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Abstract    

Prokaryotic whole cell biosensors are effective yet inexpensive, renewable and 

environmentally substitutes for many contemporary sensors and diagnostic devices. 

Unfortunately, many previously constructed prokaryotic biosensors are plagued by 

poor performances, which prohibit their use in real life applications. Biosafety con-

cerns, promiscuous analyte detection, analyte insensitivity, low output dynamic 

range and high background expression are common issues. Engineering principles 

and strategies from the emerging field of synthetic biology offer unprecedented so-

lutions. They accelerate new biosensor developments and improve biosensor be-

haviors. Addition of novel devices and modules from synthetic biology further aug-

ments functions beyond sensing and render them safer. Thanks to this, prokaryotic 

whole cell biosensors have enjoyed a renaissance in recent years, and they hold 

promises to address the increasing demand for marketable biosensors. 
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Introduction 

Whole cell biosensors are domesticated or engineered cells that detect and report 

a target or condition of interest (Daunert et al. 2000; van der Meer and Belkin 2010; 

Wang and Buck 2012; Gui et al. 2017). They are viable alternatives to electronic or 

chemical sensors and have drawn increasing attention over the last three decades. 

Whole cell sensors are biodegradable and can be mass produced using inexpensive 

nutrients. So they are renewable, environmentally friendly, and cost-effective (van 

der Meer and Belkin 2010; Kim et al. 2018). Both prokaryotic and eukaryotic bio-

sensors have been developed. This chapter limits its scope to only prokaryotic sen-

sors, but the principles covered should also apply to their eukaryotic counterparts. 

Prokaryotic biosensors have been researched for various purposes, for instances, 

environment assessment (Stocker et al. 2003; Wang et al. 2013; Huang et al. 2015b; 

Hwang et al. 2016; Kim et al. 2016; Cayron et al. 2017), clinical diagnosis (Duan 

and March 2010; Saeidi et al. 2011; Archer et al. 2012; Gupta et al. 2013; Hwang 

et al. 2014; Kotula et al. 2014; Courbet et al. 2015; Danino et al. 2015; Cayron et 

al. 2017; Daeffler et al. 2017; Riglar et al. 2017; Ho et al. 2018; Watstein and 

Styczynski 2018), and controlled bioprocessing (Zhang and Keasling 2011; Zhang 

et al. 2012). Some less common applications include mineral surveying and 

landmine clearing (Cerminati et al. 2011; Belkin et al. 2017). 

Despite their advantages and demonstrated successes, many prokaryotic whole 

cell biosensors fail to survive in or even reach the competitive biosensor market. A 

recurring concern is biosafety – whole cell biosensors are often subjected to higher 

levels of legal and ethical scrutiny because there is a risk of releasing genetically 

engineered micro-organisms into the wild (Dana et al. 2012). Yet with biosafety 

aside, many prokaryotic biosensors are still leaky with low output dynamic ranges, 

and suffer from unsatisfactory sensitivity and selectivity (Stocker et al. 2003; 

Amaro et al. 2011; De Mora et al. 2011; Siegfried et al. 2012; Wang et al. 2013; 

Huang et al. 2015a; Kim et al. 2016; Merulla and Van Der Meer 2016). Neverthe-

less, recent advancements in synthetic biology have provided numerous solutions. 

Synthetic biology is the rational design of biological systems. It achieves so by 

applying established principles from engineering to biology, and so is highly inter-

disciplinary (Endy 2005; Purnick and Weiss 2009; Cheng and Lu 2012; Wang and 

Buck 2012; Way et al. 2014; Bradley et al. 2016a; Bradley et al. 2016b; Bashor and 

Collins 2018). These principles include: 1) Abstraction: complexity is managed 

through a hierarchy and less relevant information are hidden for clarity. 2) Stand-

ardization: genetic elements are standardized into reusable parts with measurable 

parameters that can be ranked on a common scale. 3) Modularization: genetic parts 

and devices are independent and interchangeable modules with defined functions, 

and 4) Rational and quantitative design: behaviors of biological systems can be de-

scribed and predicted by mathematical models. These principles and concepts ena-

bled synthetic biologists to develop new strategies and devices, which substantially 

enhanced the performances of existing prokaryotic biosensors. In addition, they 

paved the way for developing novel biosensors with augmented capabilities. This 
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chapter thus focuses on how synthetic biology facilitates biosensor development, 

creates tools for improving biosensors and expands their capacities beyond sensing. 

1. Synthetic Biology as an Enabling Platform for Rapid Construction 

and Optimization of Prokaryotic Biosensors 

1.1 A streamlined approach to develop novel prokaryotic biosen-

sors 

Before the advent of genetic engineering, the development of a biosensor relied 

much on serendipity. Many biosensor were byproducts from studying the stress re-

sponse or metabolic pathways of microbes. For instances, Microtox, one of the ear-

liest biosensor, is a bioluminescent bacteria that glow weaker when its metabolism 

is harassed by toxic chemicals (Bulich and Isenberg 1981), and a whole cell naph-

thalene biosensor was developed by random transposition of a luciferase reporter 

into a naphthalene degradation pathway isolated from a soil bacteria (King et al. 

1990). In these examples, the biosensor development processes depended on the 

fortuitous discovery of a species or a strain with desirable responses towards the 

targets, and they were hardly generalizable or readily reproducible. 

In contrast, synthetic biology offered a formalized approach for biosensor devel-

opment. A biosensor can be abstracted as a processor with a sensing module, a pro-

cessing module, and an actuating module (Fig. 1.1a) (van der Meer and Belkin 

2010; Wang and Buck 2012; Bradley and Wang 2015; Bernard and Wang 2017; 

Kim et al. 2018). Any naturally occurring response pathway in a prokaryote can 

also be dissected and classified in a similar fashion. Therefore, development of a 

biosensor is reduced to a task of identifying or creating an input module that can 

respond to the target, and rewiring it to an observable output. 

This framework is illustrated by the classical example of the whole cell sensor 

for detecting arsenic in drinking water. Escherichia coli naturally averts high con-

centrations of arsenic through its endogenous arsenic resistant pathway (Figure 

1.1b) (Cervantes et al. 1994; Nealson et al. 2002; Silver and Phung 2005; Andres 

and Bertin 2016). When bounded by arsenite (III), the ArsR transcription factor 

would de-repress its cognate promoter ParsR which then triggers expression of mo-

lecular pumps that remove arsenite from the cell (Shi et al. 1996; Silver and Phung 

2005; Chen and Rosen 2014; Saha et al. 2017). The ArsR-ParsR transcriptional reg-

ulation can thus be understood as a sensing module, and the genes coding for the 

arsenic efflux pump, as an actuating module. The natural sensing module can then 

be isolated and wired to a downstream reporter GFP and this re-engineered E. coli 

would give higher level of green fluorescence under increased level of arsenic, serv-

ing the purpose of a biosensor (Figure 1.1d). 

