

# THE UNIVERSITY of EDINBURGH

## Edinburgh Research Explorer

### Global Assessment of Mendelian Stroke Genetic Prevalence in 101 635 Individuals From 7 Ethnic Groups

#### Citation for published version:

Grami, N, Chong, M, Lali, R, Mohammadi-Shemirani, P, Henshall, DE, Rannikmae, K & Paré, G 2020, 'Global Assessment of Mendelian Stroke Genetic Prevalence in 101 635 Individuals From 7 Ethnic Groups', *Stroke*, pp. STROKEAHA119028840. https://doi.org/10.1161/STROKEAHA.119.028840

#### Digital Object Identifier (DOI):

10.1161/STROKEAHA.119.028840

#### Link:

Link to publication record in Edinburgh Research Explorer

**Document Version:** Peer reviewed version

Published In: Stroke

#### **General rights**

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

#### Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.



#### SUPPLEMENTAL MATERIAL

#### **Supplemental Methods**

#### Identifying Candidate Mendelian Stroke Genes

To identify relevant Mendelian stroke genes, MEDLINE and Embase were searched for relevant articles published in English from January 1, 1990 to June 12, 2018. In consultation with a health sciences librarian, a search strategy was created in four parts: (1) terms specific to the outcome including "stroke", "ictus" and "intracerebral hemorrhage"; (2) terms highlighting the occurrence of the outcome including "prevalence" and "penetrance"; (3) terms related to disease inheritance such as "monogenic", "Mendelian", and "hereditary"; and (4) terms related to the cause of disease such as "mutation" or "variation".

#### The search strategy encompassed the following:

January 1st, 1990 to June 12th, 2018 [only in humans, only English] in Embase, OVID MEDLINE Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid MEDLINE(R) 1946-Present exp STROKE/ OR stroke\* OR ictus OR ischemi\* OR hemorrhag\* OR intracerebral adj1 hemorrhage OR infarct\* AND exp PREVALENCE/ OR prevalen\* OR occurrence OR penetran\* AND monogenic OR Mendelian OR hereditary OR exp GENES, DOMINANT OR dominant OR exp GENES, RECESSIVE OR recessive OR single adj1 gene AND exp MUTATION OR mutation\* OR variation OR non-synonymous

Eligible publications were screened for potentially relevant genetic loci and new studies discussing novel loci published after the initial search were also included. Only studies that denoted genetic variants in certain individuals were included. The maximum age referenced in articles was limited to 70 years old and stroke attributable to antecedent head trauma or sympathomimetic drugs led to article exclusion. Most importantly, only genes that were shown to lead to stroke as a prevailing clinical manifestation were analyzed. Genes were excluded if 1) stroke was not a primary feature, 2) there was an absence of clear evidence of Mendelian inheritance, 3) the gene was encoded in the mitochondrial genome. A total of 39 articles were included from 880 unique publications. Overall, 18 candidate genes (Table VI) were found to be directly implicated in the development of stroke and followed a Mendelian inheritance pattern.

#### gnomAD Population Data

The Genome Aggregation Database (gnomAD) is the largest publicly-available population dataset to date and makes summary-level genetic data available for the wider scientific community.<sup>1</sup> Research was approved by the Hamilton Integrated Research Ethics Board. gnomAD ethics approval is overseen by the Broad Institute's Office of Research Subject Protection and the Partners Human Research Committee, and informed consent was obtained from all participants. Only samples from individuals who were not ascertained for having a neurological condition in a neurological case/control study were used in this study (gnomAD v2.1.1 non-neuro subset). The dataset comprised genetic information from 101,635 unrelated individuals sequenced by whole-exome sequencing from dozens of international contributing projects. Individuals known to be affected by severe pediatric disease as well as their first-degree relatives were removed.

Principal component analysis (PCA) organized gnomAD participants into seven distinct ethnic groups by ancestry: African/African-American (AFR), Latino/Admixed American (AMR), Ashkenazi Jewish (ASJ), East Asian (EAS), Finnish European (FIN), Non-Finnish European (NFE), and

South Asian (SAS). A number of unassigned individuals classified as Other (OTH) did not visibly cluster with any of the seven major populations and were not analyzed.

#### Variant Annotation, Filtering and Classification

A web-based version of ANNOVAR was used to annotate variant mutation effects based on ENSEMBL transcripts.<sup>2</sup> Only rare non-synonymous mutations within the 18 genes were analyzed in the present study. Non-synonymous mutations included any variants which are predicted to alter the primary amino acid sequence of the protein product; missense, inframe insertion/deletion, frameshift, start gain/loss, stop gain/loss, and splice site variants were included. In gnomAD these variants were listed as "loss of function (LoF)" and "missense". Variants with dubious annotation and/or quality were removed. Rare variants were defined as those having a minor allele frequency (MAF) <0.001 within the gnomAD v2.1.1 (non-neuro) dataset. This MAF threshold was applied within each ethnic subdivision of gnomAD (AFR, AMR, ASJ, EAS, FIN, NFE, SAS) and for each variant class. If a variant was common (MAF $\geq$ 0.001) in a single ethnic group, then it was excluded from analysis. The remaining variants were deemed to be globally rare. Several *bona fide* pathogenic mutations were spiked into MAF calculations after the MAF threshold was established. Two well-established pathogenic founder *NOTCH3* variants with MAF>0.001 were included in the analysis (R544C and R1231C). One well-established *RNF213* pathogenic founder variant with MAF>0.001 was included (R4810K). These founder mutations were included irrespective of frequency. Based on cumulative minor allele frequencies, carrier frequencies were calculated and used to estimate the prevalence of putatively disease-causing mutations for each gene.

#### Definition of Pathogenic Clinical Variants

Pathogenic clinical variants encompassed three subgroups of mutation types.

- 1. Firstly, canonical disease-causing (CDC) mutations were extracted from gnomAD. These variants were directly relevant to clinical cases and followed highly stereotypical patterns consistent with known disease pathways. Rare variants were categorized as CDC mutations if they strongly resembled reported disease-causing mutations from genetic databases: The Online Mendelian Inheritance of Man compendium (OMIM) and/or the National Institutes of Health's Genetic Home reference (NIH-GHR).
- 2. Next, suspected pathogenic variants associated with the gene of interest systematically found in literature or large case series were extracted from gnomAD.
- 3. Lastly, variants associated with the gene and disorder of interest that were unambiguously classified as pathogenic or likely pathogenic in ClinVar were extracted from gnomAD.<sub>3</sub>

Note: *NOTCH3* cysteine-sparing variants, while searchable in gnomAD non-neuro, were excluded from analysis since their pathogenicity is still debated.4

Baseline disease prevalence estimates were found by searching the rare disease registry, Orphanet, and clinical presentation was described in the National Institutes of Health's Genetics Home Reference.

