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To evaluate seasonal trivalent inactivated influenza 
vaccine effectiveness (VE) in Scotland, we performed 
a Scotland-wide linkage of patient-level primary care, 
hospital and virological swab data from 3,323 swabs 
(pooling data over nine influenza seasons: 2000/01 
to 2008/09). We estimated the VE for reducing real-
time RT-PCR-confirmed influenza using a test-negative 
study design. Vaccination was associated with a 57% 
(95% confidence interval (CI): 31–73) reduction in the 
risk of PCR-confirmed influenza. VE was 60% (95% CI: 
22–79) for patients younger than 65 years and clini-
cally at risk of serious complications from influenza, 
and 19% (95% CI: −104 to 68) for any individual 65 
years and older. Vaccination was associated with sub-
stantial, sustained reductions in laboratory-confirmed 
influenza in the general population and younger 
patients in clinical at-risk groups.

Introduction
Each year, influenza causes substantial morbidity and 
mortality, particularly in people aged 65 years and 
older and those with underlying serious comorbidities 
[1]. Globally, for example, it is estimated that influ-
enza is responsible for 5 million cases of severe illness 
and 250,000 to 500,000 deaths per year; the 186,000 
excess hospitalisations and 44,000 excess deaths in 
the United States (US) have been estimated to cost USD 
87 billion (EUR 77 billion) per year [2-4]. Annual costs 
of influenza epidemics for the European Union are esti-
mated to be EUR 27 billion [5]. National vaccination 
strategies represent a potentially important approach 
to reduce both influenza-related illness and death, 
hence the considerable investment in this preventive 
approach in many parts of the world. In Scotland, the 
influenza vaccination programme has been success-
ful with high rates of uptake for targeted individuals 

such as adults aged over 65 years and those clinically 
at risk of serious influenza-like illness [6]. There is evi-
dence of the benefits of the seasonal influenza vaccine 
in healthy children and younger adults (16 to 65 years) 
[7,8]. However, in populations at highest risk of devel-
oping influenza-related complications (e.g. adults  65 
years and older, people with medical conditions such 
as diabetes, heart or respiratory disease, and people 
with immunodeficiency), the populations particularly 
targeted by many countries’ vaccination programmes 
including in Scotland, there is a paucity of reliable 
estimates of efficacy from randomised controlled trials 
[9]. This is of concern, as it has been suggested that 
influenza vaccine is less effective in older people due 
to immunosenescence [10]. Given that influenza vacci-
nation programmes now exist in most developed coun-
tries, randomised controlled trials of the vaccine are 
impractical; these are also viewed as unethical by some 
sections of the medical community [11]. Observational 
studies are a study design that can be used to investi-
gate the effectiveness of vaccine programmes.

Since 2005, the test-negative study design, using real-
time RT-PCR testing, has become more commonly used 
for evaluating influenza vaccine effectiveness (VE) [12]. 
Most, however, have been carried out on single influ-
enza seasons [13] and the three which have pooled 
data from multiple seasons only reported VE for limited 
age groups [14-16]. Building on related work [17,18], 
we undertook a data linkage study and used detailed 
electronic health record data over nine consecutive 
seasons 2000/01 to 2008/09 to determine VE of the 
trivalent inactivated influenza vaccine in reducing lab-
oratory-confirmed influenza.
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Methods

Study databases and population characteristics
Almost all individuals resident in Scotland are reg-
istered with primary care, which provides a compre-
hensive array of healthcare services (free at the point 
of care), including prescriptions for medications. We 
used the Practice Team Information network, which 
covers a 5% representative sample of Scottish prac-
tices [19]. Using the unique Community Health Index 
(CHI) number, specific patient-level data approved for 
use in this project were extracted and then linked to 
the Health Protection Scotland virology dataset, which 
consists of all laboratory-confirmed cases of influenza 
in Scotland. Once linkage had been completed, the 
analysis file was anonymised by replacing the unique 
CHI number with a study identifier.