This framework is universal and can be adopted to quickly build new prokaryotic 

biosensors because many other sensing modules have also been characterized. The 

majority of these sensing modules worked through either an allosterically controlled 

transcriptional regulator or a bacterial two-component system. The most well stud-

ied examples for the former category include modules for detecting metal ions like 
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mercury (Figure 1.1c and e) and nutrients such as arabinose and lactose  (Misra et 

al. 1985; Barkay et al. 2003; van der Meer and Belkin 2010; Mahr and Frunzke 

2016). Others include modules for reporting quorum sensing molecules or inflam-

mation biomarkers that could indicate infections by pathogens (Lin et al. 2007; 

Saeidi et al. 2011; Archer et al. 2012; Gupta et al. 2013; Hwang et al. 2014; Courbet 

et al. 2015; Daeffler et al. 2017; Riglar et al. 2017). There are also examples for 

hypoxia responsiveness (Anderson et al. 2006; Forbes 2010; Weber and 

Fussenegger 2012; Yu et al. 2012; Danino et al. 2015), aromatic contamination and 

DNT/TNT from landmines (Selifonova and Eaton 1996; Belkin et al. 2017). For 

two-component systems, notable modules include sensors for detecting green, red 

and blue light respectively (Olson et al. 2014; Fernandez-Rodriguez et al. 2017), as 

well as sensors for zinc and lead (Fig. 1.3a) (Wang et al. 2013). For both categories 

of sensing modules, the output from the module is almost always a transcriptional 

output. Therefore, they can be conveniently connected to an output module in a 

“plug-and-play” fashion to drive reporter gene expression. 

1.2 Efficient sensor optimization by standardized and modularized 

genetic parts  

In biotechnology, whole cell mutagenesis remains the canonical technique to im-

prove the characteristics of a strain. While it is still widely used in whole cell bio-

sensor optimization, they have further benefited from the modularization of genetic 

elements. The dissection of gene circuitries into standalone parts, e.g. promoters 

and ribosome binding sites (RBS), encourages the scope of the otherwise global 

random mutagenesis, as well as their manifested effects, to be confined to a local 

region. This is exemplified by the work of Li et al. In pursuit of a better sensing 

module for arsenite, they simultaneously mutated the ArsR coding sequence and the 

ParsR promoter by error prone polymerase chain reaction, and identified mutations 

that reduced leakiness and boosted output dynamic range (to be further explained 

in later sections) (Li et al. 2015). 

Part standardization also led to the appearance of part libraries. Since the length 

of a sequence undergoing mutagenesis is shortened, the combinatorial sequence 

space to be explored is drastically shrunk. Therefore, sequence variation can be 

thoroughly exhausted, and this resulted in a large variety of elements with perfor-

mances that span across the entire activity spectrum. For example, the Anderson 

promoter library was generated from saturation mutagenesis of a constitutive pro-

moter, and there is a community RBS collection on iGEM that confer different 

strengths for translation initiation (http://parts.igem.org). 

They are particularly helpful if only a single part needs to be optimized – a part 

that was too strong and led to undesirable behavior in a biosensor could be swapped 

out by a weaker version effortlessly. This will be illustrated by an example of re-

placing an RBS to reduce biosensor leakiness later in this chapter. In addition, these 

libraries enable full exploration of a design space for expression strength. It has 
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been suggested that a promoter library and an RBS library could be combinatori-

cally combined to optimize expression strength for any gene of interest (Kosuri et 

al. 2013). 

1.3 Biosensor improvement by directed evolution 

Synthetic biology has also provided new techniques for optimizing or altering 

biosensor behaviors through directed evolution, which include phage-assisted con-

tinuous evolution (PACE) (Esvelt et al. 2011) and compartmentalized partnered 

replication (CPR) (Abil et al. 2017). In an example, a biosensor actuated through a 

split T7 RNAP polymerase had improved signal-to-noise ratio after one split half 

was subjected to evolution by PACE (Pu et al. 2017). In another example, the tran-

scription repressor for tryptophan has been evolved by CPR to respond specifically 

to halogenated tryptophan analogs (Ellefson et al. 2018). 

1.4 Development of new sensing modules 

In biosensor development, there is a perennial and insatiable need for new sens-

ing modules for new chemicals, biomarkers or other targets. Due to strong chemical 

specificities in regulators and receptors, existing sensing modules intended for one 

target can rarely fully satisfy the sensing requirement of a different target, even 

though the two targets may be highly similar in structure. Thus, a search for a spe-

cific sensor module is almost always necessary. 

In nature, prokaryotes contribute the most in biodiversity. They thrive in all 

niches, including those inhabitable to other organisms, and respond to countless 

stimuli. If an environment has long been enriched with a compound, it is very likely 

to find in vicinity a prokaryotic dweller evolved to detect and metabolize it (Nealson 

et al. 1991; Cervantes et al. 1994; Nealson et al. 2002). Consequently, a conven-

tional practice to uncover a new biological sensing module is to sample and study 

bacteria in a target-enriched environment. The aforementioned naphthalene biosen-

sor is one of such examples – the naphthalene metabolic pathway originated from a 

strain of Pseudomonas fluorescens living in the soil of a manufactured gas plant. 

This is still routinely practiced but it poses limit in biosensor development. Nowa-

days, there are new strategies to accelerate sensing module discoveries. 

1.4.1 Part mining 

Part mining is the bioinformatics-guided search for biological parts from se-

quenced genomes and is a branch of genome mining. Genetic parts or proteins often 

have orthologs in closely related species which carry out similar tasks and share 

homology in sequences. Therefore, if a part of interest has a define sequence feature, 

orthologs that potentially belong to the same family can be identified by performing 

sequence alignments across multiple genomes. Shortlisted candidates can then be 

synthesized and characterized, and parts that showed desirable responses can be 
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grouped to form a new library. Many sequenced genomes, as well as metagenomes 

from unculturable prokaryotes, have been sequenced and deposited into bioinfor-

matics databases, which become a lucrative resource for parts mining (Johns et al. 

2018). For example, using sequences for a cadmium responsive transcription factor 

from Staphylococcus aureus, researchers discovered a new sensing module for cad-

mium from the genome of Bacillus oceanisediminis, a bacterium that resides in sed-

iment under sea (Kim et al. 2016). 

In addition, some databases contain annotated proteins or parts, so mining can 

also be done via search of keywords in described or predicted biological functions. 

One demonstrated example is the creation of a library of sensing modules for aro-

matic compounds, obtained through part mining from the Uniprot database (Peking 

IGEM 2013). 

1.4.2 Antibody derived domains as universal sensing modules 

Many sensing modules have been derived from natural pathways, but their de-

velopment into biosensor components often requires thorough understanding of the 

underlying biochemistry, which is a time-consuming process. Moreover, some tar-

gets might not have a natural sensing module responsible for its detection. Some 

recent researches sought to circumvent these problems by turning to antibody de-

rived protein domains. 

Antibody derived domains are protein fragments of antibodies created proteolyt-

ically or genetically. The leading example is the single domain antibodies (sdAb) 

(Holliger and Hudson 2005). They retain the variable region responsible for strong 

and specific antigen recognition and binding, but their considerably smaller sizes 

allow stable and soluble expression from bacteria. Most importantly, a novel sdAb 

for any given epitode can be quickly and inexpensively created by screening a syn-

thetic and combinatorial antibody domain library against the epitope. Identified 

sdAb can then be fused with other protein domains that could elicit sensing response 

upon target binding. A proof of concept example was demonstrated by fusion of 

caffeine binding sdAb to a DNA binding domain (Chang et al. 2018). sdAb co-

localized on a caffeine molecule would then allow dimerization of the DNA binding 

domain and restore its function as a transcription repressor. 

2. Tools and Strategies from Synthetic Biology for Optimizing Bio-

sensor Performance 

Many early biosensors have subpar performances compared to their electronic 

or chemical counterparts, rendering them uncompetitive in field applications. In re-

cent years, tools and strategies developed from synthetic biology created new ave-

nues to improve characteristics of whole cell prokaryotic biosensor. There are math-

ematical models that provide quantitative frameworks for sensor improvement (Ang 
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et al. 2013; Mannan et al. 2017), but this section focuses on tools and strategies that 

have been experimentally proven. 