Twelve genes (*ABCC6*, *CECR1*, *COL3A1*, *COL4A1*, *COL4A2*, *COLGALT1*, *GLA*, *HTRA1*, *KRIT1*, *NOTCH3*, *RNF213*, and *TREX1*) were found to exhibit pathogenic clinical mutations. Only *NOTCH3* and *COL4A1*, however, presented CDC mutations. *NOTCH3* mutations that involved a gain

or loss of cysteine in one of the 34 epidermal growth factor-like repeat (EGFR) domains (ENSG00000074181) (residues 40-1373) and *COL4A1* glycine-altering variants in the triple-helical domain (ENSG00000187498) (residues 173-1440) were included.<sub>5,6</sub>

#### Using CADD to Predict Variant Effect

CADD v1.4 utilizes in-silico algorithms to predict variant deleteriousness of any non-synonymous mutations based on biochemical characteristics and sequence conservation. CADD scores expanded variant inclusion criteria to encompass all rare non-synonymous mutations with PHRED-scaled C-scores >20.00 and MAF<0.001. These mutations rank among the top 1% of deleterious variants and are more likely to be implicated in disease development. This mutation class lacks the specificity of pathogenic clinical variants but may allow for novel variants associated with disease to be determined.<sup>7</sup>

#### All Non-Synonymous Variants

The most inclusive mutation class encompassed all non-synonymous variants located anywhere in the gene of interest, regardless of deleteriousness (MAF<0.001).

#### **Supplemental Tables**

| Gene Locus | P-Value   |
|------------|-----------|
| ABCC6      | 1.9E-06   |
| CECR1      | 2.5E-04   |
| COL3A1     | 9.5E-02   |
| COL4A1     | 7.8E-07   |
| COL4A2     | 3.6E-01   |
| COLGALT1   | 7.3E-02   |
| GLA        | 6.4E-01   |
| HTRA1      | 2.3E-05   |
| KRIT1      | 1.3E-02   |
| NOTCH3     | < 2.2E-16 |
| RNF213     | < 2.2E-16 |
| TREX1      | 7.9E-02   |

Table I: Comparing Wildtype and Alternate Allele Counts for Pathogenic Clinical Variants among gnomAD v2.1.1 (non-neuro) Subpopulations

|               | Ethnicity |        |       |        |        |       |        |  |  |  |  |  |  |
|---------------|-----------|--------|-------|--------|--------|-------|--------|--|--|--|--|--|--|
| Gene          | SAS       | EAS    | ASJ   | AFR    | NFE    | FIN   | AMR    |  |  |  |  |  |  |
| ABCC6         | 21.94     | 27.92  | 5.16  | 19.82  | 15.00  | 5.58  | 17.59  |  |  |  |  |  |  |
| APP           | 8.70      | 10.32  | 1.61  | 11.88  | 6.34   | 1.67  | 7.87   |  |  |  |  |  |  |
| CCM2          | 7.06      | 5.08   | 1.94  | 5.84   | 6.01   | 1.56  | 2.49   |  |  |  |  |  |  |
| CECR1         | 6.01      | 2.38   | 0.64  | 3.71   | 3.49   | 2.16  | 6.49   |  |  |  |  |  |  |
| COL3A1        | 13.07     | 12.82  | 1.29  | 8.59   | 8.44   | 1.55  | 9.92   |  |  |  |  |  |  |
| COL4A1        | 12.74     | 8.23   | 0.98  | 12.35  | 11.42  | 3.62  | 12.73  |  |  |  |  |  |  |
| COL4A2        | 17.39     | 18.90  | 6.40  | 18.42  | 17.71  | 7.52  | 21.39  |  |  |  |  |  |  |
| COLGALT1      | 9.97      | 10.58  | 1.94  | 11.34  | 9.04   | 0.91  | 9.75   |  |  |  |  |  |  |
| CST3          | 1.09      | 0.30   | 0.78  | 0.77   | 0.77   | 0     | 1.44   |  |  |  |  |  |  |
| CTSA          | 3.46      | 5.59   | 0.64  | 6.43   | 3.58   | 2.75  | 4.00   |  |  |  |  |  |  |
| GLA           | 0.42      | 0.79   | 0     | 2.15   | 1.52   | 0     | 0.74   |  |  |  |  |  |  |
| HTRA1         | 4.67      | 4.23   | 0.64  | 3.24   | 4.61   | 3.20  | 7.01   |  |  |  |  |  |  |
| ITM2B         | 1.21      | 2.39   | 0.64  | 1.98   | 1.24   | 0.24  | 2.20   |  |  |  |  |  |  |
| KRIT1         | 6.15      | 4.77   | 2.26  | 6.54   | 5.24   | 1.91  | 4.33   |  |  |  |  |  |  |
| <i>NOTCH3</i> | 27.39     | 34.64  | 8.28  | 32.09  | 20.67  | 5.26  | 24.59  |  |  |  |  |  |  |
| PDCD10        | 0.85      | 0.45   | 0.32  | 0.99   | 0.76   | 0     | 0.66   |  |  |  |  |  |  |
| RNF213        | 49.96     | 41.50  | 8.95  | 27.71  | 29.13  | 8.74  | 34.61  |  |  |  |  |  |  |
| TREX1         | 5.10      | 6.27   | 0.32  | 5.24   | 3.83   | 0.84  | 2.36   |  |  |  |  |  |  |
| Total         | 197.18    | 197.15 | 42.79 | 179.08 | 148.81 | 47.51 | 170.18 |  |  |  |  |  |  |

