorithm 1 is O(cρ2) which im-
mediately implies that it requires O(ρ3 log(ρ)β−1ε−2) operations for a single
query. It remains to prove the error bound. In view of (29) and the devel-
opments thereafter it follows, conditional on Ĝ being invertible, that

‖r̂(t) −G−1ΨT b‖
‖G−1ΨT b‖

≤ ‖Σ−1
X (UT

XSS
TUX)−1ΣX − I‖

≤ κ(X)‖(UT
XSS

TUX)−1 − I‖

≤ κ(X)
1

1− ε
‖UT

XSS
TUX − I‖.

Since κ2(X) = κ(G) we only need to show that

P(‖UT
XSS

TUX − I‖ ≥ ε) ≤ 0.001

because Ĝ is necessarily invertible on that event which implies validity of the
estimates from before. But plugging the value for c into (32) we obtain for
any ρ ≥ 1

P(‖UT
XSS

TUX − I‖ ≥ ε) ≤ 2

15
exp

(
−29

16
log(15ρ)

)
< 0.001.

383
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Algorithm 1 is most attractive when we can tolerate an error somewhere
between 1% to 10% in which case we can obtain the solution to a single query
in about O(β−1ρ3 log(ρ)) time. In practice the value for β is unobtainable
since it requires knowledge of the true leverage scores but considering Lemma
3.7 and the arguments thereafter, we expect that for a moderately large β−1

the required bound will hold for all but a few small leverage scores. The
statement in Lemma 3.5 is rather pessimistic when there are few misaligned
leverage scores since it requires a uniform bound. For practical purposes
we expect that β−1 can be substituted with a small constant and we take
ε = 0.1 which will ensure reglarity of the sketch. Up until now we have only
considered the randomisation error of the sketched solution, i.e. we have
analysed ‖ûreg − ureg‖. However, the the total error of ûreg compared to the
high dimensional solution u of (7) has two components. If we decompose the
process into two steps

min
u∈Rn
‖Y u− (Y T )†b‖2 Projection−−−−−−−−→

‖uopt−ureg‖
min
u∈Sρ
‖Y u− (Y T )†b‖2 (40)

min
u∈Sρ
‖Y u− (Y T )†b‖2 Sketching−−−−−−−−→

‖ûreg−ureg‖
min
u∈Sρ
‖ŶΠu− (ΨT Ŷ T )†ΨT b‖2, (41)

it becomes apparent that even with a perfect sketch, i.e. if we solved the384

noiseless projected problem (15) and (41) is negligible, we could still not385

achieve an error smaller than ‖uopt − Πuopt‖. The next result tells us that386

the error from (40) is close to the optimal one.387

Theorem 4.2. Let uopt be the solution of (7) and ureg be the optimum of
(15). If κ(A) is the condition number of the stiffness matrix A and Π = ΨΨT

the projection ont Sρ, then

‖uopt − ureg‖ ≤
(

1 +
√
κ(A)

)
‖uopt − Πuopt‖.

Proof. Recall that A = Y TY and G = XTX = ΨTY TYΨ. From the devel-
opments in Lemma 3.2 we know that ureg = ΨG−1ΨT b. We may write as
before X = UXΣXV

T
X so that G−1 = VXΣ−2

X V T
X and

‖uopt − ureg‖ = ‖uopt −ΨG−1ΨT b‖
= ‖uopt −ΨG−1ΨTAuopt‖
= ‖uopt −ΨG−1ΨTA[Π + (I − Π)]uopt‖
≤ ‖uopt −ΨG−1ΨTAΨΨTuopt‖+ ‖ΨG−1ΨTA(I − Π)uopt‖
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where the last line follows from the triangle inequality and the fact that
Π = ΨΨT . Since ΨTAΨ = ΨTY TYΨ = XTX = G the expression in the first
term of the above equation simplifies to

uopt −ΨG−1(ΨTAΨ)ΨTuopt = uopt − Πuopt.

In order to simply the second term we can start by writing

ΨTA = ΨTY TY = XTY = (UXΣXV
T
X )TY = VXΣXU

T
XY

which implies that

G−1ΨTA = VXΣ−2
X V T

X VXΣXU
T
XY = VXΣ−1

X UT
XY.