2.1 Properties of a biosensor 

From the perspective of engineering, it is paramount to define measurable prop-

erties so that improvements can be gauged quantitatively. Different metrics are 

available for defining for a whole cell sensor’s performance (Daniel et al. 2013; 

Mannan et al. 2017). The one adopted in this chapter focuses on four important 

aspects most pertinent to applications: selectivity, sensitivity, output dynamic range 

and leakiness (Fig. 1.2). Selectivity is a qualitative property that concerns how well 

the biosensor distinguishes the target of interest among others that are chemically 

similar (Fig. 1.2a). 

The other three properties define characteristics of the response curve of a bio-

sensor, which mathematically describes how a sensor’s output varies with its input 

(Fig. 1.2b). Most biosensors have a sigmoidal response curve that monotonically 

increases with the target concentration. In this sense, the sensitivity of a biosensor 

can be defined as its detection limit – the minimal concentration of target that elicits 

an observable response. The output dynamic range refers to the ratio between the 

maximally achievable output and the basal output of the biosensor. Leakiness is the 

basal level of the biosensor when no target is present, and has been known to jeop-

ardize sensor applications: if colorimetric outputs are used, the response may be 

easily saturated even in absence of targets, and would restrict titrimetric analysis 

(Wackwitz et al. 2008). 

2.2 Strategies for enhancing selectivity 

Some sensing modules are naturally promiscuous and can be triggered by targets 

with similar chemical properties. This is often the case for heavy metal sensing 

(Amaro et al. 2011; Wang et al. 2013). For example, CadC from S. aureus can sense 

Cd, Pb and Zn, CmtR from Mycobacterium tuberculosis can sense Cd and Pb, and 

ArsR from E. coli can sense As, Sb and Bi (Saha et al. 2017). 

These sensing modules are thus non-specific and could give false positives when 

deployed in the field. Given that those transcription factors are allosterically regu-

lated, an intuitive and routine approach is to randomly mutate their binding pockets, 

and screen for mutants with increased selectivity towards the ion of interest. A num-

ber of successful cases have been reported: a mutated CueR remained sensitive to 

Cu2+, but no longer responded to Ag+ and became more sensitive to Au+ (Stoyanov 

and Browns 2003). In another example, MerR was mutated to detect Cd2+ rather 

than its original ligand Hg2+ (Hakkila et al. 2011). RcnR is normally regulated by 

both Ni and Co but could be mutated to only recognize the former (Cayron et al. 

2017). However, as with general mutagenesis, this approach is time consuming and 

does not guarantee success in identifying a receptor with desirable traits. 

A general solution is to employ a genetic logic AND gate with two different 

receptors that can detect the same ligand (Bernard and Wang 2017). For example, 
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two transcription factors can detect Zn2+ but both are non-specific: ZraR detects 

Zn2+ and Pb2+, and ZntR detects Zn2+ and Cd2+ (Wang et al. 2013). Implementation 

of an AND logic using ZraR and ZntR as the inputs will yield a biosensor that re-

sponds to Zn2+ but not Pb2+ or Cd2+, thus increasing its specificity (Fig. 1.3a). 

This AND gate example was derived from the HrpRS activator complex and its 

cognate promoter PhrpL (Fig. 1.3b). PhrpL is a σ54-dependent promoter that is activated 

only when both HrpR and HrpS are present (Jovanovic et al. 2011; Wang et al. 

2011a; Liu et al. 2018). Many others logic gates orthogonal to HrpRS system are 

also available from the synthetic biology community: a T7 RNA polymerase-amber 

suppressor system that integrates two input signals (Anderson et al. 2007), activa-

tor-chaperone systems (Moon et al. 2012), split T7 RNA polymerase-based systems 

(Shis and Bennett 2013; Schaerli et al. 2014), and recombinase based Boolean gates 

(Bonnet et al. 2013; Courbet et al. 2015). These orthogonal logic gates provide 

means to enhance biosensor specificity in more complicated cases. 

2.3 Strategies for increasing sensitivity 

Similar to solutions for biosensor selectivity, random mutagenesis on promoters 

or transcription factors used to be a popular way to generate mutated sensing mod-

ules capable of detecting lower ligand concentrations. However, the issue of sensi-

tivity is intrinsically tied to the relative concentrations between the receptor and 

ligand, so a more rational approach is to tune their respective densities in the cell. 

2.3.1 Sensitivity improvement by tuning receptor densities 

Depending on their modes of action, a sensing module could be more sensitive 

by increased or decreased concentrations of receptors (Merulla et al. 2013; Wang et 

al. 2015). If the receptor is a transcription repressor that could be de-repressed by 

an inducer (Fig. 1.4a), reducing its concentration could lead to both a higher sensi-

tivity and a higher dynamic range. In the canonical allosteric transcriptional regula-

tion paradigm, the binding between the inducer and the repressor, and between the 

repressor and the promoter are in equilibrium. A minimum concentration of inducer 

is always required to sufficiently inactivate the repressor and to allow the promoter 

to drive an observable expression of the reporter gene. Reducing the repressor con-

centration would therefore lower the specified demand on the inducer concentra-

tion, which effectively translates into a higher sensitivity for the sensing module. 

This strategy has been demonstrated on the previously described arsenic biosensor, 

in which its sensitivity was improved by replacing the strong constitutive promoter 

that drives repressor ArsR by a weaker variant (Fig. 1.4c).  

To obtain a higher sensitivity in the opposite scenario, where the receptor is a 

transcription activator inducible by the inducer (Fig. 1.4b), the receptor density 

needs to be raised (Wang et al. 2015). In the case of the LuxR-Plux sensor that detects 

the ligand AHL, more LuxR presented in the cells implies a higher probability to 
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form LuxR-AHL complexes (Fig. 1.4d). Therefore, the Plux promoter can be acti-

vated with a lower concentration of AHL, and so the sensor is more sensitive. 

It is noteworthy that receptor densities could also be dynamically controlled to 

give conditional sensitivity. A cadmium biosensor was integrated with a toggle 

switch, where the CadR repressor concentration was modulated by both the cad-

mium concentration and a sensitivity tuning ligand (Wu et al. 2009). Under a mod-

erate level of the sensitivity tuning ligand, an increase in cadmium concentration 

would in turn reduce expression of the CadR repressor. This positive feedback 

mechanism increased the sensitivity of the biosensor, and interestingly, the feed-

back could be quenched by increasing the concentration of the sensitivity tuning 

ligand. 

2.3.2 Sensitivity improvement by tuning intracellular ligand densities 

For ligands that interact with sensing modules intracellularly and do not diffuse 

freely across the membrane, increasing their cytoplasmic concentrations increases 

their availability and hence their probability to excite the sensing module. In fact, 

this strategy can be frequently found in nature. In E. coli for example, the transpor-

tations of arabinose and rhamnose across the cell membrane are governed by posi-

tive feedback loops (Altenbuchner and Mattes 2005; Fritz et al. 2014). Induction of 

the metabolism pathway drives expression of the transmembrane transporter pro-

tein, which subsequently facilitates the imports of the sugars. 

In biosensor design, if the transmembrane transporters for a ligand could be iden-

tified, the same outcome could be reproduced by overexpressing importers and 

knocking out exporters (Fig. 1.4e). For instance, disruption of the efflux transporters 

for Zn/Cd/Pb in P. putida strain KT2440 improved the detection limits up to 45-

fold (Hynninen et al. 2010). In another example, an engineered E. coli biosensor 

achieved better sensitivity through introduction of several foreign Ni-uptake sys-

tems and deletion of Ni efflux pump (Cayron et al. 2017). 