Table II: CADD-Predicted Deleterious Variant Carrier Frequency (per 1000) Stratified by gnomAD v2.1.1 (non-neuro) Subpopulation

|          |        |        | Ethnici | ity    |        |       |        |
|----------|--------|--------|---------|--------|--------|-------|--------|
| Gene     | SAS    | EAS    | ASJ     | AFR    | NFE    | FIN   | AMR    |
| ABCC6    | 38.98  | 47.61  | 7.19    | 40.86  | 31.30  | 12.80 | 32.73  |
| APP      | 14.93  | 13.13  | 1.93    | 15.62  | 9.05   | 2.65  | 10.95  |
| ССМ2     | 9.42   | 8.16   | 2.38    | 9.00   | 7.94   | 1.80  | 6.78   |
| CECR1    | 13.73  | 6.41   | 1.61    | 9.26   | 10.40  | 3.24  | 14.23  |
| COL3A1   | 16.68  | 20.95  | 2.03    | 13.22  | 11.68  | 1.55  | 13.52  |
| COL4A1   | 30.00  | 23.30  | 2.99    | 22.88  | 20.61  | 4.93  | 24.12  |
| COL4A2   | 37.27  | 34.28  | 9.68    | 28.55  | 27.40  | 11.09 | 36.57  |
| COLGALT1 | 14.10  | 14.31  | 3.22    | 18.90  | 14.15  | 3.12  | 15.00  |
| CST3     | 5.88   | 2.25   | 1.54    | 2.90   | 2.09   | 0.57  | 3.15   |
| CTSA     | 6.09   | 13.43  | 2.48    | 14.51  | 9.15   | 3.11  | 9.64   |
| GLA      | 4.30   | 1.38   | 0.43    | 6.11   | 4.61   | 0.49  | 4.11   |
| HTRA1    | 6.42   | 4.90   | 1.50    | 5.58   | 5.73   | 3.44  | 8.23   |
| ITM2B    | 2.78   | 5.82   | 1.29    | 5.01   | 2.76   | 0.60  | 3.68   |
| KRIT1    | 8.96   | 10.44  | 2.26    | 10.49  | 7.32   | 4.19  | 6.56   |
| NOTCH3   | 42.58  | 47.10  | 10.52   | 46.99  | 32.69  | 8.37  | 39.14  |
| PDCD10   | 1.77   | 1.34   | 0.32    | 2.10   | 2.75   | 0     | 1.38   |
| RNF213   | 107.47 | 107.69 | 22.92   | 91.86  | 78.52  | 22.00 | 96.94  |
| TREX1    | 9.22   | 12.39  | 3.22    | 10.12  | 6.95   | 3.08  | 6.69   |
| Total    | 370.56 | 374.90 | 77.51   | 353.98 | 285.11 | 87.03 | 333.39 |

