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Abstract 42 

 43 

Context: Across pregnancy maternal serum cortisol levels rise up to threefold. It is not known whether 44 

maternal peripheral cortisol metabolism and clearance change across pregnancy, or influence fetal 45 

cortisol exposure and development. 46 

 47 

Objectives: The primary study objective was to compare maternal urinary glucocorticoid metabolites, 48 

as markers of cortisol metabolism and clearance, between the 2nd and 3rd trimester of pregnancy. 49 

Secondary objectives were to test associations of total maternal urinary glucocorticoid excretion, with 50 

maternal serum cortisol levels and offspring birthweight z-score. 51 

 52 

Design, participants and setting: 151 women with singleton pregnancies, recruited from prenatal clinic 53 

at the Pittsburgh site of the Measurement of Maternal Stress (MOMS) study, had 24-hour urine 54 

collections during both the 2nd and 3rd trimester. 55 

 56 

Results: Between the 2nd and 3rd trimester total urinary glucocorticoid excretion increased (ratio of 57 

geometric means (RGM) 1.37, 95% CI 1.22-1.52, p<0.001), and there was an increase in calculated 5β-58 

reductase compared to 5α-reductase activity (RGM 3.41, 95% CI 3.04-3.83, p<0.001). During the 3rd 59 

trimester total urinary glucocorticoid excretion and serum cortisol were negatively correlated     (r=-60 

0.179, p=0.029). Mean total urinary glucocorticoid excretion across both trimesters and offspring 61 

birthweight z-score were positively associated (β=0.314, p=0.001). 62 

 63 

Conclusions: The estimated activity of maternal enzymes responsible for cortisol metabolism change 64 

between the 2nd and 3rd trimester of pregnancy. Additionally, maternal peripheral metabolism and 65 

clearance of cortisol may serve as a novel mechanism impacting fetal cortisol exposure and growth. 66 

 67 
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Précis: Maternal urine was sampled as part of a pregnancy cohort. Estimated cortisol metabolism 68 

changes across pregnancy, and total urinary glucocorticoid excretion is positively associated with fetal 69 

growth.70 
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Introduction 71 

 72 

Glucocorticoids play a critical role in fetal maturation. While a surge in glucocorticoid exposure 73 

towards the end of pregnancy helps prime a fetus for life outside the womb1, excess or inappropriately 74 

timed exposure can adversely programme offspring development2,3. There is growing evidence that 75 

circulating levels of maternal cortisol influence both fetal cortisol exposure and development. Maternal 76 

blood cortisol levels correlate with cortisol levels measured in fetal blood4 and amniotic fluid5. Elevated 77 

cortisol levels measured in maternal blood or saliva are associated with offspring growth restriction and 78 

adverse neurodevelopment and metabolic health6-8. 79 

 80 

Maternal regulation of glucocorticoids changes profoundly across pregnancy, with circulating cortisol 81 

levels rising approximately threefold by delivery9. Multiple factors contribute to maternal 82 

hypercortisolism including rising cortisol binding globulin (CBG)10, placental secretion of corticotropin 83 

releasing hormone (CRH)11, and reduced sensitivity of the hypothalamic-pituitary-adrenal (HPA) axis 84 

to glucocorticoid mediated central negative feedback12. Altered breakdown, clearance and regeneration 85 

of cortisol within maternal peripheral tissues could also influence maternal serum levels and fetal 86 

glucocorticoid exposure.  87 

 88 

Relatively little intact cortisol is excreted from the body passively, with the majority instead being 89 

metabolised to compounds considered more inert before urinary excretion13.  Metabolism of cortisol to 90 

5β-tetrahydrocortisol (THF), and its derivatives α-cortol and β-cortol, and 5α-tetrahydrocortisol (α-91 

THF), are reliant on the activity of A-ring reductases, 5β-reductase, predominantly expressed in the 92 

liver, and 5α-reductase, expressed in both liver and fat. 11β-hydroxysteroid dehydrogenase type 2 (11β-93 