We established key population characteristics: sex, age 
(0–4, 5–14, 15–44, 45–64, 65–74, and ≥ 75 years), socio-
economic status (Scottish Index of Multiple Deprivation 
scores [20] expressed as quintiles: 1 = most deprived 
to 5 = most affluent), receipt of pneumococcal and 
influenza vaccination in the previous year, smoking 
status (current, ex, non, not recorded), urban/rural res-
idence (1 = large urban to 6 = remote rural), whether 
a patient was in a clinical group at risk of serious ill-
ness from influenza (i.e. chronic respiratory disease, 
chronic heart disease, chronic kidney disease, chronic 
liver disease, chronic neurological disease, immuno-
suppression or diabetes), Charlson co-morbidity index 
[21], number of previous primary care consultations, 
prescribed drugs and hospital admissions (in the year 
before 1 September).

Study design
In order to estimate VE derived from linked virologi-
cal swab data, we carried out a test-negative study 
similar to that used by I-MOVE [22], pooling data 
from nine influenza seasons (2000/01 to 2008/09). 
Influenza A(H1N1) subtype was dominant in 2007/8 
(A/Solomon Island/3/2006) and H3N2 subtype was 
dominant in 2001/2 (A/Panama/2007/99), 2003/4 (A/
Fujian/411/2002), 2006/7 (A/Wisconsin/67/05) and 
2008/9 (A/Brisbane/10/2007).  Influenza B was domi-
nant in 2005/6 (B/Malaysia/2506/2004). Influenza 
A(H1N1) (A/New Caledonia/20/99) and influenza B (B/
Beijing/184/93) were co-dominant in 2000/1. Influenza 
A(H3N2) and influenza B were co-dominant 2002/3 (A/
Panama/2007/99, B/HongKong/330/01) and 2004/5 (A/
Wellington/01/2004, B/Shanghai/361/2002). We car-
ried out an individual patient-level pooled analysis and 
adjusted for year. The influenza season was defined as 
the period from the date of the first influenza isolate 
reported by Health Protection Scotland for each year, 
in or after week 40 and the date of the last influenza 
isolate before or in week 20 (during the period of peak 
influenza). Vaccination was used to define exposure 
status if it was given at a time point between the start 
of the pre-influenza season (i.e. 1 September) and the 
end of the influenza season. An individual was defined 

as vaccinated 14 days after the seasonal influenza vac-
cine was administered. The time period from the first 
day of the influenza season to day 14 post vaccination 
was defined as ‘unexposed’ and the period from day 14 
post vaccination until the end of the influenza season 
was defined as ‘exposed’. The earliest influenza sea-
son began on 26 September and the latest began on 
25 November, and all seasons finished in May (Table 1). 
A protocol of the study methods has been previously 
published [23].

Study outcomes
General practitioners in this study were also involved 
in the Health Protection Scotland sentinel-swabbing 
scheme, whereby practices are encouraged to obtain 
nasal or throat swabs from patients of all ages who 
have presented with symptoms suggestive of influ-
enza. This is independent of whether or not the 
patient has been vaccinated. Each general practice is 
requested to submit five swab samples per week to the 
West of Scotland Specialist Virology Centre, Glasgow, 
UK for PCR testing for a range of respiratory patho-
gens. We also included results from swabbing carried 
out in primary and secondary care for routine diag-
nostic purposes in symptomatic patients outside the 
sentinel scheme. As a post-hoc sensitivity analysis, we 
excluded patients recruited from non-sentinel sources 
(n = 542; 16.3%) and those presenting symptoms less 
than 14 days after vaccination (n = 47; 1.4%). The West 
of Scotland Specialist Virology Centre is a World Health 
Organization-accredited National Influenza Center, 
which participates in the Quality Assurance programme 
to maintain this status. To calculate VE, patient swab 
data were linked with the unique patient identifier CHI, 
allowing characteristics of patients such as vaccination 
status to be established from general practice and hos-
pital admission data. In 2005/06 when influenza B (B/
Malaysia/2506/2004) was the predominant circulating 
virus type, tests were performed in sufficient numbers 
to estimate VE against influenza B in that season.

Table 1
Influenza seasons start and end dates, Scotland, 2000–09

Season Start date End date
2000/01 5 Oct 2000 14 May 2001
2001/02 18 Oct 2001 17 May 2002
2002/03 25 Nov 2002 15 May 2003
2003/04 26 Sep 2003 07 May 2004
2004/05 22 Oct 2004 19 May 2005
2005/06 06 Oct 2005 16 May 2006
2006/07 19 Oct 2006 09 May 2007
2007/08 02 Oct 2007 13 May 2008
2008/09 13 Nov 2008 05 May 2009
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The Privacy Advisory Committee of the Information 
Services Division, National Services Scotland, 
approved the linkage and analysis of the anonymised 
datasets for this project.