From those observation it follows that

‖uopt − ureg‖ ≤ ‖uopt − Πuopt‖+ ‖ΨVXΣ−1
X UT

XY (I − Π)uopt‖
≤ ‖uopt − Πuopt‖

(
1 + ‖ΨVXΣ−1

X UT
XY ‖

)
.

If we write λmin(A) and λmax(A) for the smallest and largest eigenvalues of
A, then it must hold that

λmin(A) ≤ λmin(G) ≤ λmax(G) ≤ λmax(A)

because Ψ has orthogonal columns. Indeed, if Sn−1 .
= {w ∈ Rn : ‖w‖ = 1} is

the n-dimensional unit sphere, then

min
w∈Sn−1

wTAw ≤ min
w∈Sρ∩Sn−1

wTAw ≤ max
w∈Sρ∩Sn−1

wTAw ≤ max
w∈Sn−1

wTAw

is obviously true. Since the columns of Ψ form an ONB of Sρ we have

min
w∈Sρ∩Sn−1

wTAw = min
w∈Sρ−1

wTΨTAΨw = min
w∈Sρ−1

wTGw = λmin(G)

max
w∈Sρ∩Sn−1

wTAw = max
w∈Sρ−1

wTΨTAΨw = max
w∈Sρ−1

wTGw = λmax(G).

Thus, ‖Σ−1
X ‖2 = λ−1

min(G) ≤ λ−1
min(A). Clearly we also have ‖Y ‖2 = λmax(A).

Due to orthogonality we know that ‖Ψ‖ = ‖VX‖ = ‖UX‖ = 1. Combining
those estimates we obtain

‖ΨVXΣ−1
X UT

XY ‖ ≤

√
λmax(A)

λmin(G)
≤
√
κ(A),

which yields the desired bound.388
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If the subspace Sρ is such that the relative projection error is small, then
the norm of ureg will be similar to the norm of uopt. More precisely,

‖ureg − uopt‖
‖uopt‖

≤ δ =⇒ ‖ureg‖
‖uopt‖

∈ [1− δ, 1 + δ]

so that Theorem 4.1 applies to ‖ureg− ûreg‖/‖uopt‖ with a small δ-dependent389

constant. By combining the previous two theorems we obtain the following.390

Corollary 4.3. Let εR ∈ (0, 1) and assume that the assumptions of Theorem
4.1 are satisfied for ε = εR. If uopt is the solution of (7) and the subspace Sρ
is such that

‖uopt − Πuopt‖ ≤ ‖uopt‖εP

for some εP ∈ (0, 1). Then the total error of the solutions ûreg = Ψr̂ produced391

by Algorithm 1 satisfy the bound392

‖uopt − ûreg‖
‖uopt‖

≤
(

1 + εP

√
κ(A)

)√
κ(G)

εR

1− εR

+
(

1 +
√
κ(A)

)
εP. (42)

Proof. We can start with the estimate

‖uopt − ûreg‖
‖uopt‖

≤ ‖uopt − ureg‖
‖uopt‖

+
‖ureg − ûreg‖
‖uopt‖

.

Using the estimate from Theorem 4.2 we get

‖uopt − ureg‖
‖uopt‖

≤
(

1 +
√
κ(A)

) ‖uopt − Πuopt‖
‖uopt‖

≤
(

1 +
√
κ(A)

)
εP.

It remains to bound the other term. Since Ψ has orthogonal columns we
obtain from Theorem 4.1

‖ureg − ûreg‖
‖ureg‖

≤
√
κ(G)

εR

1− εR

=⇒ ‖ureg − ûreg‖
‖uopt‖

≤ ‖ureg‖
‖uopt‖

√
κ(G)

εR

1− εR

.

Since we have shown in the proof of Theorem 4.2 that

ureg = Πuopt + ΨG−1ΨTA(I − Π)uopt

we can estimate

‖ureg‖ ≤ ‖Πuopt‖+‖ΨG−1ΨTA(I−Π)uopt‖ ≤ ‖uopt‖+
√
κ(A)‖(I−Π)uopt‖.
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As before, we have used the fact that

ΨG−1ΨTA = ΨVXΣ−1
X UT

XY =⇒ ‖ΨG−1ΨTA‖ ≤
√
κ(A).