2.4 Strategies for increasing output dynamic range 

A number of native promoters responsive to heavy metals are relatively weak 

and so their derived biosensors suffer from limited output dynamic ranges (Stocker 

et al. 2003; De Mora et al. 2011; Siegfried et al. 2012; Wang et al. 2013; Huang et 

al. 2015a; Kim et al. 2016; Merulla and Van Der Meer 2016). Again, one option is 

to perform random mutagenesis on the promoter to maximize transcriptional output. 

Recently, however, a more reliable approach has been developed for engineering 

hybrid σ70-based promoters. Chen et al. demonstrated that the dynamic ranges of 

these promoters could be quantitatively predicted by the choices of their 35 and 

10 regions, which dictate the binding affinities between the promoters and the 

sigma factors required for transcription initiation (Fig. 1.5a) (Cox et al. 2007; 

Brewster et al. 2012; Guzina and Djordjevic 2017; Chen et al. 2018). By inserting 

binding sites of inducible transcription factors around the 35 and 10 sequences, 
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inducible promoters with improved dynamic ranges could be obtained. This exam-

ple nonetheless is specific for σ70 promoters and remains inapplicable to promoters 

with uninsulated promoter elements. 

A more universal solution from synthetic biology is to magnify the initially lim-

ited output through transcriptional amplifiers (TAmps). A TAmp is analogous to a 

buffer gate in electronics – it amplifies a transcriptional input signal before output-

ting it (Fig. 1.5b). In general, a TAmp takes the form of a transcriptional cascade 

that comprises a transcriptional factor (TF) and its cognate promoter PTF. TF is the 

output of the sensing module and the PTF drives expression of the next cascade or 

the final observable output. To qualify as a TAmp, PTF must have a higher maximal 

activity than the promoter upstream of TF, so that a tiny transcriptional input could 

be converted into a huge downstream output. Therefore, mathematically, a TAmp 

can be understood as a function that receives a transcriptional input from a relatively 

narrow domain and maps it to a much larger range. 

Early examples of TAmps were built using transcriptional repressors. Two ex-

amples of repressor based cascades have been built, and one was shown to amplify 

weak promoter activities that would otherwise be unobservable (Fig. 1.5b-ii) (Karig 

and Weiss 2005; Hooshangi et al. 2005). However, use of repressor-based amplifi-

ers might not be suitable for sensing modules with positive relationships between 

inputs and outputs, because they would invert the response function, unless they are 

cascaded in even numbers. 

New TAmps based on transcription activators have been developed.  This is ex-

emplified by a TAmp built from the HrpRS system described above (Fig. 1.5b-iii 

and c) (Wang et al. 2014). It readily accepts a wide range of transcriptional inputs 

and linearly amplifies them in an analog fashion. This property proved useful when 

the amplifier was used to significantly improve an arsenic sensor’s output dynamic 

range. The TAmp is also versatile – the amplification gain can be tuned by regulat-

ing the level of HrpS, which could be achieved either translationally, via changing 

the RBS, or post-translationally, by expressing the HrpS inhibitor HrpV. Another 

notable example of TAmp was based on the T7 RNA polymerase and its cognate 

promoter PT7 (Kim et al. 2016), which has been shown to boost both the sensitivity 

and the output dynamic range of a cadmium/lead biosensor. 

Provided that the sensing module is tightly regulated, amplification capacities 

for a TAmp could be further augmented through incorporation of a positive feed-

back loop. In a proof of concept circuit, the output of a TAmp drove expression of 

an activator used in the TAmp (Nistala et al. 2010), so signal amplification not only 

applies on the input but also on the output (Fig. 1.5b-iiii). Compared to the 

standalone TAmp architecture, this coupled TAmp significantly improved the ob-

servable output as well as the detection limit of a biosensor. Caution should be ex-

ercised when applying this coupled architecture to a potentially leaky sensing mod-

ule, because a high basal output level could be significantly amplified and would 

lead to a reduced output dynamic range. 
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Output amplification can also be realized using recombinase-based memory 

modules, provided that the maximal attainable transcription activity of the final out-

put can surpass that of the sensing promoter. This will be described further in a later 

section. 

2.5 Strategies for reducing leakiness 

Biological processes are evolved to be inherently leaky and noisy, because it 

leaves room for variation and allows bet-hedging in face of sudden and drastic 

change in environment (Randall et al. 2011). One would therefore rarely find a nat-

ural sensing module that displays little to no leaky behavior. So it is important, and 

more appropriate, to view leakiness not as a curable property, but as an unavoidable 

issue to be managed. Leakiness of a biosensor typically originates from the pro-

moter within the sensing module (Wackwitz et al. 2008; Arpino et al. 2013; Adams 

et al. 2014; Merulla and Van Der Meer 2016), but it could be addressed by strategies 

that act on levels of transcription, translation and post translational modification. 

2.5.1 Managing leakiness on a transcriptional level 

2.5.1.1 Receptor and promoter engineering 

Since the sensing promoter is almost always the source of leakiness, it is logical 

to start by engineering the promoter and its cognate transcription factor. Once again, 

random mutagenesis and random promoter truncation are two popular approaches 

– libraries of mutant sensing regulator-promoter pairs are screened to obtain less 

leaky and yet still functional variants (Li et al. 2015; Daeffler et al. 2017). Identified 

candidates usually have mutations that alter the promoters’ transcription initiation 

rates or the affinities between transcriptional regulators and promoters. The previ-

ously described cases of mutagenesis done on the ArsR-Pars sensing module, and 

the quantitative approach to engineer hybrid σ70 promoters are examples of such 

approaches (Fig. 1.5a) (Li et al. 2015; Chen et al. 2018).  

A similar but more predictable method is to vary the number and position of 

operators (Fig. 1.6a and b) (Murphy et al. 2007; Merulla and Vasn Der Meer 2016; 

Zong et al. 2017; Chen et al. 2018). Operators are sequences within a promoter that 

serve as binding sites for transcriptional regulators, and there are some general rules 

regarding how they affect promoter leakiness. Operators for repressors may be 

placed in the distal region (upstream of –35), the core region (between –10 and –

35), or the proximal region (downstream of –10) (Fig. 1.6a). If only a single operator 

for repressor exists on the promoter, maximal repression efficiency, and hence min-

imal leakiness, would be obtained when the operator is placed in the core region 

(Cox et al. 2007). Repression efficiency is further enhanced if the operator overlaps 

with part of the –10 or –35 regions (Chen et al. 2018).  
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Adding an extra operator downstream of a promoter can also reduce leakiness. 

Should the first operator fail to recruit the repressor, the repressor bound to the extra 

operator can still inhibit readthrough of the RNA polymerase (Fig. 1.6b). This effect 

is known as “roadblocking”, and its efficiency can be tuned by varying the distance 

between the extra operator and the core region (Murphy et al. 2007; Hao et al. 2014; 

Merulla and Van Der Meer 2016). Having multiple extra operators could increase 

the effect (Murphy et al. 2007). Though, it should be noted that the roadblocking 

efficiency depends on the maximum strength of the sensing promoter, the repressor 

concentration and the affinity between the repressor and the operator, and so the 

effects on different operator-repressor pairs would likely be variable. 

Unlike their repressor counterparts, operators for activators can only be func-

tional when placed in the distal region (Cox et al. 2007). They remain much unstud-

ied, but it was known that if an inducible activator can bind its operator in the ab-

sence of its target ligand, the resulting promoter will likely be tightly controlled 

(Chen et al. 2018).  

2.5.1.2 Antisense transcription  

Antisense transcription refers to the strategy of inserting a second promoter 

downstream of the sensing promoter, but in an opposite direction (Pelechano and 

Steinmetz 2013). The second promoter will drive transcription of an RNA that is 

partially or fully complementary to the RNA produced from the sensing promoter. 