Statistical methods
A generalised additive logistic regression model [24] 
was fitted, adjusting for the effects of week during 
season (through a separate spline model each season) 
and age, sex, deprivation, smoking status, number of 
primary care and hospital consultations in the previ-
ous 12 months, influenza vaccination in the previous 
season, and being in a clinical group at risk of serious 
complications from influenza. Some of these patients 
did not receive the influenza vaccine; some received 
the vaccine, but after they were tested; and others 
had received the vaccine before they were tested. We 
therefore measured VE by comparing swabs taken 
after vaccination from individuals who were vacci-
nated, with swabs taken from all those who were not 
vaccinated at the time the swab was taken (people 
who were unvaccinated at the time of swab and who 
were then subsequently vaccinated counted as unvac-
cinated in our analysis as did people who were never 
vaccinated). When two doses were given we used the 
date of the first vaccine dose in our analysis. We strati-
fied our analysis by people 65 years and older vs peo-
ple younger than 65 years and at risk, and also tested 
for any heterogeneity between seasons. We also tested 
for any heterogeneity or collinearity between receipt of 
current and previous season’s influenza vaccination.

Using data from previous studies, we estimated that 
with 400 swabs per year, an effectiveness of 20% 
would be detected with 79% power for our primary out-
come of PCR-confirmed influenza (assuming that 15% 
of the population would be vaccinated, 30% swab-pos-
itive and adjusting for clustering within each primary 
care practice [25,26]). All statistical analysis was con-
ducted using R (version 2.14.1).

Results
A total of 3,323 swabs were taken from 3,016 patients 
with influenza symptoms over the nine seasons (of a 
total registered primary care population of 1,767,705 
person-seasons) and then tested with RT-PCR for evi-
dence of influenza infection. Some 489 swabs (14.7%) 
were performed on individuals who were vaccinated 
at the time of the swab. Although all subgroups were 
represented, proportionately more young, female, and 
socioeconomically deprived patients were swabbed 
(Table 2). Furthermore, a large proportion of the viro-
logical tests (42.3%) were carried out on patients 
that had presented more than five times to primary 
care in the previous year. During our study, 13.9% of 
swabs were positive for RT-PCR-confirmed influenza, 
with male patients and the socioeconomically affluent 
being more likely to test positive for influenza (Table 
2). One quarter of the swabs from school-aged children 
(5–14 years) tested positive for RT-PCR-confirmed influ-
enza. Pooled over nine seasons, VE for the trivalent 

inactivated influenza vaccine in the whole population 
was 57% (95% confidence interval (CI): 31–73) (Table 
3). VE for at-risk patients under 65 years was 60% (95% 
CI: 22–79) and 19% (95% CI: −104 to 68) for 65 years 
and older. Although there was variability between sea-
sons, no significant heterogeneity was found (p < 0.05); 
there were no positive tests among vaccinated people 
in 2000/01 and the highest VE was found in season 
2007/08 (Table 4). In 2005/06 for influenza B, there 
were 44 positive tests in 426 unvaccinated and three in 
137 vaccinated individuals. In that season, VE against 
influenza B was 79% (95% CI: 32–96).

Table 2
Number of swabs vs laboratory-confirmed influenza, by 
population group, Scotland, 2000–09 (n = 3,323)

Description Total 
samples

Swab-
positive

(number and 
% positive)