HSD2) acts in the kidney and placenta, converting cortisol to cortisone. In contrast, 11β-hydroxysteroid 94 

dehydrogenase type 1 (11β-HSD1) is most highly expressed in the liver, where it regenerates active 95 

cortisol from inert cortisone. These processes are outlined in figure 1. Peripheral glucocorticoid 96 

metabolism varies as a function of age, gender and obesity and in many disease states14-16.  97 

 98 



 

 

6 

 

The sum of glucocorticoid metabolites measured in a 24-hour sample of urine represents total urinary 99 

glucocorticoid excretion. As the majority of glucocorticoids are excreted in urine this measurement has 100 

also been used as an estimate of glucocorticoid production by the adrenal gland17. Additionally, 101 

comparison of the relative levels of metabolites offers insight into the activity of enzymes converting 102 

cortisol in peripheral tissues. 103 

 104 

To date there has been limited investigation of maternal peripheral glucocorticoid metabolism and 105 

clearance in pregnancy. Longitudinal studies of maternal peripheral glucocorticoid metabolism in 106 

pregnancy have been limited by small sample size18, or have relied on metabolites collected in spot 107 

urine or blood samples that are subject to diurnal variation19,20. There is growing evidence that maternal 108 

peripheral glucocorticoid metabolism and clearance are altered in preeclampsia20-22. There is also 109 

preliminary data supporting a role for peripheral glucocorticoid metabolism influencing fetal 110 

development, with a higher plasma cortisone to cortisol ratio (representing more inert compared to 111 

active glucocorticoid) measured in mothers with psychiatric morbidity during the 3rd trimester, being 112 

associated with higher offspring birthweight23.   113 

 114 

The aims of this study were to assess how maternal urinary glucocorticoid excretion, measured in 24-115 

hour urine, changes between the 2nd and 3rd trimester of pregnancy, and to test the associations of total 116 

urinary glucocorticoid excretion with maternal serum cortisol levels and offspring birth weight z-score. 117 

We tested the hypothesis that total urinary glucocorticoid excretion, as a marker of maternal adrenal 118 

cortisol production, increases across pregnancy, and is negatively associated with offspring birthweight 119 

z-score. 120 

 121 

Materials and Methods 122 

 123 

Participants and clinical protocol 124 

The Measurement of Maternal Stress (MOMS) study was a multisite prospective cohort that recruited 125 

women with singleton pregnancies from antenatal clinics in Pittsburgh, PA, Chicago, IL, Schuylkill 126 
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County, PA and San Antonio, TX between June 2013 and May 2014. Exclusion criteria were fetal 127 

congenital abnormality, chromosomal abnormalities, progesterone use before 14 weeks’ gestation, or 128 

regular maternal corticosteroid use. All participating women gave written informed consent, and the 129 

study protocol was approved by the Institutional Review Board of each site. A description of the cohort 130 

has been presented previously24. 131 

 132 

This study reports data from a subset (151 of 200) of mother-baby dyads, recruited from the Pittsburgh 133 

site, who had 24-hour urine collected for measurement of total glucocorticoids and metabolites on two 134 

occasions during pregnancy, between 12.7 and 22.1 weeks’ gestation (2nd trimester), and between 31.9 135 

and 36.4 weeks’ gestation (3rd trimester).  136 

 137 

Participants also had blood collected for measurement of serum cortisol at study visits during the 2nd 138 

and 3rd trimester. Maternal demographic and medical information including body mass index (BMI), 139 

age, ethnicity, diabetes mellitus, preeclampsia, gestational hypertension and offspring outcomes 140 

including birthweight and birth gestation, were recorded either during study visits, or on review of 141 

participants’ medical records. Offspring birthweight z-scores were calculated according to International 142 

Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st) standards25. 143 

 144 

Laboratory methods 145 

 146 

Serum 147 

Serum was obtained by centrifuging whole blood at 1000 g at 4 °C for 15 minutes, then aliquoting 148 

serum into 2mL cryovials. Cortisol was assessed by radioimmunoassay at the Development, Health and 149 

Disease Research Program’s laboratory at the University of California, Irvine.  10% of samples where 150 

measured in duplicate, and inter-assay and intra-assay CVs were <10%. 151 

 152 

Urinary glucocorticoids 153 
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Urinary glucocorticoid metabolites were analysed by gas chromatography triple quadrupole mass 154 

spectrometry (GC-MS/MS), at the Edinburgh Clinical Research Facility Mass Spectrometry Core  as 155 

previously described26. The inter- and intra-assay CVs were <13%. Analytes included cortisol (F), 156 

cortisone (E), α-THF, THF, α-cortol, β-cortol, THE, α-cortolone and β-cortolone. The sum of these 157 

measured analytes is referred to as total urinary glucocorticoid excretion. 158 

 159 

The following ratios of urinary metabolites were used as parameters to estimate peripheral 160 

glucocorticoid metabolism: 161 

i) 11β-HSD2 activity = F / E 162 

ii) 11β-HSD total activity = (THF + α-THF) / THE. 163 

iii) Relative 5β-reductase and 5α-reductase activity = THF / α-THF 164 

iv) 5α-reductase activity = F / α-THF 165 

v) 5β-reductase metabolism of F = F / (THF + α-cortol + β-cortol) 166 

vi) 5β-reductase metabolism of E = E / (THE + α-cortolone + β-cortolone) 167 

 168 

Statistical Analysis 169 

All analyses were performed using IBM SPSS Statistics Version 24. Data distributions were assessed 170 

for normality visually using histograms. Serum cortisol levels were normally distributed amongst the 171 

study population. Levels of all excreted urinary glucocorticoid metabolites were positively skewed, and 172 

log base 10 transformed prior to statistical analysis.  173 

 174 

Demographic data is presented as mean ± SD. Change of urinary metabolite excretion between the 2nd 175 

and 3rd trimester was tested using paired t tests, and the degree of change is represented through the 176 

ratio of the geometric means (RGM), with 95% confidence intervals. To assess if peripheral metabolism 177 

has a maintained trait component across pregnancy, the rank stability, i.e. the similarity of where 178 

participants’ estimated enzymatic function fell within the study population’s distribution, at the 2nd 179 

compared to the 3rd trimester, was tested by a linear regression model adjusting for the gestation of urine 180 

sampling. The relationship between maternal total urinary glucocorticoid excretion and serum cortisol 181 
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levels was tested using Pearson’s Coefficient within both the whole study population and in a subgroup 182 

of patients with blood sampled before 10 am. Finally, the association of maternal total urinary 183 

glucocorticoid excretion and offspring birthweight z-score was tested by linear regression adjusting for 184 

confounding factors. These included the gestation at urine sampling and maternal ethnicity, smoking 185 

status, age, preeclampsia, gestational hypertension, diabetes mellitus (pre-gestational and gestational), 186 

BMI and gravidity. Associations with birthweight z-score were tested for both 2nd and 3rd trimester 187 

glucocorticoid excretion, and for mean glucocorticoid excretion across pregnancy.  A p-value < 0.05 188 

was considered statistically significant.  189 

 190 

Results 191 

 192 

Demographics 193 

Table 1 shows the characteristics of study participants. Mothers were aged 30.5 ± 5.0 years, with BMI 194 

27.6 ± 7.1 kg/m2, and were predominantly white non-smokers. Mean gestational age at birth was 39.4 195 