**Table III**: Non-Synonymous Variant Carrier Frequency (per 1000) Stratified by gnomAD v2.1.1 (non-neuro) Subpopulation

| 19       |                      |                             | Reference  | Alternate | Protein Consequence        | Annotation           | SAS AF        | EAS AF   | ASJ AF        | AFR AF   | NFE AF               | FIN AF   | AMR AF        |
|----------|----------------------|-----------------------------|------------|-----------|----------------------------|----------------------|---------------|----------|---------------|----------|----------------------|----------|---------------|
|          | 15289890             | rs199638166                 | А          | С         | p.Cys1222Gly               | Missense             | 0             | 0        | 0             | 6.22E-05 | 2.25E-04             | 0        | 0             |
| 19       | 15289986             | rs377099118                 | G          | А         | p.Arg1190Cys               | Missense             | 1.63E-04      | 1.50E-04 | 0             | 0        | 3.37E-05             | 0        | 0             |
| 19       | 15295828             | rs532100840                 | G          | А         | p.Arg767Cys                | Missense             | 0             | 4.60E-04 | 0             | 0        | 0                    | 4.02E-04 | 0             |
| 19       | 15296215             | rs144163298                 | G          | А         | p.Arg717Cys                | Missense             | 3.29E-05      | 1.51E-04 | 0             | 1.32E-04 | 4.65E-05             | 0        | 0             |
| 19       | 15289953             | rs772172068                 | G          | А         | p.Arg1201Cys               | Missense             | 3.27E-05      | 7.49E-05 | 0             | 0        | 6.74E-05             | 0        | 6.56E-05      |
| 19       | 15297997             | rs754554486                 | G          | А         | p.Arg587Cys                | Missense             | 0             | 2.24E-04 | 0             | 0        | 0                    | 0        | 1.97E-04      |
| 19       | 15298024             | rs769773673                 | G          | А         | p.Arg578Cys                | Missense             | 0             | 7.47E-05 | 0             | 6.20E-05 | 2.25E-05             | 0        | 1.64E-04      |
| 19       | 15297722             | rs760768552                 | G          | А         | p.Arg640Cys                | Missense             | 0             | 2.24E-04 | 0             | 6.17E-05 | 1.12E-05             | 0        | 6.55E-05      |
| 19       | 15298084             | rs75068032                  | G          | А         | p.Arg558Cys                | Missense             | 0             | 0        | 0             | 0        | 5.60E-05             | 0        | 0             |
| 19       | 15290208             | rs60373464                  | G          | А         | p.Arg1143Cys               | Missense             | 0             | 7.45E-05 | 0             | 0        | 2.23E-05             | 0        | 0             |
| 19       | 15295249             | rs776115188                 | TGGCATCGTG | Т         | p.Pro805_Cys807del         | Inframe Deletion     | 0             | 7.46E-05 | 0             | 0        | 0                    | 0        | 0             |
| 19       | 15291915             | rs775964142                 | G          | Α         | p.Arg951Cys                | Missense             | 0             | 7.84E-05 | 1.68E-04      | 0        | 0                    | 0        | 0             |
| 19       | 15297737             | rs753801611                 | G          | Α         | p.Arg635Cys                | Missense             | 0             | 7.45E-05 | 0             | 0        | 0                    | 0        | 3.28E-05      |
| 19       | 15289926             | rs758961316                 | G          | А         | p.Arg1210Cys               | Missense             | 3.27E-05      | 0        | 0             | 0        | 1.12E-05             | 0        | 0             |
| 19       | 15291029             | rs1320508682                | А          | G         | p.Cys1061Arg               | Missense             | 3.27E-05      | 0        | 0             | 0        | 1.12E-05             | 0        | 0             |
| 19       | 15291810             | rs763321998                 | А          | G         | p.Cys986Arg                | Missense             | 3.64E-05      | 0        | 0             | 0        | 1.33E-05             | 0        | 0             |
| 19       | 15291942             | rs777577687                 | С          | А         | p.Gly942Cys                | Missense             | 0             | 0        | 0             | 0        | 2.46E-05             | 0        | 0             |
| 19       | 15296182             | rs1057519101                | G          | А         | p.Arg728Cys                | Missense             | 0             | 0        | 0             | 0        | 2.32E-05             | 0        | 0             |
| 19       | 15295135             | rs558392935                 | С          | Т         | p.Cys846Tyr                | Missense             | 0             | 7.46E-05 | 0             | 0        | 0                    | 0        | 0             |
| 19       | 15295804             | rs1383763025                | А          | G         | p.Cys775Arg                | Missense             | 0             | 1.15E-04 | 0             | 0        | 0                    | 0        | 0             |
| 19       | 15297937             | rs777751303                 | G          | А         | p.Arg607Cys                | Missense             | 0             | 7.46E-05 | 0             | 0        | 0                    | 0        | 0             |
| 19       | 15288794             | rs1396345163                | G          | С         | p.Cys1315Trp               | Missense             | 0             | 0        | 0             | 0        | 5.00E-05             | 0        | 0             |
| 19       | 15289641             | rs1339695535                | С          | Т         | p.Cys1277Tyr               | Missense             | 3.64E-05      | 0        | 0             | 0        | 0                    | 0        | 0             |
| 19       | 15289747             | rs769660847                 | G          | A         | p.Arg1242Cys               | Missense             | 0             | 0        | 0             | 0        | 1.13E-05             | 0        | 0             |
| 19       | 15289949             | rs754523402                 | C          | G         | p.Cys1202Ser               | Missense             | 0             | 0        | 0             | 0        | 0                    | 0        | 3.28E-05      |
| 19       | 15289982             | rs1192888680                | C          | G         | p.Cys1191Ser               | Missense             | 0             | 0        | 0             | 0        | 0                    | 0        | 3.28E-05      |
| 19       | 15290279             | rs1266914122                | С          | T         | p.Cys1119Tyr               | Missense             | 0             | 0        | 0             | 0        | 1.12E-05             | 0        | 0             |
| 19       | 15291004             | rs1438064001                | T          | C         | p.Tyr1069Cys               | Missense             | 0             | 0        | 0             | 0        | 0                    | 5.98E-05 | 0             |
| 19<br>19 | 15291918             | rs1378535955                | A          | С         | p.Cys950Gly                | Missense             | 0             | 0        | 0             | 0        | 0                    | 6.19E-05 | 0<br>3.34E-05 |
| 19       | 15291969             | rs749778923                 | A          | C<br>C    | p.Cys933Gly                | Missense             | 0             | 0        | 0             | 0        | 0                    | 0        | 3.34E-05<br>0 |
| 19       | 15292508<br>15292598 | rs1447534769<br>rs757098265 | A<br>C     | -         | p.Cys891Gly                | Missense<br>Missense | 0             | 0        | 0             | 0        | 0                    | 0        | 4.64E-05      |
| 19       | 15292598             | rs760081167                 | G          | A<br>T    | p.Gly861Cys<br>p.Cys729Ter | Stop Gained          | 0             | 0        | 0<br>1.67E-04 | 0        | 0                    | 0        | 4.64E-05      |
| 19       | 15296177             | rs1250956327                | G          | A         | p.Cys/291er<br>p.Arg680Cys | Missense             | 0<br>3.27E-05 | 0        | 1.6/E-04<br>0 | 0        | 0                    | 0        | 0             |
| 19       | 15296404             | rs1350049644                | T          | A         | p.Ser664Cys                | Missense             | 0             | 0        | 0             | 0        | 1.12E-05             | 0        | 0             |
| 19       | 15290432             | rs778350156                 | C          | T         | p.Cys608Tyr                | Missense             | 0             | 0        | 0             | 0        | 1.12E-03<br>1.13E-05 | 0        | 0             |
| 19       | 15297933             | rs764148985                 | G          | A         | p.Cys0081yr                | Missense             | 0             | 0        | 0             | 0        | 1.13E-05             | 0        | 0             |
| 19       | 15298087             | rs1317994194                | C          | A         | p.Gly557Cys                | Missense             | 3.27E-05      | 0        | 0             | 0        | 0                    | 0        | 0             |
| 19       | 15298704             | rs1202763005                | G          | A         | p.Arg532Cys                | Missense             | 0             | 0        | 0             | 1.18E-04 | 0                    | 0        | 0             |
| 19       | 15299808             | rs1325111374                | C          | CA        | p.Cys457LeufsTer15         | Frameshift           | 0             | 0        | 0             | 0        | 0                    | 0        | 3.34E-05      |
| 19       | 15302831             | rs775267348                 | G          | A         | p.Arg207Cys                | Missense             | 0             | 0        | 0             | 0        | 1.13E-05             | 0        | 0             |
| 19       | 15303013             | rs1236699193                | C          | T         | p.Cys146Tyr                | Missense             | 0             | 0        | 0             | 0        | 0                    | 0        | 3.33E-05      |
| 19       | 15303053             | rs137852642                 | G          | A         | p.Arg133Cys                | Missense             | 0             | 0        | 0             | 0        | 0                    | 6.33E-05 | 0             |
| 19       | 15296443             | rs376046941                 | C          | A         | p.Gly667Cys                | Missense             | 0             | 0        | 0             | 0        | 0                    | 0        | 0             |
| 19       | 15298126             | rs201118034                 | G          | A         | p.Arg544Cys                | Missense             | 9.81E-05      | 3.66E-03 | 0             | 0        | 0                    | 0        | 3.28E-05      |
| 19       | 15289863             | rs201680145                 | G          | A         | p.Arg1231Cys               | Missense             | 5.36E-03      | 0        | 0             | 0        | 3.15E-04             | 0        | 6.56E-04      |

Table IV: Pathogenic Clinical Variants Associated with CADASIL in gnomAD v2.1.1 (non-neuro)