Swab-
positive 

AORa
AOR 95% CI

Sex
Female 1,995 248 (12.4) 1.00 NA
Male 1,328 214 (16.1) 1.35 1.07–1.69
Age group (years)
0–4 390 60 (15.4) 1.00
5–14 433 104 (24.0) 1.56 1.05–2.32
15–44 1,405 196 (14.0) 0.89 0.63–1.27
45–64 741 79 (10.7) 0.71 0.47–1.06
65–74 244 18 (7.4) 0.70 0.36–1.36
≥75 110 5 (4.6) 0.43 0.15–1.24
Deprivation quintileb  
1c 961 100 (10.4) 1.00 NA
2 789 97 (12.3) 1.18 0.85–1.63
3 735 116 (15.8) 1.55 1.13–2.12
4 519 96 (18.5) 1.94 1.39–2.71
5 309 51 (16.5) 1.86 1.24–2.79
Influenza vaccine in previous season
No 2,817 426 (15.1) 1.00  NA
Yes 506 36 (7.1) 0.90 0.53–1.52
Primary care consultations
0–2 1,133 206 (18.2) 1.00 NA
3–4 785 103 (13.1) 0.69 0.52–0.92
≥ 5 1,405 153 (10.9) 0.87 0.66–1.15
Secondary care consultations
0 2,728 400 (14.7) 1.00 NA
1–2 456 47 (10.3) 0.73 0.51–1.04
≥ 3 139 15 (10.8) 0.78 0.42–1.45

AOR: adjusted odds ratio; CI: confidence interval; NA: not 
applicable.

a  Adjusted for season, week during season (through a separate 
spline model each season), age, sex, previous season’s 
influenza vaccination, consultations and socioeconomic 
deprivation.

b  Deprivation score only available for 3,313 swabs.
c  1 = most socioeconomically deprived.
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When including influenza vaccination in the previous 
season (for all nine seasons), the vaccine effect in the 
current year was 55% (95% CI: 22–74) and there was 
no significant effect of the vaccination in the previous 
year (OR = 0.89; 95% CI: 0.53–1.52). A post-hoc inter-
action test showed a significant (p = 0.01) interaction 
between receipt of the previous season’s and the cur-
rent season influenza vaccination and VE but no major 
collinearity. Table 5 presents the VEs of three possible 
combinations of vaccinated or unvaccinated in the cur-
rent or previous season (combining all the seasons 
studied) compared with people with no vaccination in 
either season. Significant positive VEs were found for 
subgroups vaccinated in the current and previous sea-
son and those vaccinated in the current but not the pre-
vious season. A non-significant positive VE was found 

for people vaccinated in the previous season but not 
the current.

VE was similar to our primary analysis when excluding 
virological tests from non-sentinel sources (60%; 95% 
CI: 31–77) or patients with onset of symptoms less than 
14 days after vaccination (VE = 61%; 95% CI: 36–76).

Discussion
Our trivalent influenza VE using RT-PCR in symptomatic 
patients presenting over nine seasons was similar to 
the efficacy found in healthy adults younger than 65 
years in controlled trials (66% vs 75%) [8]. Our find-
ings were also similar to other observational studies 
which pooled data across several seasons and esti-
mated a VE of 61% for adults 50 years and older [15] 

Table 3
Proportion of vaccinated by case/control status and adjusted vaccine effectiveness for laboratory-confirmed influenza, 
Scotland, 2000–09 (n = 3,323)

Age group

Influenza-positive
 (cases)

Influenza-negative
(controls)

% total positive

Adjusted 
vaccination 

effectiveness 
% (95% CI)a

Vaccinated/
total (n)

Vaccinated
(%)

Vaccinated/
total (n)

Vaccinated
(%)

< 65 yearsb 14/439 3.2 249/2,530 9.8 14.8 66 (39 to 81)
< 65 years clinically at risk 14/117 12.0 209/788 26.5 12.9 60 (22 to 79)
≥ 65 years 13/23 56.5 222/331 67.1 6.5 19 (−104 to 68)
All ages 27/462 5.8 471/2,861 16.5 13.9 57 (31 to 73)

CI: confidence interval.

a  Adjusted for season, week during season, sex, number of hospital and primary care consultations, socioeconomic deprivation and being in 
a clinical at-risk group (where appropriate).

b  All patients including clinically at risk.