± 1.4 weeks, and mean birthweight was 3487 ± 489 grams. 196 

 197 

Changing glucocorticoid levels across pregnancy 198 

Figure 2 and table 2 depict urinary glucocorticoid metabolite excretion for collections during the 2nd 199 

and 3rd trimester. Across pregnancy total urinary glucocorticoid excretion increased (RGM 1.37, 200 

p<0.001).  Excretion of all individual metabolites increased except for α-THF which decreased between 201 

the 2nd and 3rd trimester (RGM 0.55, p<0.001). Assessing individual metabolic pathways, the ratio of F 202 

/ E (RGM 0.90, p<0.001) decreased likely representing increased estimated 11β-HSD2 (inactivation of 203 

cortisol to cortisone) activity across pregnancy. Total body 11β-HSD activity represented by (THF + α-204 

THF) / THE (RGM 1.27, p<0.001) shifted in favour of excretion of cortisol metabolites relative to 205 

cortisone metabolites. The activity of A-ring reductases shifted towards 5β-reductase metabolism 206 

compared to 5α-reductase metabolism with increased THF / α-THF ratio (RGM 3.41, p<0.001).  207 

Between the 2nd and 3rd trimester serum cortisol also increased (ratio of means 1.63, 95% CI 1.40-208 

1.85, p<0.001).  209 
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 210 

Individual stability in peripheral glucocorticoid metabolism 211 

Table 3 and figure 3 represent rank-order stability of total urinary glucocorticoid excretion and estimates 212 

of peripheral metabolism of glucocorticoids for participants across the 2nd and 3rd trimester. Despite the 213 

whole group changes in peripheral glucocorticoid metabolism across pregnancy the relative enzymatic 214 

activity of individual participants compared to the whole group was well maintained across both time 215 

points, with women with higher estimated activity for peripheral glucocorticoid metabolism during the 216 

2nd trimester tending to have higher estimated enzyme activity measured in the third trimester.  217 

 218 

Associations between total urinary glucocorticoid excretion and serum cortisol levels 219 

During the 2nd trimester serum cortisol was not associated with total urinary glucocorticoid excretion 220 

(r=0.076, p=0.358). During the 3rd trimester, total urinary glucocorticoid excretion was negatively 221 

associated with serum cortisol within the whole group (r=-0.179, p=0.029). This association between 222 

3rd trimester serum cortisol and total urinary glucocorticoid excretion was largely driven by the 223 

subgroup of participants with  3rd trimester blood samples taken before 10am (n=66, r=-0.354, p=0.004). 224 

In contrast,  for participants with 3rd trimester blood taken after 10am (n=83, r=-0.096, p= 0.390). 225 

 226 

Associations between total urinary glucocorticoid excretion and infant birthweight z-score 227 

In the adjusted models, there were positive associations between total urinary glucocorticoid excretion 228 

during the 2nd trimester and offspring birth weight z-score (β=0.198,  r-square change 0.028, p=0.033), 229 

total urinary glucocorticoid excretion during the 3nd trimester and offspring birth weight z-score 230 

(β=0.202, r-square change 0.032, p=0.023), and mean total glucocorticoid excretion across both 231 

trimesters with offspring birth weight z-score (β=0.314, r-square change 0.066, p=0.001).  In contrast, 232 

there was no association between mean serum cortisol levels and offspring birthweight z-score.  A 233 

visual representation of maternal glucocorticoid excretion across trimesters according to infant 234 

birthweight quantile is shown in figure 4. 235 

 236 
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Associations between glucocorticoid metabolite ratios, with serum cortisol and infant birthweight 237 

z-score 238 

Having demonstrated that total urinary glucocorticoid excretion was negatively associated with serum 239 

cortisol during the 3rd trimester and positively associated with birthweight z-score, further exploratory 240 

analysis was undertaken to investigate whether these effects were being driven by the action of 241 

individual metabolic pathways.  In this exploratory analysis, higher 3rd trimester serum cortisol was 242 

associated with estimates of reduced 5α-reductase activity (F / α-THF; whole group r=0.168, p=0.041; 243 

venepuncture <10am subgroup r=0.318, p=0.009), and reduced 5β-reductase activity (F / (THF + α-244 

