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Abstract: In the present study, we performed density functional theory calculations (DFT) to inves-
tigate structural changes and their impact on the electronic properties in halogen (F, Cl, Br, and I) 
doped tin oxide (SnO2). We performed calculations for atoms intercalated either at interstitial or 
substitutional positions and then calculated the electronic structure and the optical properties of 
the doped SnO2. In all cases, a reduction in the bandgap value was evident, while gap states were 
also formed. Furthermore, when we insert these dopants in interstitial and substitutional positions, 
they all constitute a single acceptor and donor, respectively. This can also be seen in the density of 
states through the formation of gap states just above the valence band or below the conduction band, 
respectively. These gap states may contribute to signifcant changes in the optical and electronic 
properties of SnO2, thus affecting the metal oxide’s suitability for photovoltaics and photocatalytic 
devices. In particular, we found that iodine (I) doping of SnO2 induces a high dielectric constant 
while also reducing the oxide’s bandgap, making it more effcient for light-harvesting applications. 

Keywords: halogens; doping; SnO2; electrical properties; optical properties 

1. Introduction 

SnO2 is a wide bandgap, n-type semiconductor that adopts a tetragonal crystal struc-
ture [1–6]. Doping is also used to increase further its electrical conductivity as well 
as its transparency in the visible region [4–6]. SnO2 is mainly used as an opacifer of 
glazes [1], polishing powder [2], protective polymer coating [3], as a functional material 
in the solar cell technology [4], transparent conducting oxide [5,6] and gas sensor [7]. Re-
cently Zhao et al. [8] demonstrated that a NO gas sensor based on Sn2O3 has an improved 
selectivity to NO, NO2, and CO gases [8]. Wang et al. [9] have shown that Sn3O4 in ultrathin 
SnO2 nanosheets exhibits great performance for Li-ion storage for battery technology. Fur-
thermore, there are many experiments that examine the effect of halogen doping in SnO2 
thin flms with fuorine (F) being the most commonly used dopant because it signifcantly 
increases the conductivity and transparency of SnO2, hence making it appropriate for use 
as the transparent electrode in several classes of optoelectronics [10–14]. These include the 
sol-gel preparation of F:SnO2 nanostructures [11], studies on the structural characteristics, 
and the changes through the fuorine doping using X-ray diffraction (XRD) techniques [12] 
as well as deposition methods, such us spray pyrolysis [13] and chemical vapor deposi-
tion [14,15] for producing the F:SnO2. Regarding the F doping mechanism, several studies 
on F-doped SnO2 nanopowders using X-ray diffraction (XRD) analysis, transmission elec-
tron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transformed 
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infrared spectroscopy (FTIR) [16] revealed that at low concentration, F atoms occupy oxy-
gen vacancy sites as substitutional dopants, but for higher concentrations F atoms site in 
interstitial positions in the host lattice. Moreover, few reports have also demonstrated the 
effects of chlorine (Cl), bromine (Br), and I doping in SnO2. Abass et al. [17–19], using sev-
eral experiments with emphasis on optical and electrical properties, found pronounced 
improvements in these properties by halogen doping. Agashe et al. [20] also studied the 
electrical properties of sprayed deposited SnO2 flms and showed that when replacing 
F dopants with Br, conductivity was reduced. 

Except for experimental studies, there are also many theoretical research efforts using 
DFT that examine the role of defects such as F, Sb, and Cl in substitutional positions in 
SnO2 [21–27]. They revealed that such doping contributes to the formation of single donor 
states; however, the effect of interstitially doped SnO2 has not been studied yet. Addition-
ally, the infuence of other halogen dopants (besides F, Cl) in SnO2 and the corresponding 
changes in the oxide’s band structure and optical properties have not been systematically 
investigated yet. In most previously published DFT studies, the bandgap is signifcantly 
underestimated within the range 1 eV–2 eV [27–29]. This is a common problem when DFT 
calculations on wide bandgap semiconductors are conducted [30,31]. As a result, a number 
of methods have been developed in order to calculate more accurately the bandgap of these 
materials, with the Hubbard + U correction method and the computationally demanding 
but more accurate hybrid pseudopotentials being the most commonly used. Many re-
searchers have applied the Hubbard + U method for the d orbitals of Sn, but still, the band 
gap was substantially underestimated (2.5 eV). In the case of hybrid pseudopotentials, 
although the band gap reaches the correct experimental value of 3.7 eV [32], the compu-
tational cost is very high, and this is why the majority of these researchers use a small 
number of atoms in their unit cells [33]. 

In the present study, we investigate the halogen doping of the bulk SnO2 using DFT 
in order to examine changes in the electronic structure as well as improvements in the 
photocatalytic properties of SnO2. To achieve such an endeavor, we apply hybrid DFT 
calculations. With this method, the bandgap reaches the correct value of 3.35 eV and it is in 
good agreement with similar DFT works [34]. We examined all the possible defect sites for 
the halogen dopants and we also calculated the minimum energies for these dopants being 
at interstitial positions and the changes in the electrical properties. Using the total density 
of states (DOS) and the projected density of states (pDOS), we analyzed the minimum 
energy sites of the defects and their effect on the bandgap. Furthermore, we predicted the 
optical properties of all the doping cases and we compared our results with the available 
experimental data. 