Table 4
Vaccine effectiveness for laboratory-confirmed influenza and predominant circulating influenza by season, Scotland, 
2000–09 (n = 3,323)

Season

Influenza-positive 
(cases)

Influenza-negative
(controls) % total 

positive

Adjusted 
vaccination 

effectiveness 
(95% CI) a

Dominant types circulating
Vaccinated/

total (n)
Vaccinated

(%)
Vaccinated/

total (n)
Vaccinated

(%)

2000/01 0/59 0.0 53/404 13.1 12.9 NA A/New Caledonia/20/99 (H1N1)  
B/Beijing/184/93

2001/02 1/55 1.8 25/310 8.1 7.7 77 (−117 to 98) A/Panama/2007/99 (H3N2)

2002/03 1/21 4.8 22/220 10.0 10.6 68 (−310 to 98) A/Panama/2007/99 (H3N2)  
B/HongKong/330/01

2003/04 4/56 7.1 12/269 4.5 5.2 49 (−58 to 84) A/Fujian/411/2002 (H3N2)a 

2004/05 5/49 10.2 60/351 17.1 19.4 44 (−66 to 81) A/Wellington/01/2004 (H3N2)a  
B/Shanghai/361/2002

2005/06 6/141 4.3 52/470 11.1 10.5 29 (−109 to 76) B/Malaysia/2506/2004a 
2006/07 2/26 7.7 23/228 10.1 10.9 22 (−375 to 87) A/Wisconsin/67/05 (H3N2)
2007/08 3/43 7.0 55/214 25.7 29.2 80 (21 to 95) A/Solomon Island/3/2006 (H1N1)
2008/09 4/40 10.0 50/254 19.7 22.5 38 (−136 to 84) A/Brisbane/10/2007 (H3N2)

CI: confidence interval; NA: not applicable.
a Poorly matched vaccine.
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and 62% for 20–64 year-olds [14]. In a single season 
(2012/13) in which genetic drift of the predominant 
influenza A(H3N2) strain had occurred, the VE esti-
mate for people 65 years and older was −11% against 
influenza A [27]. This is lower than our pooled estimate 
of 19% VE for this age group over nine seasons with 
different circulating strains. In the 2007/08 season 
when vaccine and circulating virus were well matched 
and influenza A/Solomon Island/3/2006 (H1N1) was 
the main circulating virus, our VE was higher for lab-
oratory-confirmed influenza than in a US study in the 
same season which used a study design similar to 
ours (80% vs 52%) [28]. In the 2005/06 season when 
influenza B/Malaysia/2506/2004 was the predominant 
strain, our estimate of 29% was similar to a US study 
(21%) [29], but lower than reported in Canada (63%) 
[30]. These differences in VE are likely to be due to 
between-country variation in the distribution of vac-
cine types, dominant circulating influenza types, sub-
types, and lineages, and antigenic (mis)match between 
vaccine virus and circulating virus [31]. Although there 
was poor precision, we found variations in VE over the 
seasons. In the two seasons when influenza A(H1N1) 
co-dominated or dominated and the vaccine was well 
matched (2000/01 and 2007/08, respectively), VE was 
high (≥ 80%). In 2003/04 and 2004/05 when vaccine 
mismatch occurred in the A(H3N2) component of the 
vaccine, VEs of 49% and 44% were found. In 2005/06 
when there was vaccine mismatch for influenza B, a 
79% VE for influenza B was found. This was similar to 
findings in a well-powered study in the same season 
on influenza B in England (67%; 95% CI: 31–85). In all 
other seasons, influenza A(H3N2) was the predominant 
influenza A subtype and VE varied from 22% (2006/07) 
to 77% (2001/02) [32].

Our finding of an interaction, whereby prior influenza 
vaccination interfered with current vaccine effective-
ness, has been described previously in a community-
based study [33]. Similar to that study, we were limited 
by a relatively small number of cases and were only able 
to dichotomise prior and current season vaccination 
status (yes or no). However, this simplified approach 
has been criticised and a more in-depth analysis has 
been suggested which includes the number, nature and 
antigenic distance specified by virus mutations across 

sequential circulating variants and vaccine compo-
nents [34]. This is a potential avenue for further work.