Legend: SAS = South Asian, EAS = East Asian, ASJ = Ashkenazi Jewish, AFR = African/African-American, NFE = Non-Finnish European, FIN = Finnish European, AMR = Latino/Admixed American, AF = Allele Frequency

| Chromosome | Position | rsID         | Reference | Alternate | Protein Consequence | Annotation | SAS AF   | EAS AF   | ASJ AF   | AFR AF   | NFE AF   | FIN AF   | AMR AF   |
|------------|----------|--------------|-----------|-----------|---------------------|------------|----------|----------|----------|----------|----------|----------|----------|
| 19         | 15308327 | rs200595885  | G         | А         | p.Arg61Trp          | Missense   | 6.57E-05 | 7.56E-05 | 3.32E-04 | 1.99E-04 | 2.55E-04 | 0        | 3.30E-05 |
| 19         | 15302857 | rs140914494  | G         | А         | p.Ala198Val         | Missense   | 0        | 2.25E-04 | 0        | 0        | 5.65E-05 | 0        | 0        |
| 19         | 15302858 | rs375682932  | С         | Т         | p.Ala198Thr         | Missense   | 0        | 0        | 0        | 0        | 3.39E-05 | 5.99E-05 | 3.28E-05 |
| 19         | 15299803 | rs370186772  | С         | Т         | p.Ala459Thr         | Missense   | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| 19         | 15272105 | rs372833545  | С         | Т         | p.Gly2112Ser        | Missense   | 0        | 3.89E-04 | 0        | 0        | 4.37E-05 | 0        | 0        |
| 19         | 15298793 | rs778571943  | G         | А         | p.Ser502Phe         | Missense   | 0        | 0        | 0        | 1.17E-04 | 1.41E-04 | 7.40E-05 | 4.84E-05 |
| 19         | 15296089 | rs1442324683 | Т         | А         | p.Thr759Ser         | Missense   | 0        | 0        | 0        | 0        | 1.14E-05 | 0        | 0        |
| 19         | 15289998 | rs1400946198 | С         | G         | p.Val1186Leu        | Missense   | 0        | 0        | 0        | 0        | 1.12E-05 | 0        | 0        |
| 19         | 15303235 | rs1470690834 | А         | G         | p.Val98Ala          | Missense   | 0        | 0        | 0        | 0        | 1.15E-05 | 0        | 0        |
| 19         | 15289686 | rs143684274  | С         | А         | p.Arg1262Leu        | Missense   | 0        | 0        | 0        | 6.61E-05 | 1.17E-04 | 6.13E-05 | 0        |
| 19         | 15302288 | rs769567750  | G         | А         | p.Thr328Ile         | Missense   | 0        | 0        | 0        | 0        | 1.13E-05 | 0        | 0        |
| 19         | 15299072 | rs376728138  | Т         | C         | p.Asn489Ser         | Missense   | 7.14E-05 | 0        | 0        | 0        | 7.39E-05 | 1.89E-04 | 4.54E-04 |
| 19         | 15291825 | rs143695196  | G         | A         | p.His981Tyr         | Missense   | 0        | 0        | 0        | 0        | 9.32E-05 | 0        | 1.11E-04 |

**Table V**: Cysteine-Sparing Variants Associated with CADASIL in gnomAD v2.1.1 (non-neuro) (MAF<0.001)</th>

| Gene                   | Genetic Disorder                                                                                                                                                                                                   | Mode of<br>Inheritance                               | Clinical Manifestation                                                                                                                                                            | Disease Prevalence   |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|
| NOTCH3                 | CADASIL                                                                                                                                                                                                            | AD                                                   | Migraine with aura, mood disturbance, depression, dementia, epileptic seizures                                                                                                    | 1 in 25,000 - 50,000 |  |
| HTRA1                  | CARASIL                                                                                                                                                                                                            | AR                                                   | Spasticity, dementia, alopecia, gait disturbance,<br>lumbago, spondylosis deformans, disc herniation                                                                              | Unknown              |  |
| KRIT1, CCM2,<br>PDCD10 | Familial cerebral<br>cavernous<br>malformations                                                                                                                                                                    | AD                                                   | Epileptic seizures, headaches, paralysis,<br>auditory and visual impairment                                                                                                       | 1 in 5000 -10,000    |  |
| APP, CST3,<br>ITM2B    | Hereditary cerebral amyloid angiopathy                                                                                                                                                                             | AD                                                   | Drowsiness, headaches, seizures, vomiting, dementia                                                                                                                               | Unknown              |  |
| RNF213                 | Moyamoya disease                                                                                                                                                                                                   | Unknown                                              | New small fragile cerebral vessel networks,<br>headaches, chorea                                                                                                                  | 1 in 9500 - 30,000   |  |
| COL3A1                 | Vascular Ehlers-Danlos<br>Syndrome (Type IV)                                                                                                                                                                       | AD                                                   | AD Hypermobility, hypotonia, highly elastic skin,<br>abnormal scar formation                                                                                                      |                      |  |
| ABCC6                  | Pseudoxanthoma<br>elasticumARCervical and axillary papules, Ocular peau d'orange<br>lesions and angioid streaks, hypertension, peripheral<br>artery disease, coronary artery disease, gastrointestinal<br>bleeding |                                                      | 1 in 25,000 -100,000                                                                                                                                                              |                      |  |
| GLA                    | Fabry disease                                                                                                                                                                                                      | X-Linked                                             | Acroparesthesia, hypohidrosis, angiokeratoma, corneal<br>opacity, tinnitus, chronic kidney disease,<br>cardiomyopathy                                                             | 1 in 3000            |  |
| COL4A1                 | <i>COL4A1</i> -related small vessel diseases                                                                                                                                                                       | AD                                                   | Porencephaly, intracranial aneurysms, migraine with<br>aura, retinal arteriolar tortuosities and hemorrhage,<br>cataracts, Axenfeld-Rieger anomaly, nephropathy,<br>muscle cramps | Unknown              |  |
| COL4A2                 | COL4A2-related small vessel diseases                                                                                                                                                                               | AD                                                   | Porencephaly, cataracts                                                                                                                                                           | Unknown              |  |
| CECR1                  | Deficiency of ADA2                                                                                                                                                                                                 | AR                                                   | Livedo reticularis, livedo racemosa,<br>hepatosplenomegaly, systemic vasculitis                                                                                                   | < 1 in 1,000,000     |  |
| TREX1                  | Retinal vasculopathy<br>with cerebral<br>leukodystrophy                                                                                                                                                            | AD                                                   | Visual impairment, dementia, headache                                                                                                                                             | Unknown              |  |
| CTSA                   | CARASAL                                                                                                                                                                                                            | Lower cranial nerve dysfunction (vertigo, dysphagia, |                                                                                                                                                                                   | Unknown              |  |
| COLGALT1               | COL4A1 and COL4A2-<br>related small vessel<br>diseases       AR       Porencephaly, frequent skin eruption, microscopic<br>hematuria                                                                               |                                                      | Unknown                                                                                                                                                                           |                      |  |