2. Methodology 

For the DFT calculations, we used the Cambridge Serial Total Energy Package 
(CASTEP) [35,36]. DFT calculations were performed using the Local Density Approx-
imation (LDA) exchange-correlation Functional [37] with ultrasoft pseudopotentials [38]. 
The cutoff energy that met the convergence criteria was chosen at 800 eV and also for the 
geometry optimization of a 48 atom supercell, a 2 × 2 × 3 Monkhorst-Pack (MP) k-points 
set [39] was selected with the Broyden-Fletcher-Goldfard-Shanno (BFGS) method. As it 
was previously described, to consider the effects of the localized electrons, we used the 
hybrid functional PBE0 [39], which overcomes the LDA band gap error. Lastly, the DOS cal-
culations were performed using a 3 × 3 × 3 k points mesh and the pDOS were performed 
using a k point mesh of 7 × 7× 7. The convergence criteria for our analyses were chosen as 
0.05 eV/Å for the Max force tolerance, 0.001 Å for the Max displacement tolerance, 0.1 GPa 
for the Max stress tolerance, and 2.0 × 10−5 eV/atom for the SCF tolerance. 
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3. Results 
3.1. Structural Properties 

SnO2 has a rutile structure and it belongs to the space group of P42/mmm (space group 
no 136) of the tetragonal system. The calculated lattice parameters of the unit cell are 
a = b = 4.717 Å and c = 3.189 Å (α = β = γ = 90◦), in good agreement with the experimental 
results (a = b = 4.737 Å and c = 3.186 Å) [40]. In Figure 1a–h, the geometry of doped 
SnO2 structures is presented for the examined dopants (F, Cl, Br, and I) in substitutional 
and interstitial positions, where in each case the local distortion of the lattice is shown. 
The respective lattice parameters are presented in Table 1. An increase of cell dimensions 
due to the halogen incorporation in the SnO2 lattice is observed, as the substitution of 
oxygen with a larger atom (all halogens have a larger atomic radius than oxygen) will 
distort the lattice, increasing total volume, more so in the case of interstitial doping. It is 
interesting to note that in the case of iodine at an interstitial position, Ii, the cell increases in 
volume as both a and b increase, but the c parameter decreases. The anisotropic changes 
in the lattice parameters upon the introduction of the I atom is due to the reduction in 
the c-direction of the Sn-Ii bond length (3.31 Å) as compared to the Sn-I bond before our 
optimization (3.40 Å). 
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Fo: SnO2 4.735 4.735 3.205 71.857 
Cli: SnO2 4.789 4.790 3.201 73.429 
CloSnO2 4.778 4.778 3.213 73.350 
Bri: SnO2 4.795 4.845 3.194 74.202 
Bro: SnO2 4.795 4.795 3.218 73.988 
Ii: SnO2 5.055 4.830 3.165 77.276 
Io: SnO2 4.840 4.840 3.215 75.313 

3.2. Electrical Properties 
We examine the effect of halogen doping on the electronic properties and band gap 

of SnO2 by calculating the Density of States (DOS) of perfect and doped SnO2. 
The bandgap of the undoped SnO2 is calculated using the PBE0 functional, at 3.35 eV 

(Figure 2a) close (but still underestimated) to the experimental value of 3.7 eV [32], in 
agreement with other theoretical studies [41–43]. As it is observed from Figure 2b, the F 
interstitial in SnO2 gives rise to energy states inside the band gap, near the band edges 
with a small reduction of 0.2 eV of the bandgap width, calculated at 3.12 eV (Figure 2b). 
When F is situated in an O-substitutional position, the bandgap is notably reduced to 2.90 
eV without the presence of gap states (Figure 2c).  
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Table 1. The computed lattice parameters and cell volumes for every doping case. 

a (Å) b (Å) c (Å) Vol (Å3) 

SnO2 4.717 4.717 3.189 70.956 

Fi: SnO2 4.739 4.715 3.195 71.390 

Fo: SnO2 4.735 4.735 3.205 71.857 

Cli: SnO2 4.789 4.790 3.201 73.429 

CloSnO2 4.778 4.778 3.213 73.350 

Bri: SnO2 4.795 4.845 3.194 74.202 

Bro: SnO2 4.795 4.795 3.218 73.988 

Ii: SnO2 5.055 4.830 3.165 77.276 

Io: SnO2 4.840 4.840 3.215 75.313 

3.2. Electrical Properties 

We examine the effect of halogen doping on the electronic properties and band gap of 
SnO2 by calculating the Density of States (DOS) of perfect and doped SnO2. 