Antisense transcription interrupts RNA polymerase reading from the first promoter 

(Fig. 1.6c-iii) (Brophy and Voigt 2016), thus reducing its basal expression level and 

leakiness. If the antisense promoter is located at the 3’ end of the target gene, the 

antisense RNA will be long enough to form a double-stranded RNA with the target 

mRNA and then triggers its degradation (Fig. 1.6c-ii) (Lasa et al. 2011). The effi-

ciency of this strategy can be tuned by regulating the strength of the antisense pro-

moter (Fig. 1.6c) (Brophy and Voigt 2016), but the maximum output expression 

from the first promoter may also significantly decrease if the antisense promoter is 

too strong. 

Antisense transcription may also exert translational interference: an anti-sense 

promoter that is positioned immediately downstream of the target promoter may 

lead to transcription of a short antisense RNA that inhibits translation initiation of 

the target gene (Fig. 1.6c-i) (Kawano et al. 2007). 

2.5.2 Managing leakiness on a translational level 

The expression rate of any gene of interest can be superficially regarded as a 

product of its transcription rate and translation rate. Reducing the translation effi-

ciency is therefore an indirect way to counteract transcription rates that are either 

too high or too low. This is most helpful in scenarios where transcription elements 
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are fixed and cannot be readily replaced. For example, in a transcriptional cascade, 

the upstream and downstream promoters are defined. Yet the effective intracellular 

concentrations of the transcriptional regulators can be modulated by changing their 

translation rates. This would alter their input-output characteristics and in turn im-

pact the final observable leakiness of the biosensor (Wang et al. 2011a; Nielsen et 

al. 2016). In a specific example, an active recombinase under the control of a leaky 

inducible promoter might switch on the downstream signal even in absence of a 

target. By attenuating its translation initiation rate and hence its concentration, this 

undesirable effect could be mitigated (Rubens et al. 2016). 

The most common way to tune translation is to modify the translation initiation 

rate, which is to a great extent governed by the sequence of the ribosome binding 

site (RBS) that dictates it affinity towards the ribosome (Fig. 1.6d). RBS strengths 

can be described by a biophysical model, and are predictable from the RNA se-

quences alone (Salis et al. 2009). A few RBS libraries with characterized translation 

initiation efficiencies are also available (http://parts.igem.org).  However, transla-

tion rates of a protein have been shown to depend on numerous factors other than 

the RBS itself. This includes sequences between the RBS and the gene of interest 

(Kosuri et al. 2013; Mutalik et al. 2013), and codon usage. Additional sequences 

upstream and downstream of the RBS may also affect the translation initiation pro-

cess (Salis et al. 2009; Wu et al. 2018), and should be into account when choosing 

or designing RBS sequences. For example, gene expression could be impaired by 

an increase in A/T rich repetitive sequences between the RBS and the start codon 

(Egbert and Klavins 2012), or by having a long mRNA sequence with low GC con-

tent (Wu et al. 2018). 

2.5.3 Managing leakiness on a post-translational level 

In some published biosensors, protein degradation tags were attached to regula-

tor or reporter proteins to promote their clearance from the cell and reduce their 

effective concentrations (Andersen et al. 1998; Arpino et al. 2013; Cameron and 

Collins 2014; Bradley et al. 2016b). However, this method comes with a tradeoff 

with a reduction of maximum output level (Fig.1.6e, grey line). 

A solution that rescued the output level but maintained the lower level of leaki-

ness has been recently developed (Fig. 1.6e) (Fernandez-Rodriguez and Voigt 

2016). It achieved so by inserting a protease cleavage site between the reporter pro-

tein and the degradation tag, and the cognate protease is under the control of the 

sensing module. At lower target concentrations, small amount of reporter was pro-

duced due to leaky expression, but they were quickly degraded due to the presence 

of the degradation tag. At high target concentrations, both the protease and the re-

porter would be strongly expressed, so the protease could cleave off the degradation 

tag from the latter, and the observable output could remain at a high level. (Fig. 

1.6e, orange dotted line). This protease-based regulation strategy is flexible and can 

be effortlessly applied to any leaky biosensors. 
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3. Functional Expansion of Biosensors by Synthetic Biology 

3.1 Memory devices 

A biosensor with only sensing and actuating modules suffice to report the imme-

diate availability of a target. Yet when endowed with memory modules that allow 

record and retrieval of transient detection events, whole cell biosensors become ex-

cellent platforms for continuous documentation of surroundings, because they are 

living organisms that can proliferate and colonize an environmental with minimal 

maintenance from humans (Burrill et al. 2012). This could be useful in tracking a 

delayed response in a difficult-to-reach environment, like those in clinical diagnos-

tic settings (Courbet et al. 2015).  

Memory devices can be broadly classified according to their reversibility and 

whether the memory is encoded in the DNA (i.e. genetic versus epigenetic). Syn-

thetic biologists have created an overwhelming number of memory devices and they 

have been reviewed elsewhere (Inniss and Silver 2013; Roquet and Lu 2014; 

Bradley and Wang 2015). Given the scope of this chapter, only examples that have 

been successfully installed and demonstrated in biosensors will be covered. 

3.1.1 Toggle switches 

The synthetic toggle-switch can be considered as the earliest epigenetic and re-

versible memory device from synthetic biology. It achieved bistability through two 

repressors that mutually inhibit each other (Fig. 1.7a) (Gardner et al. 2000). A tran-

sient induction that upregulates expression on either one of the repressors (TR1) 

downregulates the expression of the other (TR2) and allows the latter to dominate, 

which results in a flip from one state to another. The state of the system will then 

be stably maintained until the now dominant repressor (TR1) is repressed again. 

Since only two states are allowed, the toggle-switch converts any graded input re-

sponse into a digital output, and the readout for a target will no longer be titrated, 

but this might improve robustness in a sensor and aid decision making processes 

(Roquet and Lu 2014).  

The lambda phage cI/Cro genetic switch is a natural toggle switch which has 

high repression efficiency and modularity, but other strong repressors that display 

cooperative binding properties can also be used. Toggle switches have been widely 

used in whole cell biosensors. For example, E. coli biosensors have been engineered 

to sense and record antibiotic exposure or inflammation in murine guts (Kotula et 

al. 2014; Riglar et al. 2017). Another toggle-switch was part of a Pavlovian-like 

conditioning circuit in E. coli, where it could memorize a conditioned stimulus 

(Zhang et al. 2014). 

3.1.2 Recombinase based memory devices 
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Site specific recombinases are enzymes that perform genetic recombination on 

DNA flanked by specific recognition sites (aka recombination cassettes), resulting 

in either DNA excisions or inversions (Olorunniji et al. 2016). Biologically, recom-

binases belong to either tyrosine or serine recombinase classes, and can be further 

classified by their directionality and their permitted mode of actions (Wang et al. 

2011b). For recombinases that can perform both excision and inversion, the mode 

of recombination depends on the relative orientations of the recombination sites: 

excision happens between aligned recombination sites and for inversion, anti-

aligned sites (Fig. 1.7a). Both allow implementations of memory when the DNA 

within the recombination cassette is a functional biological part. 

A simple memory device using DNA excision can be built by inserting a recom-

bination sites-flanked terminator between a constitutive promoter and a transla-

tional unit, which interrupts gene expression until removed (Bonnet et al. 2013). In 

the case of inversion, the genetic part within the cassette would be purposefully 

inserted in a non-functional orientation, only to be restored when the recombinase 

is active. In both cases, the DNA is transformed from one sustained state into an-

other, thereby conferring memory. Since the flanked DNA can only exist in either 

one of the two states, all recombinase-based memory devices are analog to digital 

converters. Their genetic nature also implies that the memory is heritable and would 

last even if the host cell is dead (Siuti et al. 2013). 