From ‖uopt − Πuopt‖ ≤ εP‖uopt‖ it follows that

‖ureg‖
‖uopt‖

≤ 1 + εP

√
κ(A),

which completes the proof.393

If we assume that εP

√
κ(G) ≈ 1, then the error estimate from Corollary

4.3 states, with small leading constants, that

‖uopt − ûreg‖
‖uopt‖

≤ O
(

(εR + εP)
√
κ(A)

)
.

It therefore makes sense to have a sketching error εR that is of the same order394

as the projection error εP. In practice we found that projection errors of395

roughly 1% to 10% can be expected so that the sketching induced error isn’t396

very harmful if we choose the sample size as in Theorem 4.1 with εR = 0.1.397

As illustrated in (40) and (41), the accuracy in our approach is limited by398

both, the subspace projection and sketching error. The proposed method399

is therefore most useful when a moderate error of 1%-10% is acceptable in400

each query. In situations where the solutions of the FEM system are used401

for further computations that require substantially more accurate solutions402

it would be necessary to select a large number of basis elements and thus403

a large number of samples as well. This makes the queries computationally404

more expensive and the approach much less appealing.405

5. Numerical results406

To test the performance of Algorithm 1 we consider the finite element
formulation of the elliptic equation (1) with homogeneous Dirichlet boundary
conditions u = 0 on ∂Ω and a forcing term derived from a piecewise constant
approximation of the function

f(x) =

{
5 if

√
(x1 + 1

2
)2 + x2

2 + x2
3 ≤ 0.3,

0 otherwise,
.
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We discretise the model on a spherical domain Ω (d = 3) of unit radius407

comprising k = 684560 unstructured linear tetrahedral elements. This leads408

to a total 116805 nodes of which n = 101509 are situated in the interior of409

the domain. In these circumstances X is a tall matrix with 2053680 rows,410

the stiffness matrix A has dimensions 101509× 101509 and the sample space411

is [2053680]. To test how out sketching algorithm performs in increasing412

problem dimensions, we run some tests on a finer discretisation of the domain413

with k = 1688869 elements and 315744 with n = 257374 are in the interior,414

yielding sample space of dimension 5066607. Given that the corresponding415

results are very similar and result in the same conclusions we haven’t included416

those in full detail.417

We seek to assess the practical performance of our algorithm in terms418

of its speed and accuracy in computing the sketched solution under various419

choices sampling budgets and low-dimensional subspaces, for the proposed420

sampling distribution. To achieve this we perform three benchmark tests421

involving realisations of (i) a uniformly distributed random parameter field,422

(ii) a smoothly varying lognormal random field, and (iii) a random field with423

jump discontinuities. For each of these we run a sequence of N = 100 simu-424

lations, i.e. p queries, and record timings and error measures on average. For425

each realisation we compute also the conventional FEM solution to provide426

a reference for comparison. The high-dimensional uopt is computed using427

Matlab’s built-in A\b command [27]. Given that this is not very efficient428

and thus not the best performance benchmark we have additionally provided429

times corresponding to the computation of an approximate, i.e. stopped at430

10% error tolerance, solution uPCG using a preconditioned conjugate gradient431

(PCG) method. Our code was implemented in Matlab R2018b and executed432

on a workstation equipped with two 14-core Intel Xeon dual processors, run-433

ning Linux NixOS with 384GB RAM.434

In the offline phase of Algorithm 1 we form a low-dimensional ONB for435

the projection by computing the last eigenfunctions of the sparse Laplacian436

matrix discretised on Ω. For this time consuming and memory demanding437

operation we have resorted to the svds and qr commands which avoid com-438

puting the complete spectrum or they produce a sparse ONB respectively.439

The computation of the sampling distribution based on the leverage scores440

of X∆ = Z∆DΨ was also performed once during the offline phase and took441

about 4 hours, using the svd(,’econ’) command. The distribution q was442

sampled with replacement during the online phase of the algorithm using443

uniformly random numbers in combination with histc (which performs a444
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binary search on the cumulative probabilities), which indicatively, for the445