cortol + β-cortol); whole group r=0.206, p=0.012; venepuncture <10am subgroup r=0.281, p=0.022) 245 

and (E / (THE + α-cortolone + β-cortolone); whole group r=0.252, p=0.002; venepuncture <10am 246 

subgroup r=0.251, p=0.042). No associations were seen between 3rd trimester serum cortisol and 247 

estimated 11β-HSD1 or 11β-HSD2 activity.  Additionally, no association were seen between infant 248 

birthweight z-score and urine metabolite ratios. 249 

 250 

 251 

Discussion 252 

 253 

In this study of pregnant women with detailed measurements of glucocorticoid metabolism we have 254 

demonstrated that glucocorticoid metabolism changes across pregnancy, and that total urinary 255 

glucocorticoid excretion is positively associated with offspring birthweight z-score.   256 

 257 

Within the cohort total maternal glucocorticoid excretion increased between the 2nd and 3rd trimester. 258 

This builds on previous observations of increased urinary free cortisol excretion across pregnancy9, and 259 

likely represents an increase in adrenal cortisol release across pregnancy. There were also differences 260 

in the ratios of urinary metabolites between the 2nd and 3rd trimester. This provides evidence that the 261 

global actions of enzymes working to metabolise cortisol in peripheral tissues changes across 262 

pregnancy. A reduced F/E ratio represents increased 11β-HSD2 activity. An increase in (THF + α-THF) 263 

/ THE ratio, in the context of estimated increased 11β-HSD2 likely represents an increase in 11β-HSD1 264 
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activity across pregnancy. The ratio of A-ring reductase metabolism shifted profoundly towards 5β-265 

reductase meta27bolism compared to 5α-reductase metabolism with increased THF / α-THF ratio. A 266 

reduction of 5α-reductase cortisol metabolism is in keeping with results from a study where α-THF 267 

excretion measured in maternal urine rose across the first year postpartum28. The action of 5α-reductase 268 

in pregnancy has received attention due to its important role in converting testosterone to 269 

dihydrotestosterone, with 5α-reductase genetic mutation or pharmacological inhibition causing in utero 270 

under-virilization of male offspring29. 5α-reductase metabolism of progesterone has also been 271 

investigated in the context of parturition, with 5α-reductase type 1 deficient mice failing to undergo 272 

cervical ripening at term30. However, to our knowledge the physiological importance of 5α-reductase 273 

metabolism of cortisol in pregnancy has not previously been considered.   274 

 275 

Changes in glucocorticoid metabolism may offer specific advantages to the mother and fetus. In 276 

addition to controlling systemic cortisol inactivation and clearance, peripherally located enzymes play 277 

an important role in regulating glucocorticoid exposure to specific tissues. This is most commonly 278 

discussed in relation to the kidney, where local 11β-HSD2 acts to prevent excessive activation of 279 

mineralocorticoid receptors by cortisol13.  5α-reductase influences cortisol clearance and action within 280 

the liver, and its activity has been shown to be modifiable either by early life stress31, or by variation in 281 

nutritional demands32,33.  Within pregnancy, marked reduction in 5α-reductase activity during the 3rd 282 

trimester may act to enhance cortisol activity in the liver, allowing mobilisation of fuels at a time of 283 

increased metabolic requirements.   284 

 285 

Alternatively, changing glucocorticoid metabolism across pregnancy may be a bystander influenced by 286 

other physiological changes in the mother across pregnancy.  Maternal glucocorticoid metabolism could 287 

be influenced by a changing inflammatory milieu.  For example it has both been demonstrated that 288 

tumor necrosis factor alpha (TNF-α) rises across pregnancy27, and that inhibiting TNFa in patients with 289 

inflammatory arthritis increases 5α-reductase activity34. Changing biliary physiology may also 290 

influence maternal glucocorticoid metabolism, with bile acids holding the potential to inhibit A-ring 291 