Many early synthetic memory devices were based on inversions using bidirec-

tional recombinases like the Cre/lox and FLP/FRT systems. They tended to stochas-

tically re-catalyze an inverted DNA back into the original orientation and create a 

mixed population of cells in either ON or OFF states, which posed an issue to ro-

bustness in memory (Schnütgen et al. 2003; Brophy and Voigt 2014). Workarounds 

to this issue include using mutated recombination sites that drive inversion equilib-

rium towards the product (Albert et al. 1995; Oberdoerffer 2003), or configurations 

that would lead to disappearance of some recombination sites in the end state (Fig. 

1.7b) (Schnütgen et al. 2003). The same mixed population issue also applies to uni-

directional recombinases when their expression is at intermediate levels, but the 

problem could be alleviated through the use of feedback loops (Moon et al. 2011; 

Brophy and Voigt 2014; Folliard et al. 2017). 

Memory devices engineered from recombinase-recombination cassettes with 

unidirectionality provide irreversible memories – a temporal exposure to the target 

will flip the system into an irrevocable state (Siuti et al. 2013). To date, a large 

number of orthogonal unidirectional recombinases have been identified and they 

allow different inputs to be remembered within the same cell (Yang et al. 2014). 

They were demonstrated to record conditions in gastrointestinal tracts, as well as 

pathogens in human serum and urine samples (Archer et al. 2012; Courbet et al. 

2015; Mimee et al. 2015). The sequence of detection events can also be recorded in 

a state machine, which assigns a unique state to every possible sequence order by 

coordinating multiple unidirectional recombinases (Roquet et al. 2016).  
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Biosensors built with irreversible memories would be single-use commodities. 

In contrast, reusable and rewritable memory devices can be constructed from re-

combinase-excisionase pairs with conditional bidirectionality (Fig. 1.7c) (Bonnet et 

al. 2012; Bonnet et al. 2013). The mechanism is illustrated using the integrase Bxb1 

gp35 and its cognate excisionase Bxb1 gp47. The integrase alone will drive inver-

sion towards one direction, but the direction is reversed in presence of the exci-

sionase. 

3.1.3 CRISPR/Cas-based memory devices 

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and 

CRISPR associated (Cas) are bacterial immunity systems against phage infections. 

Their molecular mechanisms have been intensely studied and frequently reviewed 

elsewhere and so will not covered in this section (Shalem et al. 2015; Jiang and 

Doudna 2017). CRISPR/Cas systems have innate memory functions to remember 

previously invaded viruses. They capture exogenous DNA from plasmids or phages 

and integrate them into the genomic CRISPR arrays as spacer sequences. This adap-

tion process has been repurposed to yield a synthetic memory device, known as the 

“biological tape recorder” (Fig. 1.7d) (Sheth et al. 2017). A new spacer is incorpo-

rated into the array upon induction by a specific target, and multiple events over 

time can be recorded. 

The popularity of the CRISPR/Cas system, nonetheless, remains in its versatility 

in performing precise DNA cutting and editing. These properties have been also 

harnessed in a memory device named CAMERA (CRISPR-mediated Analog Multi-

event Recording Apparatus) (Fig. 1.7e) (Tang and Liu 2018). The system memo-

rizes signals by one of the two ways: 1) An incoming signal modulates the activity 

of a DNA cleavage enzyme, which selectively cuts one of the two recording plas-

mids and thus alters the ratio between the two. 2) The signal instructs Cas9-derived 

base editors to modify DNA sequences. In both examples, the recorded information 

can be retrieved by sequencing the barcoded DNA sequences or by coupling the 

resulting change to an observable output. 

3.1.4 Other notable memory devices 

The three types of memory devices described above were so far the most popular 

ones. Nonetheless, there are two other noteworthy examples that were also demon-

strated in biosensors: 1) In a device named SCRIBE (Synthetic Cellular Recorders 

Integrating Biological Events), detection events lead to productions of hybrid RNA-

ssDNA molecules that will undergo genetic recombination with the bacterial ge-

nome, modifying sequences on the later (Farzadfard and Lu 2014). The strength of 

sensing correlates with the frequency of recombination and is therefore reflected on 

a population level, specifically, the proportion of cells that carries the modification. 
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2) An epigenetic and reversible memory device was constructed by DNA methylase 

and DNA binding proteins (DBP) that are sensitive to DNA methylation. Target 

detection therefore triggers DNA methylation and precludes binding of the DBP, 

and memory reset is carried out via degradation of the methylase (Maier et al. 2017).  

3.2 Computation modules to integrate signals 

Most biosensors were built to detect a single input, but by receiving and pro-

cessing multiple inputs, they can be used to sense a complex condition or a global 

environment (Fig. 1.8) (Wang et al. 2013). Synthetic biology has offered numerous 

examples on bio-computation and interested readers are advised to consult refer-

ences cited here (Wang et al. 2011a; Moon et al. 2012; Wang and Buck 2014; Ma 

et al. 2016; Nielsen et al. 2016; Roquet et al. 2016; Rubens et al. 2016). 

Signal integration is of great interest in clinical diagnosis and biotherapy, where 

multiple signals define a specific disease state and determine if drugs should be 

administered. To date, no genetic circuits have been developed in prokaryotic bio-

sensors to target multiple clinical biomarkers, but similar ideas have been proposed 

and tested. For example, a hypothetical E. coli that would invade tumor cells would 

only work when two conditions are satisfied: 1) it reaches a quorum due to coloni-

zation and 2) detects a hypoxic environment that is typically found in tumors 

(Anderson et al. 2006). The two conditions would thus require integration through 

an AND gate. 

3.3 Modules to reshape response function 

Other forms of signal processing can remodel the conventional sigmoidal re-

sponse curve to facilitate biosensor readout. By connecting a sensing module to an 

incoherent feedforward loop, a biosensor can behave as a bandpass filter and only 

responds to a limited range of analyte concentrations (Peking IGEM 2013; Rubens 

et al. 2016). In another example, a coherent feedforward loop successfully trans-

formed the response curve into a semi-log sensing curve (Zhang et al. 2013). These 

changes in response functions could be helpful when the output sensing modules 

are wired to specific actuators that are not as responsive to sigmoidal inputs.  

3.4 Reporter modules for interfacing with different detection plat-

forms 

Many biosensors were first developed using fluorescent reporters as the actuator, 

which facilitate their characterization in laboratory settings. Yet employing these 

biosensors in the field would be inconvenient since it must be accompanied with a 

fluorescent reader. The synthetic biology community has developed a diverse col-

lection of reporters or actuators. They are standardized, and so can easily substitute 

the fluorescent reporter. This allows the output signals to be observed through other 

means. For example, some reporter modules can convert detection events into elec-

trical currents measurable by electrodes (Webster et al. 2014; Tschirhart et al. 2017).  
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Typically, colorimetric reporters are often used to allow direct observations of 

sensor output by naked eyes. They include chromoproteins, some fluorescent pro-

teins, and enzymes that produce pigment or catalyzed chromogenic substrates 

(Biran et al. 2003; Stocker et al. 2003; Fujimoto et al. 2006; Wackwitz et al. 2008; 

Joshi et al. 2009; De Mora et al. 2011; Joe et al. 2012; Shin 2012; Kotula et al. 2014; 

Pardee et al. 2014; Courbet et al. 2015; Danino et al. 2015; Huang et al. 2015a; 

Pardee et al. 2016a; Didovyk et al. 2017; Watstein and Styczynski 2018). This could 

drive down the operating costs of a biosensor because it obviates additional readout 

machines. 