chosen q, outputs a million samples in about 0.3 s. Notice that although446

this sampling implementation is not independent of the dimension kd, there447

exist alternative schemes that can handle arbitrarily large distributions with448

constant complexity [26].449

In the implementation of the algorithm we record the following quantities–450

diagnostics that provide evidence on the performance in the conditions of451

each benchmark: the ratio c′/3k indicating how many of the rows of X are452

used in the sketch, the relative subspace projection error ‖Πuopt−uopt‖/‖uopt‖,453

the upper bound of the randomisation error ‖Ĝ−1G− I‖, the relative regres-454

sion error ‖ûreg−ureg‖/‖ureg‖, and the relative total error ‖ûreg−uopt‖/‖uopt‖.455

In the context of real-time model prediction in manufacturing processes an456

upper limit of 10% for the total error is deemed reasonable.457

5.1. Uniformly random parameter field458

In this first instance we simulate sketched solutions for 100 parameter vec-459

tors p ∈ Rk drawn at random from U
(
[10−1, 102]

)
. Five sets of simulations460

were performed using ONBs incorporating the last ρ = {50, 100} singular461

functions of the Laplacian. Our focus was on monitoring the trade-off be-462

tween accuracy and time consumption when c = {5 × 105, 106, 5 × 106} iid463

samples are drawn from p. The results are tabulated in table 1.464

Although the values in p vary over four orders of magnitude, the param-465

eter has a homogeneous expectation within the domain and thus overall the466

algorithm yields sketched solutions at 10% or less total error, with only 100467

basis functions. The results show that the sampling is highly non-uniform468

since even in the case where a million idd samples were taken these involved469

only 41074, a mere 6%, of the rows of X. The sketching-induced error factor470

‖Ĝ−1G − I‖ appears to reduce almost linearly with the number of sam-471

ples c. Comparing the relative subspace projection ‖Πuopt − uopt‖ and total472

‖ûreg−uopt‖ errors note that for ‖Ĝ−1G−I‖ ≈ 1 the later is kept marginally473

larger than the former, which verifies the regularising effect of the projection474

on the sketching-induced noise. It is also important to see that in switching475

from ρ = 50 to ρ = 100 the projection error is halved to 0.03, however the476

number of samples necessary to yield the same levels of the error increases by477

about 5 times. For relative error tolerances around the 10% mark, the times478

recorded for the smaller mesh are about 0.5 s, while by comparison the time479

for computing a solution uPCG using a preconditioned conjugate gradient480

solver (up to the same 10% error tolerance) took 2.40 s (on average from 100481
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ρ c [106] time [s] c′/3k ‖Πuopt−uopt‖
‖uopt‖ ‖Ĝ−1G− I‖ ‖ûreg−ureg‖

‖ureg‖
‖ûreg−uopt‖
‖uopt‖

50 0.5 0.25 0.04 0.07 1.60 0.07 0.09
50 1 0.46 0.06 0.07 1.07 0.05 0.08
100 0.5 0.34 0.04 0.03 3.99 0.11 0.11
100 1 0.52 0.06 0.03 2.30 0.06 0.07
100 5 2.36 0.11 0.03 0.77 0.02 0.04

Table 1: Numerical results for the tests performed with p ∼ U([10−1, 102]). The quantities
above are averages over 100 runs with different p realisations. The results show the impact
of c and ρ on the various error components and the computing times. Note that for
a sufficiently large c the total error is only marginally larger than the projection error,
which manifest the regularising effect of the projection on the sketching induced error.

runs) on the smaller mesh (n = 101509). Computing a PCG solution on the482

larger grid (n = 257374) took on average 3.46 s with relative improvements483

similar to those on the smaller mesh for a 10% error tolerance.484

The trade-off between speed and accuracy can be seen by comparing the485

results in the first and last rows of the table 1 where the algorithm achieves a486

4% total error, when the projection error is at 3%, after five million samples.487