reductases and 11β-HSDs35. Increases in insulin resistance across pregnancy may also influence 292 
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glucocorticoid metabolism. However, insulin sensitizing therapies and weight loss have both previously 293 

been associated with decreases in 5α-reductase activity36,37, making it unlikely that changes in insulin 294 

sensitivity are driving the reductions in 5α-reductase activity seen within the 3rd trimester. There is also 295 

likely to be a placental contribution to maternal whole-body glucocorticoid metabolism estimated 296 

through urinary glucocorticoids. In an ex vivo placental perfusion model the majority of cortisone 297 

converted from cortisol at term gestation was transferred back into the maternal circulation rather than 298 

fetal circulation38.  299 

 300 

During the 2nd trimester there was no association between maternal urinary glucocorticoid excretion 301 

and serum cortisol, whilst during the 3rd trimester higher serum cortisol correlated with lower total 302 

urinary glucocorticoid excretion. Additionally, in exploratory analysis, higher serum cortisol in the third 303 

trimester was associated with lower estimated activity of 5β-reductase and 5α-reductase. Individual 304 

differences in peripheral glucocorticoid metabolism and clearance may influence serum cortisol levels 305 

in the later stages of pregnancy. In healthy non-pregnant populations differences in peripheral 306 

glucocorticoid metabolism are generally not associated with serum cortisol levels, likely due to 307 

compensatory glucocorticoid release by the HPA axis in response to changing negative feedback39,40. 308 

However in critically ill patients reduced peripheral metabolism and clearance of cortisol contributes to 309 

raised serum cortisol levels16.  Throughout pregnancy regulation of the maternal HPA axis changes, 310 

becoming progressively less sensitive to negative feedback by glucocorticoids12. It therefore seems 311 

physiologically plausible that by the 3rd trimester individual differences in glucocorticoid metabolism 312 

and clearance influence serum cortisol levels. 313 

 314 

An unexpected finding was the modest positive association between total urinary glucocorticoid 315 

excretion and offspring birthweight z-score, with maternal total urinary glucocorticoid excretion 316 

measured in the 2nd and 3rd trimesters of pregnancy explaining 6.6% of variance in offspring birthweight 317 

z-score. Previous studies have typically reported a negative association between synthetic 318 

glucocorticoid exposure2, or maternal cortisol levels measured in saliva7 or blood41, with infant 319 

birthweight. A negative association has also previously been reported between urinary free cortisol 320 
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measured in the morning between 18-20 weeks’ gestation and fetal growth42. The relationship between 321 

total urinary glucocorticoid excretion and infant birthweight z-score has not previously been tested. 322 

Increased maternal peripheral metabolism and clearance of glucocorticoids may serve as a mechanism 323 

reducing cortisol exposure to the fetus. This theory is strengthened by the negative association found 324 

between serum cortisol and total urinary glucocorticoids observed in the third trimester.  In the 325 

exploratory analyse no associations were found between birthweight z-score and any of the urinary 326 

metabolite ratios used to estimate peripheral enzymatic function, and so it cannot be concluded that this 327 

relationship is driven through the effects of a single enzyme’s function.   Alternatively, the relationship 328 

between maternal total urinary glucocorticoid excretion and infant birthweight z-score could be 329 

mediated by other maternal factors. For example, increased urinary glucocorticoid excretion has 330 

previously been associated with insulin resistance36, and increased maternal insulin resistance during 331 

pregnancy may also act to increase offspring birthweight43.  332 

 333 

Despite whole group changes in peripheral metabolism across pregnancy, individuals’ rank within the 334 

cohort remained relatively stable with those who had higher calculated enzymatic activity during the 335 