Table VI: Genetic Loci Associated with Mendelian Stroke

| Ethnicity | Pathogenic Clinical<br>Variant Carrier Frequency | CADD-Predicted Deleterious<br>Variant Carrier Frequency | Total Non-Synonymous<br>Variant Carrier Frequency |
|-----------|--------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|
| SAS       | 20.09                                            | 197.18                                                  | 370.56                                            |
| EAS       | 28.35                                            | 197.15                                                  | 374.90                                            |
| ASJ       | 3.25                                             | 42.79                                                   | 77.51                                             |
| AFR       | 7.14                                             | 179.08                                                  | 353.98                                            |
| NFE       | 12.89                                            | 148.81                                                  | 285.11                                            |
| FIN       | 7.67                                             | 47.51                                                   | 87.03                                             |
| AMR       | 11.84                                            | 170.18                                                  | 333.39                                            |

Table VII: Mendelian Stroke Carrier Frequency (per 1000) by gnomAD v2.1.1 (non-neuro) Subpopulation and Variant Class

|          |             | Gen         | otype Call R | ate (%) [SD | %]          |             |             |
|----------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|
|          | Ethnicity   |             |              |             |             |             |             |
| Gene     | AFR         | AMR         | ASJ          | EAS         | FIN         | NFE         | SAS         |
| ABCC6    | 93.7 [15.1] | 95.9 [12.2] | 95.6 [13.3]  | 96.5 [9.7]  | 95.6 [15.1] | 94.1 [15.1] | 96.3 [11.8] |
| APP      | 96.6 [13.9] | 98.1 [7.6]  | 98.3 [6.4]   | 97.6 [9.3]  | 95.8 [16.8] | 96.8 [11.8] | 98.4 [6.2]  |
| CCM2     | 96.0 [14.4] | 97.9 [7.9]  | 98.0 [6.4]   | 97.5 [9.7]  | 94.8 [18.9] | 96.4 [12.3] | 98.4 [6.4]  |
| CECR1    | 99.9 [0.5]  | 99.9 [0.1]  | 99.9 [0.2]   | 100.0 [0.1] | 99.7 [1.2]  | 99.9 [0.4]  | 100.0 [0.1] |
| COL3A1   | 97.0 [9.7]  | 98.0 [6.9]  | 98.4 [5.2]   | 98.1 [7.0]  | 98.8 [4.2]  | 97.3 [9.3]  | 98.3 [5.7]  |
| COL4A1   | 97.4 [11.4] | 98.8 [6.3]  | 98.8 [4.8]   | 98.5 [10.3] | 98.4 [10.0] | 98.2 [8.3]  | 98.9 [5.4]  |
| COL4A2   | 90.2 [11.3] | 95.2 [10.2] | 96.1 [8.5]   | 93.4 [8.7]  | 97.3 [5.0]  | 94.4 [10.9] | 96.2 [8.3]  |
| COLGALT1 | 95.6 [15.1] | 96.5 [12.1] | 97.3 [9.4]   | 96.6 [13.1] | 95.4 [12.6] | 95.9 [13.7] | 97.4 [9.7]  |
| CST3     | 64.6 [35.7] | 79.7 [21.7] | 83.9 [18.7]  | 71.3 [29.8] | 88.4 [13.0] | 72.6 [27.9] | 82.4 [19.5] |
| CTSA     | 97.9 [7.3]  | 99.1 [4.1]  | 99.0 [3.6]   | 98.9 [4.3]  | 98.4 [6.0]  | 98.5 [5.6]  | 99.3 [3.3]  |
| GLA      | 80.8 [0.5]  | 79.8 [0.2]  | 74.7 [0.4]   | 75.5 [0.1]  | 72.7 [0.2]  | 72.0 [0.4]  | 62.1 [0.6]  |
| HTRA1    | 83.3 [33.1] | 90.5 [19.8] | 92.0 [16.7]  | 86.1 [29.5] | 82.5 [33.2] | 86.9 [26.0] | 91.7 [17.5] |
| ITM2B    | 89.8 [23.0] | 95.2 [11.0] | 95.9 [9.3]   | 92.5 [17.2] | 97.3 [5.9]  | 93.7 [14.4] | 95.6 [10.1] |
| KRIT1    | 99.8 [0.4]  | 99.9 [0.1]  | 99.9 [0.1]   | 100.0 [0.0] | 99.7 [0.6]  | 99.8 [0.5]  | 99.9 [0.1]  |
| NOTCH3   | 85.7 [21.5] | 91.6 [14.7] | 91.7 [13.3]  | 91.2 [16.2] | 88.3 [20.4] | 88.0 [18.8] | 92.9 [12.5] |
| PDCD10   | 99.8 [0.4]  | 99.8 [0.2]  | 99.9 [0.1]   | 99.9 [0.1]  | 99.6 [0.6]  | 99.9 [0.1]  | 99.9 [0.2]  |
| RNF213   | 92.5 [17.8] | 95.5 [11.1] | 96.3 [9.0]   | 94.7 [13.2] | 89.5 [26.2] | 93.4 [15.7] | 96.4 [8.9]  |
| TREX1    | 99.0 [1.6]  | 99.9 [0.1]  | 99.9 [0.3]   | 99.6 [0.8]  | 98.7 [3.1]  | 99.4 [0.9]  | 100.0 [0.1] |

**Table VIII**: Mean gnomAD v2.1.1 (non-neuro) Genotype Call Rate Stratified by Ethnicity and Gene

| Gene     | Overall Proportion of Sequences with ≥ 20X Coverage |
|----------|-----------------------------------------------------|
| ABCC6    | 88.3                                                |
| APP      | 97.2                                                |
| CCM2     | 96.7                                                |
| CECR1    | 99.2                                                |
| COL3A1   | 94.1                                                |
| COL4A1   | 95.7                                                |
| COL4A2   | 86.8                                                |
| COLGALTI | 79.0                                                |
| CST3     | 65.1                                                |
| CTSA     | 97.1                                                |
| GLA      | 98.6                                                |
| HTRA1    | 74.5                                                |
| ITM2B    | 90.9                                                |
| KRIT1    | 99.1                                                |
| NOTCH3   | 77.0                                                |
| PDCD10   | 98.7                                                |
| RNF213   | 90.7                                                |
| TREX1    | 98.5                                                |