Clinical data collected by these sentinel practices are 
of high quality (90% completeness and accuracy [25]) 
and their value for epidemiological research has been 
repeatedly demonstrated [26]. Observational stud-
ies can be used to assess the effects of healthcare 
interventions without influencing the care provided or 
the patients who receive it. When used in the assess-
ment of vaccination programmes they therefore have 
high external validity and can be broadly generalised. 
Furthermore, by pooling data from nine seasons from 
the same population, we were able to generate suf-
ficient power to provide a precise VE estimate. The 
test-negative design offers an elegant way to deal 
with selection bias that may arise if there is a strong 
association between vaccination status and subject 
recruitment. However, this design only measures the 
protection provided by the vaccine to individuals seek-
ing medical attention, rather than VE against influenza, 
because for some persons (e.g. people with co-morbid-
ities and at risk of serious complications from influ-
enza), vaccination may not truly prevent influenza, but 
may reduce illness severity, preventing death or hospi-
talisation or reducing severity below their care-seeking 
threshold [35]. If possible, one should therefore assess 
the likely impact of VE on disease severity [36] and the 
influence of non-influenza acute respiratory infections 
by restricting controls to those who tested negative 
for influenza and positive for a different respiratory 
pathogen (e.g. parainfluenza or respiratory syncytial 
viruses) [35,37]. Swabs from symptomatic patients out-
side the systematically collected subset were included 
in our study, and this may have led to some selec-
tion bias, although physicians swabbing in second-
ary care (where the majority of non-sentinel swabbing 
took place) were unlikely to know the patient’s vaccine 
status unless self-reported and a sensitivity analysis 
found no change to our VE estimates (but decreased 
their precision). However, even with the inclusion of 
these additional tests from non-sentinel sources, there 
was an over-representation of swabs from working-age 
adults and therefore we had lower power to measure 
VE among children and older people. There was also 
inadequate power to measure pooled estimates of 

Table 5
Vaccine effectiveness for the combined influenza vaccinations in the previous and current season, Scotland, for all seasons 
(n = 3,323)

Previous season Current season Vaccination effectiveness 95% CI
p compared with 

unvaccinated in both 
seasons

Unvaccinated Unvaccinated 0.0 0.0 to 0.0 NA
Vaccinated Unvaccinated 47.6 −6.1 to 74.1 0.072
Unvaccinated Vaccinated 85.2 51.5 to 95.5 0.002
Vaccinated Vaccinated 50.4 15.6 to 70.8 0.010

CI: confidence interval.
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VE for types or subtypes of influenza (e.g. A(H3N2), 
A(H1N1) and B), most individual seasons, patients with 
chronic diseases (e.g. asthma) or pregnancy (which 
was not included as a risk factor for this analysis) or 
for those given a second dose of the vaccine. A much 
larger study is therefore required to perform these 
stratified analyses. In our primary analysis, we con-
sidered that the vaccine effect was random over sea-
sons rather than the seasons having random effect. In 
this pooled model we found that there was already a 
different intercept and seasonal trend each year and 
that this permitted more differences among the sea-
sons compared with a random effects model. The ran-
dom effects meta-analysis estimate was 51%, close 
to the pooled estimate reported in this paper (57%). 
Furthermore, treating each season equally gave a VE 
estimate of 65%. Some of the patients were found to 
have contributed with more than one swab in different 
seasons, with 231 people with swabs in two seasons, 
27 with swabs in three seasons and six with swabs 
in more than three seasons. We therefore performed 
post-hoc sensitivity analyses using a generalised esti-
mating equation (GEE) model and a clustered regres-
sion model. Both of these models were found to inflate 
the variance of the vaccine effect, but did not have a 
major impact on the conclusions.

Our primary objective was to make use of the best 
integrated and accessible Scottish data available to us 
to evaluate a new national influenza vaccination pro-
gramme introduced in Scotland in September 2000. 
During the period 2000 to 2009, seasonal influenza 
vaccination was provided to at-risk groups (at no cost 
to the patient) through primary care. This targeted 
approach resulted in high vaccine uptake rates of 66 to 
76% in older people and 38 to 49% in at-risk groups [6]. 
We found that during the period when the programme 
was implemented (and before pandemic influenza), 
which included seasons with poor vaccination match 
and severe influenza, there was strong evidence for the 
effectiveness of vaccination in preventing laboratory-
confirmed influenza, particularly for younger people 
and people susceptible to severe influenza-like illness. 
This information should reassure countries considering 
the implementation of a similar programme. However, 
while work is being undertaken to produce better vac-
cines and new vaccines are introduced, the continued 
development of a strong international evidence base is 
required to monitor the effectiveness of seasonal influ-
enza vaccination programmes, particularly among sub-
groups of patients at risk of serious complications from 
influenza such as older people.
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