On the other hand, solutions within a 10% error margin, when the projection488

error is at 7%, are obtained in less than 0.5 s, which is about 5 times faster489

than computing a comparable PCG solution. The histograms in figure 1490

provide a further insight on how the various error components vary within491

the ensemble of the 100 problems. We point out that the numerical results492

are in good agreement with the assertion of Theorem 4.1. For the example493

shown in figure 1, i.e. when ρ = 50 and the error tolerance is ε = 10%,494

our theorem predicts c = 15ρ log(15ρ)β−1ε−2 ≈ 5.0 · 105β−1 samples which is495

consistent to the observed c = 1 when β−1 ≈ 2. In the histograms we see that496

the sketching error virtually never exceeds 10% and that ‖Ĝ−1G−I‖ exhibits497

the same pattern as ‖uopt − ureg‖/‖uopt‖ which supports the claim that this498

quantity is driving the sketching error. Similar observations can be made for499

the other cases of table 1. Figure 1 also shows that, although their magnitude500

is comparable, the variability in the projection error is much smaller than501

that of the sketching error. This is not surprising as the sketching is an502

intrinsically random method while the differences in the projection are only503

due to perturbations in the parameter.504
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(a) Relative projection error (b) Error in sketched system Ĝ

(c) Relative sketching error (d) Relative total error

Figure 1: Histograms showing the variation in the various error quantities relating to the
performance of our algorithm, as recorded in the table 1 for 100 different realisations of
the p vector from U([10−1, 102]) of the code with ρ = 50 and c = 1 million.
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5.2. Smooth parameter field505

In the second benchmark we turn our attention to parameter functions506

with smooth spatial variation like those encountered in the context of un-507

certainty quantification for PDEs [6]. As the anticipated FEM solution is508

smooth we maintain the bases used in 5.1. In this case, the parameter p is509

a lognormal random field given by p
.
= exp(b), where b is a zero-mean Gaus-510

sian random field with Whittle-Matérn covariance function with smoothness511

parameter ν > 0 given by512

Cb(x, y) =
Var[b]

2ν−1Γ(ν)
(‖x− y‖M)ν Kν (‖x− y‖M) , x, y ∈ Ω, (43)

where Γ(ν) is the Gamma function, ‖x‖2
M = xTM−1x is the weighted Eu-513

clidean norm with positive definite matrix M and Kν is the order ν > 0514

modified Bessel function of the second kind. Here we use ν = 15/2, M1/2 =515

diag(1/5, 1/5, 1/5) and Var[b] = 1. We draw realisations of p by calculating516

once the Karhunen-Loève expansion of b and then drawing iid from N (0, 1).517

The results presented in table 2 show a similar performance to the uni-518

formly random case in subsection 5.1. The suitability of the low-dimensional519

subspace is evidenced by the 7% relative projection error attained at ρ = 50.520

Sketched solutions within an error tolerance of 10% were computed in less521

than 1 s. The timings of the PCG solutions were similar to those correspond-522

ing to the uniformly random parameter fields from the previous section and523

took approximately 5 times longer to compute. Further, note that the total524

error is within a 2% margin from the projection error, which demonstrates525

the effectiveness of our sketching regularisation approach, apart from the test526

with ρ = 100 and c = 1 where ‖Ĝ−1G− I‖ is considerably higher, implying527

that c was insufficiently small for that test. This observation is consistent528

with our error bound in (4.1). Comparing the results for (ρ = 50, c = 5)529

and (ρ = 100, c = 1) shows that in the former case, although using half the530

number of basis functions and five times more samples, due to the larger531

projection error, the total error is still 1% larger than that of the later. The532

images presented in figure 2 correspond to one of the simulations in this533

benchmark with ρ = 100 and c = 1 million, illustrating a cross section of the534

profile of p, the exact FEM solution, the sketched solution and the relative535

error between the two.536
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p

(a) Parameter field p

u

(b) Optimal solution uopt

(c) Sketched solution ûreg (d) Error of the sketched solution

Figure 2: At the top left (a), a view of a lognormal field p sampled from the Whittle-
Mattérn class, and to its right (b) the corresponding view of uopt. Below to the left (c),
the sketched projected solution ûreg and to its right (d) the profile of the relative error
between uopt and ûreg. All illustrations correspond to cross-sections of 3-dimensional
functions at z = 0.
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ρ c [106] time [s] c′/3k ‖Πuopt−uopt‖
‖uopt‖ ‖Ĝ−1G− I‖ ‖ûreg−ureg‖