**Table IX**: Overall Proportion of Sequences in gnomAD v2.1.1 (non-neuro) with  $\geq$  20X Coverage across 18 Mendelian Stroke Genes

| Gene          | Variant Class                       | Total Number of<br>Unique Mutations | Frameshift | Inframe<br>Deletion | Inframe<br>Insertion | Missense | Splice Acceptor | Splice Donor | Start Gained | Start Lost | Stop Gained | Stop Lost |
|---------------|-------------------------------------|-------------------------------------|------------|---------------------|----------------------|----------|-----------------|--------------|--------------|------------|-------------|-----------|
| ABCC6         | Pathogenic Clinical Variants        | 95                                  | 7          | 0                   | 0                    | 76       | 3               | 1            | 0            | 0          | 8           | 0         |
|               | CADD-Predicted Deleterious Variants | 478                                 | 0          | 0                   | 0                    | 453      | 0               | 0            | 0            | 0          | 25          | 0         |
|               | Non-Synonymous Variants             | 949                                 | 43         | 6                   | 3                    | 844      | 10              | 13           | 0            | 0          | 30          | 0         |
| APP           | Pathogenic Clinical Variants        | 0                                   | 0          | 0                   | 0                    | 0        | 0               | 0            | 0            | 0          | 0           | 0         |
|               | CADD-Predicted Deleterious Variants | 267                                 | 0          | 0                   | 0                    | 260      | 0               | 0            | 0            | 0          | 7           | 0         |
|               | Non-Synonymous Variants             | 372                                 | 4          | 9                   | 5                    | 337      | 4               | 4            | 0            | 0          | 9           | 0         |
| CCM2          | Pathogenic Clinical Variants        | 0                                   | 0          | 0                   | 0                    | 0        | 0               | 0            | 0            | 0          | 0           | 0         |
|               | CADD-Predicted Deleterious Variants | 142                                 | 0          | 0                   | 0                    | 140      | 0               | 0            | 0            | 0          | 2           | 0         |
|               | Non-Synonymous Variants             | 246                                 | 3          | 0                   | 0                    | 235      | 0               | 5            | 0            | 0          | 2           | 1         |
| CECR1         | Pathogenic Clinical Variants        | 19                                  | 2          | 0                   | 0                    | 15       | 1               | 0            | 0            | 0          | 1           | 0         |
|               | CADD-Predicted Deleterious Variants | 124                                 | 0          | 0                   | 0                    | 115      | 0               | 0            | 0            | 0          | 9           | 0         |
|               | Non-Synonymous Variants             | 296                                 | 11         | 2                   | 0                    | 257      | 7               | 4            | 0            | 3          | 12          | 0         |
| COL3A1        | Pathogenic Clinical Variants        | 2                                   | 0          | 0                   | 0                    | 2        | 0               | 0            | 0            | 0          | 0           | 0         |
|               | CADD-Predicted Deleterious Variants | 332                                 | 0          | 0                   | 0                    | 330      | 0               | 0            | 0            | 0          | 2           | 0         |
|               | Non-Synonymous Variants             | 475                                 | 2          | 0                   | 2                    | 466      | 2               | 1            | 0            | 0          | 2           | 0         |
| COL4A1        | Pathogenic Clinical Variants        | 49                                  | 0          | 0                   | 0                    | 49       | 0               | 0            | 0            | 0          | 0           | 0         |
|               | CADD-Predicted Deleterious Variants | 325                                 | 0          | 0                   | 0                    | 325      | 0               | 0            | 0            | 0          | 0           | 0         |
|               | Non-Synonymous Variants             | 649                                 | 1          | 2                   | 0                    | 640      | 3               | 3            | 0            | 0          | 0           | 0         |
| COL4A2        | Pathogenic Clinical Variants        | 2                                   | 0          | 0                   | 0                    | 1        | 0               | 0            | 0            | 0          | 1           | 0         |
|               | CADD-Predicted Deleterious Variants | 453                                 | 0          | 0                   | 0                    | 434      | 0               | 0            | 0            | 0          | 19          | 0         |
|               | Non-Synonymous Variants             | 860                                 | 43         | 6                   | 3                    | 770      | 12              | 5            | 0            | 2          | 19          | 0         |
| COLGALTI      | Pathogenic Clinical Variants        | 1                                   | 0          | 0                   | 0                    | 1        | 0               | 0            | 0            | 0          | 0           | 0         |
|               | CADD-Predicted Deleterious Variants | 215                                 | 0          | 0                   | 0                    | 206      | 0               | 0            | 0            | 0          | 9           | 0         |
|               | Non-Synonymous Variants             | 346                                 | 17         | 3                   | 1                    | 308      | 3               | 4            | 0            | 0          | 10          | 0         |
| CST3          | Pathogenic Clinical Variants        | 0                                   | 0          | 0                   | 0                    | 0        | 0               | 0            | 0            | 0          | 0           | 0         |
|               | CADD-Predicted Deleterious Variants | 36                                  | 0          | 0                   | 0                    | 35       | 0               | 0            | 0            | 0          | 1           | 0         |
|               | Non-Synonymous Variants             | 83                                  | 4          | 1                   | 2                    | 70       | 0               | 3            | 0            | 0          | 3           | 0         |
| CTSA          | Pathogenic Clinical Variants        | 0                                   | 0          | 0                   | 0                    | 0        | 0               | 0            | 0            | 0          | 0           | 0         |
|               | CADD-Predicted Deleterious Variants | 151                                 | 0          | 0                   | 0                    | 140      | 0               | 0            | 0            | 1          | 10          | 0         |
|               | Non-Synonymous Variants             | 285                                 | 12         | 6                   | 1                    | 247      | 4               | 3            | 0            | 1          | 11          | 0         |
| GLA           | Pathogenic Clinical Variants        | 3                                   | 0          | 0                   | 0                    | 3        | 0               | 0            | 0            | 0          | 0           | 0         |
|               | CADD-Predicted Deleterious Variants | 29                                  | 0          | 0                   | 0                    | 29       | 0               | 0            | 0            | 0          | 0           | 0         |
|               | Non-Synonymous Variants             | 81                                  | 0          | 0                   | 0                    | 81       | 0               | 0            | 0            | 0          | 0           | 0         |
| HTRA1         | Pathogenic Clinical Variants        | 11                                  | 0          | 0                   | 0                    | 8        | 0               | 0            | 0            | 0          | 3           | 0         |
|               | CADD-Predicted Deleterious Variants | 140                                 | 0          | 0                   | 0                    | 135      | 0               | 0            | 0            | 0          | 5           | 0         |
|               | Non-Synonymous Variants             | 191                                 | 4          | 0                   | 2                    | 177      | 1               | 2            | 0            | 0          | 5           | 0         |
| ITM2B         | Pathogenic Clinical Variants        | 0                                   | 0          | 0                   | 0                    | 0        | 0               | 0            | 0            | 0          | 0           | 0         |
|               | CADD-Predicted Deleterious Variants | 69                                  | 0          | 0                   | 0                    | 66       | 0               | 0            | 0            | 1          | 2           | 0         |
|               | Non-Synonymous Variants             | 110                                 | 3          | 4                   | 2                    | 98       | 0               | 0            | 0            | 1          | 2           | 0         |
| KRITI         | Pathogenic Clinical Variants        | 6                                   | 1          | 0                   | 0                    | 0        | 0               | 1            | 0            | 0          | 4           | 0         |
|               | CADD-Predicted Deleterious Variants | 201                                 | 0          | 0                   | 0                    | 190      | 0               | 0            | 0            | 0          | 10          | 1         |
| Noran         | Non-Synonymous Variants             | 316                                 | 8          | 4                   | 0                    | 288      | 1               | 3            | 0            | 0          | 11          | 1         |
| NOTCH3        | Pathogenic Clinical Variants        | 46                                  | 1          | 1                   | 0                    | 43       | 0               | 0            | 0            | 0          | 1           | 0         |
|               | CADD-Predicted Deleterious Variants | 642                                 | 0          | 0                   | 0                    | 631      | 0               | 0            | 0            | 0          | 11          | 0         |
| <b>DD C</b> = | Non-Synonymous Variants             | 1019                                | 16         | 1                   | 4                    | 972      | 7               | 6            | 0            | 0          | 13          | 0         |
| PDCD10        | Pathogenic Clinical Variants        | 0                                   | 0          | 0                   | 0                    | 0        | 0               | 0            | 0            | 0          | 0           | 0         |
|               | CADD-Predicted Deleterious Variants | 39                                  | 0          | 0                   | 0                    | 38       | 0               | 0            | 0            | 1          | 0           | 0         |
| 01/02/2       | Non-Synonymous Variants             | 74                                  | 0          | 1                   | 0                    | 72       | 0               | 0            | 0            | 1          | 0           | 0         |
| RNF213        | Pathogenic Clinical Variants        | 1                                   | 0          | 0                   | 0                    | 1        | 0               | 0            | 0            | 0          | 0           | 0         |
|               | CADD-Predicted Deleterious Variants | 1005                                | 0          | 0                   | 0                    | 935      | 0               | 0            | 0            | 0          | 70          | 0         |
|               | Non-Synonymous Variants             | 2614                                | 105        | 23                  | 5                    | 2346     | 25              | 24           | 0            | 1          | 83          | 2         |
| TREX1         | Pathogenic Clinical Variants        | 1                                   | 0          | 0                   | 0                    | 1        | 0               | 0            | 0            | 0          | 0           | 0         |
|               | CADD-Predicted Deleterious Variants | 106                                 | 0          | 0                   | 0                    | 101      | 2               | 0            | 0            | 2          | 1           | 0         |
|               | Non-Synonymous Variants             | 256                                 | 29         | 2                   | 6                    | 209      | 3               | 2            | 0            | 4          | 1           | 0         |