Yet, there are also a few other interesting reporters that enable biosensors to op-

erate in vivo: Acoustic reporter genes were used to encode intracellular gas vesicles 

in E. coli (Bourdeau et al. 2018). These vesicles can scatter ultrasound waves that 

non-invasively penetrate living tissues and therefore lead to imaging contrast. An-

other example employs a luciferase reporter: E. coli entrapped in an ingestible mi-

cro-bio-electronic device (IMBED) can detect analytes that diffuse into its residing 

chemostat chamber. The cells then respond by emitting light which can converted 

into digital signals through photodetectors. The signal can then be further relayed 

to computers via Wi-Fi (Mimee et al. 2018).  

3.5 Biosafety enhancing modules 

As explained in the introduction, biosafety remains the bottleneck for field ap-

plications of prokaryotic whole cell biosensors, and a huge volume of work in syn-

thetic biology was dedicated to address this issue. Some representative work have 

been selected to illustrate various strategies in managing the biocontamination risks. 

“GeneGuard” was a stable and modular system for biosafety control in E. coli 

(Wright et al. 2015). Three safety modules were inserted into the genome: 1) A rich-

media compatible auxotrophy selection marker ensures that the host cell would 

hardly survive if it leaves an industrial closed system. The marker also facilitates 

their disposables (Moe-Behrens et al. 2013). 2) Host-dependent origins of replica-

tion, as well as 3) toxin-antitoxin pairs prevent propagation of episomes that could 

have accidentally transferred to other organisms. 

The host cells can also be programmed to commit suicide after a certain retention 

time in the environment. This could be achieved by putting genes encoding toxic 

products under the control of a synthetic timer (Tom Ellis, Xiao Wang 2009) or 

counting circuits (Friedland et al. 2009; Callura et al. 2010). 

Another method is to erect a “Linguistic barrier” between the host cell and other 

prokaryotes in nature (Pinheiro et al. 2012; Wright et al. 2013). The genes that are 

expressed in the host cells are refactored so they cannot be transcribed or translated 

in other prokaryotes in the wild. 
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Conclusions and Future Directions   

Prokaryotic whole cell biosensors are suitable for a broad range of applications 

and are promising alternatives to other types of sensors. With the support of syn-

thetic biology, the development and optimization of novel whole cell biosensors 

have been vastly accelerated. Engineering principles facilitate biosensors to be con-

structed from a bottom up approach and provide means to engineer new sensing 

modules on top of the myriad available options. Through the lens of rational design, 

researchers could pinpoint cruxes that limit selectivity, sensitivity, dynamic range 

and leakiness and apply strategies that precisely tackle each issue and improve the 

overall sensing behavior of a biosensor. Finally, various parts and devices from the 

synthetic biology community augment functions of biosensor in memory and signal 

processing capacities, and make them easier and safer to be used in field applica-

tions. More tools and design principles that give rise to robust and reliable sensors 

will likely be discovered in the future, and they will further encourage whole cell 

biosensors to be applied in real life scenarios.  

Synthetic biology alone however cannot solve all problems present in whole cell 

biosensors. At the current stage, despite the fact that many prokaryotic biosensors 

had impeccable performances in laboratory, only a few could enter business. There 

are three underlying reasons. First, the actual working environments for the biosen-

sors are more far complicated than their laboratory counterparts, so requirements on 

sensitivity, selectivity and robustness are more demanding. The major solution is to 

subject the biosensor to multiple rounds of rigorous tests using real environmental 

or clinical samples, and progressively optimize their response behaviors through 

genetic manipulation. Approaches described in this chapter should aid this process, 

but sample preprocessing steps like target purification or concentration might be 

helpful complementary methods to boost biosensor sensitivity (Wen et al. 2017). 

There is also a dearth of durable, inexpensive and user-friendly platforms for 

whole cell biosensor storage and multiplexed sample testing. Some options are 

available, but they do not keep cells alive over long periods of time. For instance, 

hydrogels, like alginate beads, agarose and silica gels, can entrap prokaryotic cells 

and keep them hydrated and functional for around a month (Chang and Prakash 

2001; Nassif et al. 2002; Papi et al. 2005; Sharma et al. 2010; Buffi et al. 2011; 

Power et al. 2011; Shin 2012; Courbet et al. 2015; Belkin et al. 2017). Better en-

trapping materials and storage conditions are needed for prolonged shell life of bi-

osensors. An alternative is to find a different chassis that is indifferent to harsh en-

vironments. In this sense, the Gram-positive bacteria B. subtilis is recently gaining 

grounds. They can give physically and chemically resistant endospores that can be 

stored dry in wide range of temperatures for years, but can still return to a vegetative 

state when nourished with water and nutrients (Joshi et al. 2009). Cheap microflu-

idic devices have also been developed as platforms for biosensor applications, yet 

they remain inconvenient for multiplexed sample processing and on-site diagnosis 

(Buffi et al. 2011; Kim et al. 2016; Volpetti et al. 2017).  
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Lastly, as long as they are still alive, whole cell prokaryotic biosensors will carry 

the stigma of being potentially biohazardous when they exit laboratories. Biosafety 

concerns like ecosystem disruption and antibiotic resistance gene transfer will need 

to be addressed (Dana et al. 2012). Adequate intrinsic containment (biosafety cir-

cuits reviewed in the previous section) and physical containment systems like bio-

reactive nanofibers (Tong et al. 2014) will need to be in place for whole cell bio-

sensors to be safely deployed in the field. 

In recent years, cell free systems have been proposed as a solution to circumvent 

the biosafety issues associated with whole cell sensing. A cell free system consists 

of cell extracts or purified transcription/translation machineries mixed with energy 

supplements and amino acids (Perez et al. 2016). It is cheap and easy to produce 

(Kwon and Jewett 2015; Didovyk et al. 2017). A number of biosensors using cell 

free extracts have already been shown to be capable of detecting heavy metals, path-

ogens, antibiotics and viral RNA (Pellinen et al. 2004; Pardee et al. 2014; Pardee et 

al. 2016a; Didovyk et al. 2017; Duyen et al. 2017; Wen et al. 2017). Furthermore, 

they could be freeze-dried on cellulose paper, which increases their stability and 

portability (Pardee et al. 2014; Pardee et al. 2016b). Theoretically, any whole-cell 

based biosensors can be converted into this paper-based cell free system and be-

come point-of-care diagnostic devices. Still, there will always be unbridgeable dif-

ferences between the in vivo intracellular environment and a cell extract, which may 

cause unpredictable behavior during biosensor circuit migration. Therefore, until 

the moment that all circuits can be transferred systematically and flawlessly across 

the two platforms, whole cell based prokaryotic biosensors will remain a major 

player in the field of biosensors.  
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Figure Captions 

Figure 1.1 Architecture and engineering of synthetic biosensors. 

(a) Architecture of a modular synthetic biosensor. R, receptor. P, promoter. gfp, 

gene encoding a green fluorescent protein. rfp, gene encoding a red fluorescent pro-

tein. luxAB, genes encoding a bacterial luciferase for luminescent output. lacZ, gene 

coding β-Galactosidase for colorimetric output. arg, acoustic reporter genes which 

expresses gas vehicles that are detectable by ultrasound. luxI & lasI, genes encoding 

synthases for quorum sensing molecules. (b) ars operon from E. coli’s chromosome 

and its role in arsenic regulation (Silver and Phung 2005; Chen and Rosen 2014). 