‖ureg‖
‖ûreg−uopt‖
‖uopt‖

25 0.5 0.23 0.04 0.15 0.73 0.05 0.16
50 1 0.45 0.06 0.07 0.95 0.04 0.08
50 5 1.99 0.12 0.07 0.35 0.02 0.07
100 1 0.56 0.06 0.03 1.97 0.05 0.06
100 5 2.16 0.12 0.03 0.65 0.04 0.04

Table 2: Numerical results for the tests with lognormal random field drawn from a Whittle-
Matérn model with a smooth covariance. The algorithm yields solutions with less than
10% error with as few as 50 basis functions. Similar to the uniformly random case in table
1, the total errors are sustained close to the projection errors when ‖Ĝ−1G− I‖ < 1.

5.3. Non-smooth parameter field537

A more challenging benchmark test is to consider the FEM solution for
a parameter field with non-smooth variation. In this case it is natural to
anticipate that any significant jump discontinuities in the profile of p will
have an adverse effect on the condition number of the stiffness matrix [19].
For our simulations we choose a piecewise constant approximation of the
positive function

p(x)
.
= 9.1 + sgn(x1) + 3sgn(x2) + 5sgn(x3) + 0.1U

(
[0, 1]

)
which is discontinuous along the three axes. The sign function sgn : R→ R538

is given by sgn(x) = x/|x| when x 6= 0 and sgn(0) = 0. In constructing the539

projection subspace we found that the smooth basis utilised in the previous540

cases was not appropriate to this case and we thus resorted in a sparse ONB541

taking a subset of the columns of the sparse unitary matrix computed from542

the QR decomposition of the Laplacian.543

The results in table 3 suggest that the chosen basis is not very appropriate544

since not only the number of basis functions is substantially larger, but also545

the reduction in the projection error for a 100% increase in ρ is quiet marginal.546

In turn, this increase in the dimension of Ĝ affects the level of sketching547

error, as even with c = 5 million samples ‖Ĝ−1G − I‖ > 1. Consequently,548

this has a profound effect on timings which are slightly worse than those549

corresponding to a PCG approach. For the tests for (ρ = 2 × 103, c = 106)550

and (ρ = 2 × 103, c = 5 × 106) notice that increasing the samples by five551

times does not yield a significant improvement in the results, which is likely552

triggered by the large κ(A) ≈ 105 in the error term of Theorem 4.2 which553

causes the ‖ureg − uopt‖ to grow.554
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ρ c [106] time [s] c′/3k ‖Πuopt−uopt‖
‖uopt‖ ‖Ĝ−1G− I‖ ‖ûreg−ureg‖

‖ureg‖
‖ûreg−uopt‖
‖uopt‖

1000 1 2.67 0.06 0.07 4.61 0.01 0.26
1000 5 5.96 0.12 0.05 1.25 0.01 0.26
2000 1 4.87 0.06 0.02 77.36 0.02 0.08
2000 5 9.95 0.12 0.03 9.64 0.01 0.08

Table 3: Numerical results for the non-smooth parameter field. In this case the algorithm
requires a far more extensive basis, and thus considerably more samples and computing
time to yield solutions within the required 10% error margin.

6. Conclusions555

We have considered expediting the solution of the finite element method556

equations arising from the discretisation of elliptic PDEs on high-dimensional557

models. Taking into consideration the multi-query context and the smooth558

profile of the FEM solution, we proposed a practical sketch-based algorithm559

that involves projection onto lower-dimensional subspace and sketching us-560

ing a generic, sampling distribution derived from the leverage scores of a tall561

matrix associated with the Laplacian operator. We have elaborated on the562

impact of the projection in reducing the dimensionality as well as mitigating563

the effects of sketching noise. The performance of our method was evaluated564

in a series of benchmark tests of FEM simulations that demonstrated sub-565

stantial speed improvements at the cost of a small compromise in accuracy566

when the stiffness matrix is well conditioned.567
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