**Table X**: Variant Annotations by Gene and Mutation Class in gnomAD v2.1.1 (non-neuro)

Note: Because pathogenic variants were established through literature rather than with bioinformatic criteria, certain variants were included as pathogenic but not deleterious according to CADD's PHRED score.

|          |       |       |      | Ethnicity |       |      |       |
|----------|-------|-------|------|-----------|-------|------|-------|
| Gene     | SAS   | EAS   | ASJ  | AFR       | NFE   | FIN  | AMR   |
| ABCC6    | 4.52  | 8.40  | 2.19 | 2.48      | 5.95  | 3.46 | 5.68  |
| CECR1    | 1.18  | 0.43  | 0.20 | 0.49      | 1.48  | 0.19 | 1.74  |
| COL3A1   | 0     | 0     | 0    | 0.23      | 0.03  | 0    | 0     |
| COL4A1   | 0.72  | 0.65  | 0.20 | 2.54      | 2.18  | 0.65 | 1.45  |
| COL4A2   | 0.13  | 0     | 0    | 0         | 0.02  | 0    | 0     |
| COLGALT1 | 0     | 0     | 0    | 0.12      | 0     | 0    | 0     |
| GLA      | 0     | 0     | 0    | 0.15      | 0.05  | 0    | 0     |
| HTRA1    | 0.78  | 0.33  | 0    | 0.25      | 0.65  | 1.78 | 0.22  |
| KRIT1    | 0.13  | 0     | 0    | 0         | 0     | 0    | 0.23  |
| NOTCH3   | 11.78 | 11.26 | 0.41 | 0.87      | 1.90  | 1.11 | 2.69  |
| RNF213   | 0.85  | 5.65  | 0    | 0         | 0     | 0    | 0.06  |
| TREX1    | 0     | 0     | 0    | 0         | 0     | 0    | 0.12  |
| Total    | 20.09 | 26.73 | 2.99 | 7.13      | 12.26 | 7.19 | 12.17 |

**Table XI**: Pathogenic Clinical Variant Carrier Frequency (per 1000) Stratified by gnomAD v2.1.1 Subpopulation

#### **Supplemental References**

- 1. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. *BioRxiv*. 2019:531210.
- 2. Yang H, Wang K. Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat Protoc. 2015;10:1556-1566.
- 3. Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, et al. ClinVar: public archive of interpretations of clinically relevant variants. *Nucleic Acids Res.* 2016;44:D862-868.
- 4. Mishra A, Chauhan G, Violleau MH, Vojinovic D, Jian X, Bis JC, Li S, et al. Association of variants in HTRA1 and NOTCH3 with MRIdefined extremes of cerebral small vessel disease in older subjects. *Brain*. 2019;142:1009-1023.
- 5. Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. *Nature*. 1996;383:707-710.
- 6. Volonghi I, Pezzini A, Del Zotto E, Giossi A, Costa P, Ferrari D, et al. Role of COL4A1 in basement-membrane integrity and cerebral small-vessel disease. The COL4A1 stroke syndrome. *Curr Med Chem*. 2010;17:1317-1324.
- 7. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. *Nucleic Acids Res.* 2018;47:D886-894.