GlpF, an aquaglyceroporin. PST, phosphate-specific transport system. PIT, phos-

phate inorganic transport system. (c) mer operon from Shigella flexneri R100 plas-

mid and its role in mercury regulation (Misra et al. 1985; Barkay et al. 2003). 

CH3HgX, organic form of mercury. HgX, inorganic form of mercury. (d) An engi-

neered E. coli biosensor with arsenic sensing and reporting function. (e) An engi-

neered E. coli biosensor with mercury sensing and reporting function.  

 

Figure 1.2 Metric for defining performances of a biosensor. 

(a) Schematic illustrating a biosensor’s selectivity. (b) A biosensor response 

curve with sensor’s leakiness, sensitivity and output dynamic range annotated. The 

sensitivity can be defined as the limit of detection (LOD).  

 

Figure 1.3 Biosensors specificity enabled by synthetic biology. 

(a) A zinc-specific biosensor using an AND gate (Wang et al. 2013). (a-i) A 

zinc/lead biosensor and its response curves for Zn2+ and Pb2+. (a-ii) A zinc/cadmium 

biosensor and its response curves for Zn2+ and Cd2+. (a-iii) A zinc-specific biosensor 

was generated by integrating both sensing modules from i and ii into an AND gate. 

gfp, gene encoding a green fluorescent protein. (b) The HrpR/HrpS hetero regula-

tion motif in the hrp (hypersensitive response and pathogenicity) system of Pseu-

domonas syringae pv. tomato DC3000 (Wang et al. 2011a; Wang and Buck 2014). 

The hrp system promotes pathogenicity of the bacterium in its plant host. The σ54-

dependent hrpL promoter can be activated by the heterohexamers of the transcrip-

tion activators HrpR and HrpS. 

 

Figure 1.4 Strategies for improving biosensors’ sensitivity.  

(a and b) A transcriptional repressor (TR) and a transcriptional activator (TA)-

based biosensor. PC, constitutive promoter. PTR, TR’s cognate promoter. PTA, TA’s 

cognate promoter. Black dots, targets of interest. gfp, gene encoding a green fluo-

rescent protein. (c and d) Improving a biosensor’s sensitivity by tuning receptor 

densities (Wang et al. 2015). c shows a TR-based arsenic biosensor, and d shows a 

TA-based AHL biosensor. PStrong, strong constitutive promoter. PWeak, weak consti-

tutive promoter. (e) Improving a biosensor’s sensitivity by increasing its targets’ 

intracellular density (Hynninen et al. 2010; Cayron et al. 2017). IS, importing sys-

tem. ES, exporting system. R, receptor. PR, R’s cognate promoter. 



35 

 

Figure 1.5 Strategies for improving biosensors’ output dynamic range.  

(a) Different σ70 binding sites of a inducible promoter yield different basal levels 

and output dynamics as a result of relative equilibrium constants of σ70 binding to 

the −10 and −35 regions, ln(𝐾𝑒𝑞) = −(∆𝐺−10 + ∆𝐺−35) (Chen et al. 2018). Non-

consensus bases are underlined. ∆𝐺−10 and ∆𝐺−35 correspond to the relative 

changes in the binding energy due to changes in the −10 and −35 sites. R, receptor. 

PR, R’s cognate promoter which contains an operator for R (RO). yfp, gene encoding 

a yellow fluorescent protein. (b) Biosensors without transcriptional amplifiers 

(TAmp) (b-i), with two transcriptional repressor-based amplifiers (b-ii), or with a 

transcriptional activator-based amplifiers (b-iii), and their response curves 

(Hooshangi et al. 2005; Wang et al. 2014; Kim et al. 2016). iiii. An amplifier with 

positive feedback (Nistala et al. 2010). PTR, TR’s cognate promoter. PTA, TA’s cog-

nate promoter. gfp, gene encoding a green fluorescent protein. (c) A gain-tuneable 

TAmp based on a HrpRSV system (Wang et al. 2014). This device scales the weak 

transcriptional input signal (I) linearly in response to a second ‘gain tuning’ tran-

scriptional input (βT).  

 

Figure 1.6 Strategies of tuning biosensors’ leakiness and output dynamics.  

(a) A transcriptional repressor (TR)-based inducible promoter, with an operator 

site (TRO) at the distal, core or proximal region of the promoter. Repression effi-

ciency were shown to depend on the TRO’s location, which follows core ≥ proximal 

≥ distal (Cox et al. 2007). PTR, TR’s cognate promoter. yfp, gene encoding a yellow 

fluorescent protein. (b) Transcriptional roadblocking effect. gfp, gene encoding a 

green fluorescent protein. (c) Antisense transcription as a tool to tune gene expres-

sion. Left panel: antisense promoter (Panti) can reduce PR’s leakiness by blocking 

the ribosome entry to a reporter’s mRNA (c-i), triggering mRNA degradation(c-ii), 

or blocking the RNA polymerase (RNAP) reading from the sensing promoter PR (c-

iii). Right panel: The sensor’s leakiness and output dynamics correlate with the 

strength of Panti (Brophy and Voigt 2016). R, receptor. PR, receptor’s cognate pro-

moter. (d) Modification of ribosome binding site (RBS) for a transcriptional activa-

tor (TA), a TR, or the output changes the leakiness and output dynamics of a bio-

sensor (Wang et al. 2011a; Nielsen et al. 2016; Rubens et al. 2016). PTA, TA’s 

cognate promoter. (e) Schematics of a post-translational regulation on an IPTG bi-

osensor (Fernandez-Rodriguez and Voigt 2016). L represents a protein degradation 

tag LVA. 

 

Figure 1.7 Diagrams of genetic circuits for memorizing environmental sig-

nals.  

(a) A toggle switch-based memory device. Initially the toggle switch is at an 

OFF state, where the TR2 is expressed and TR1 expression is repressed. Upon target 

detection, the sensing circuit express TR1, which flips the device into an ON state. 

TR1 and LacZ will be continuously expressed even after the target is removed. 

(Kotula et al. 2014; Riglar et al. 2017). R, receptor. PR, R’s cognate promoter. TR, 
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transcriptional repressor. PTR, TR’s cognate promoter. lacZ, gene encoding β-Ga-

lactosidase for colorimetric output. (b) A recombinase-based memory device. Upon 

sensing a particular target, the biosensor produces recombinase Cre, which first flips 

the orientation of the gfp flanked by loxP sites, and then excises one of the two loxP 

sites through the lox511 sites (Schnütgen et al. 2003). PC, constitutive promoter. gfp, 

gene encoding a green fluorescent protein. (c) An integrase-based memory device 

switches the sensor’s output from gfp expression to rfp expression. The integrase 

and excisionase together restore the gfp expression (Bonnet et al. 2012). rfp, gene 

encoding a red fluorescent protein.  (d) A CRISPR-based ‘‘biological tape recorder’ 

system. The signals are recorded into the genomic CRISPR array (Sheth et al. 2017). 

When there is no signal, only the reference DNA will be recorded; where there are 

signals, the trigger DNA will be rapidly replicated and preferentially recorded into 

the CRISPR array. (e) The CAMERA recording system (Tang and Liu 2018) has 

two possible mechanisms: i, it uses Cas9 nucleases to record signals by shifting the 

ratio of two recording plasmids; ii, it uses Cas9-derived base editors to change DNA 

sequences upon sensing a signal.  

 

Figure 1.8 Detecting an environmental condition using multi-input AND 

gate and cell-cell communication.  

A three-input AND logic gate based on two HrpRS-based AND gates are sepa-

rated in two different cell strains of a consortium (Wang et al. 2013). luxI, synthase 

of a quorum sensing molecule 3OC6HSL. rfp, gene encoding a red fluorescent pro-

tein.  
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