2nd trimester also tending to have higher activity during the 3rd trimester.  This implies that individual’s 336 

peripheral metabolism shows a consistent trait across pregnancy, increasing the likelihood that 337 

peripheral glucocorticoid metabolism could influence fetal exposure to cortisol, and play a role in fetal 338 

development. 339 

 340 

Strengths of this study include the use of a modern technique for accurate quantification of urinary 341 

glucocorticoid metabolites26, the large sample size, and longitudinal study design allowing comparison 342 

of urinary metabolites across pregnancy. Limitations include the fact that there was variation in the time 343 

of day blood samples were collected, that participants did not fast before venepuncture, and the lack of 344 

measurement of other serum glucocorticoid metabolites in addition to cortisol.  345 

 346 

Conclusions  347 

 348 
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Between the 2nd and 3rd trimester the ratios of urinary glucocorticoids, acting as markers of peripheral 349 

metabolism, changed suggesting a relative decrease in 5α-reductase metabolism and relative increase 350 

in 5β-reductase metabolism of cortisol. However inter-individual differences among study participants 351 

were relatively well preserved between the two testing periods. The negative association between total 352 

urinary glucocorticoids and 3rd trimester serum cortisol, along with the positive association between 353 

total urinary glucocorticoids and birthweight z-score, provides preliminary data that peripheral 354 

glucocorticoid metabolism may influence fetal glucocorticoid exposure and fetal growth. 355 
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Figure legends 491 
 492 
Figure 1. Peripheral cortisol metabolism enzymes and metabolites 493 
 494 
Figure 2.  Geometric mean and 95% confidence intervals of glucocorticoid metabolites from 24-hour 495 
urine collections during the 2nd and 3rd trimester.  * p<0.01, ** p<0.001 496 
 497 
Figure 3. Rank correlation across the 2nd and 3rd trimesters of participant total urinary glucocorticoid 498 
excretion or estimated enzymatic function, ** p<001 499 
 500 
Figure 4. Geometric means and 95% confidence intervals of mothers’ mean total urinary 501 
glucocorticoid excretion across trimesters according to offspring birthweight z-score quintile 502 
 503 

Table Legends 504 

Table 1. Maternal, infant and sampling demographics 505 

Table 2. Changes in urinary metabolites excretion and ratios across pregnancy 506 

Table 3. Rank Correlation across the 2nd and 3rd trimesters of participant total urinary glucocorticoid 507 

excretion or estimated enzymatic function 508 

  509 
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Table 1. Maternal, infant and sampling demographics 510 

Maternal demographics Number (%), Mean 
± SD 

Maternal Age (years) 30.5 ± 5.0 
Maternal BMI (kg/m2) 27.6 ± 7.1 
Gravidity  
-1 50 (33.1%) 
-2 41 (27.2%) 
-≥3 60 (39.7%) 
Ethnicity  
-Hispanic White 1 (0.7%) 
-White 118 (78.1%) 
-Black 27 (17.9%) 
-Other 5 (3.3%) 
Current Smoker  
-Yes 10 (6.6%) 
-No 141 (93.4%) 
Preeclampsia  
-Yes 4 (2.8%) 
-No 139 (97.2%) 
Hypertension  
-Yes 15 (10.5%) 
-No 128 (89.5%) 
Diabetes  
-Yes 9 (6.3%) 
-No 134 (93.7%) 
Infant Demographics  
Infant sex  
-Female 61 (42.7%) 
-Male 82 (57.3%) 
Birthweight (grams) 3487 ± 489 
Birth gestation (weeks) 39.4 ± 1.4 
Birthweight Z-Score 0.56 ± 0.99 
Sampling Demographics  
2nd trimester urine sample gestation 
(weeks) 

17.3 ± 2.4 

3rd trimester urine sample gestation 
(weeks) 

33.9 ±1.2 

2nd trimester blood sample gestation 
(weeks) 

16.7 ± 2.4 

3rd trimester blood sample gestation 
(weeks) 

33.3 ± 1.1 

2nd trimester blood sample time 
(hours after midnight) 

11.0 ± 2.2 

3rd trimester blood sample time 
(hours after midnight ) 

10.6 ±2.5 

 511 

Of the 151 participants included in the study the following data was missing: maternal BMI n = 2, 512 

infant demographics and maternal health during pregnancy n = 8,  2nd trimester serum cortisol n = 1, 513 

3rd trimester serum cortisol n = 2. 514 

515 
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Table 2. Changes in urinary metabolites excretion and ratios across pregnancy 516 

 2nd Trimester: Median 
(lower quartile-upper 
quartile) 

3rd Trimester: Median 
(lower quartile-upper 
quartile) 

Change across 
gestations:  
RGM (95% CI) 

Urinary metabolites  
(Mg / 24 hours) 

 

THF 1043 (691-1397) 1768 (1066-3269) 1.88 (1.65 to 2.15)2 
α-THF 494 (331-781) 291 (177-436)  0.55 (0.50 to 0.61)2 
THE 2500 (1588-3579) 2799 (1805-4222)  1.13 (1.04 to 1.23)1 
α-cortol 586 (368-917) 641 (455-1140) 1.19 (1.05 to 1.34)1 
β-cortol 545 (259-947) 849 (540-1410) 1.65 (1.45 to 1.88)2 
α-cortolone 2420 (1589-4473) 3685 (2371-6241) 1.46 (1.25 to 1.71)2 
β-cortolone 632 (424-979) 796 (574-1189) 1.29 (1.13 to 1.47)2 
F 231 (160-315) 272 (215-361) 1.23 (1.13 to 1.35)2 
E 228 (171-292) 316 (227-410) 1.36 (1.26 to 1.48)2 
Total urinary glucocorticoids 9691 (6157-12805) 13523 (8955-18269) 1.37 (1.22 to 1.52)2 
Ratios of metabolites   
11β-HSD2 activity 
= F / E 

0.99 (0.78-1.28) 0.88 (0.73-1.16) 0.90 (0.86 to 0.95)2 

11β-HSD total activity 
= (THF + α-THF) / THE 

0.61 (0.52-0.85) 0.76 (0.48-1.23) 1.27 (1.14 to 1.42)2 

Relative 5β -reductase and 5α 
-reductase activity 
 = THF / α-THF 

1.78 (1.33-2.83) 7.19 (3.64-11.74) 3.41 (3.04 to 3.83)2 

5α -reductase activity 
= F / α-THF 

0.45 (0.27-0.60) 0.98 (0.61-1.51) 2.24 (2.00 to 2.50)2 

5β-reductase metabolism of F 
=  F / (THF + α-cortol + β-
cortol) 

0.10 (0.07-0.14) 0.07 (0.05-0.11) 0.72 (0.65 to 0.81)2 

5β-reductase metabolism of E  
= E / (THE + +α-cortolone+ 
β-cortolone) 

0.04 (0.02-0.06) 0.04 (0.03-0.06) 1.05 (0.96 to 1.15) 

 517 

Paired T-Test (2-tailed) of log transformed urine values. 1p< 0.01, 2p<0.001 518 

 519 

 520 

 521 

522 
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Table 3. Rank Correlation across the 2nd and 3rd trimesters of participant total urinary 523 

glucocorticoid excretion or estimated enzymatic function 524 

 Standardised 
Coefficient, β 

Total urinary glucocorticoids .3872 
11β-HSD2 activity 
= F / E 

.6522 

11β-HSD total activity 
= (THF + α-THF) / THE 

.3522 

Relative 5β -reductase and 5α -reductase 
activity 
 = THF / α-THF 

.5812 

5α -reductase activity 
= F / α-THF 

.4382 

5β-reductase metabolism of F 
=  F / (THF + α-cortol + β-cortol) 

.3282 

5β-reductase metabolism of E  
= E / (THE + +α-cortolone+ β-cortolone) 

.6082 

 525 

Adjusted according to the gestation of urine collection. 2 p<0.001 526 
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