The bandgap of the undoped SnO2 is calculated using the PBE0 functional, at 3.35 eV 
(Figure 2a) close (but still underestimated) to the experimental value of 3.7 eV [32], in agree-
ment with other theoretical studies [41–43]. As it is observed from Figure 2b, the F inter-
stitial in SnO2 gives rise to energy states inside the band gap, near the band edges with a 
small reduction of 0.2 eV of the bandgap width, calculated at 3.12 eV (Figure 2b). When F is 
situated in an O-substitutional position, the bandgap is notably reduced to 2.90 eV without 
the presence of gap states (Figure 2c). 
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further reduced to 2.85 eV with gap states present near the valence band. When Cl is at an 
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bandgap is reduced to 2.90 eV with gap states near the valence band edge (minimum) are 
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Regarding the Cl doping, in the case of interstitial doping, Cli: SnO2, the bandgap is 
further reduced to 2.85 eV with gap states present near the valence band. When Cl is at 
an O-substitutional position, Clo, a more signifcant bandgap reduction occurs, to 2.70 eV 
(Figure 2d,e). In a previous DFT research on F and Cl doped TiO2 [44], we also observed a 
signifcant bandgap reduction when a Cl atom was inserted in an interstitial position. 

Regarding the effect of a Br interstitial intercalation (Figure 2f), the calculated bandgap 
is reduced to 2.90 eV with gap states near the valence band edge (minimum) are created. 
In comparison, in the case of substitutional Bro, the bandgap reaches a value of 2.71 eV 
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(Figure 2g). It is evident that regarding the electronic structure, Br doping has the same 
effect as Cl doping in terms of bandgap reduction. 

Lastly, I interstitial and substitutional doping is examined. We calculated that the 
bandgap is reduced to a value of 2.62 eV for the interstitial and 2.61 eV for the substitutional 
case, respectively, while states near the valence band are again presented. In this case, 
the substitutional doping has a smaller bandgap value than the interstitial case. This can 
be attributed to the states that are created to the valence band edge, which is due to the 
hybridization of the 2p orbitals of the nearest oxygen atom with the iodine 5p orbitals. 
As iodine is larger than the other halogens, even in the substitutional position, its orbitals 
are mixing with the nearest oxygen atom, giving rise to the states near the valence band. 
These results indicate that halogen interstitial dopants serve as single acceptors when they 
are intercalated within the SnO2 host lattice. Such gap states near the oxide’s valence 
band maximum and those near the conduction band position may act as shallow and deep 
acceptors, respectively, hence contributing to performance enhancements of devices based 
on doped SnO2. However, the gap states may also act as traps for the photogenerated 
carriers in specifc photovoltaic devices such as organic and halide perovskite photovoltaics, 
thus decreasing the device photocurrent and overall performance. 

However, the incorporation of substitutional halogen atoms in oxygen position does 
not introduce any gap states. This is in stark contrast with the intercalation of interstitial 
halogens that create some localized perturbations upon the upper valence band and the 
conduction band of the material. That implies free electrons’ presence contributing to the 
n-type conductivity, in accordance with experimental observations [45–48]. The halogen 
substitutional doping is seen to induce states inside or near the valence band. We believe 
that this can be explained because in the substitutional doping, the halogen orbitals are 
not mixing with the nearest Sn-5p or O-2p orbitals. As a result, no hybridized mid-gap 
states arise. 

In Table 2 we have summarized our results. According to these calculations, the mini-
mum value of the calculated bandgap is 2.61 eV for the case of Io doping. It is therefore 
suggested as the most effective of the halogen SnO2 dopants for photocatalytic applications. 

Table 2. Band gap values for every halogen doping case. 

Halogen Dopants Band Gap 

Interstitial Doping Substitutional Doping 

F 3.12 2.90 

Cl 2.85 2.70 

Br 2.90 2.71 

I 2.62 2.61 

Therefore, it is suggested that this type of doping can be used to develop better 
photocatalysts. 

In Figures 3 and 4, the pDOS for the doped SnO2 are shown. From the pDOS, we can 
gain important information about the gap states and the contribution of each element’s 
orbitals to the valence and conduction band. As seen in Figure 3a, which shows the 
pDOS of the plain SnO2, the valence band is mainly consisting of O-2p and Sn-5p orbitals, 
whereas the conduction band is created from the Sn-5s, Sn-5p, O-2s, and O-2p. This is in 
good agreement with previous theoretical studies [41,42]. Referring to Figure 3b, we see 
that F doped SnO2 has a similar valence and conduction band structure with the undoped 
SnO2 with a small deviation coming from the contribution of fuorine in the doped oxide. 
Focusing on the gap states formed near the valence band in the F-doped material, calcula-
tions show that it is created due to the hybridization of O-2p with F-2p orbitals (refer to 
Figure 4a). This is the same phenomenon that we predicted to occur in the case of TiO2 [43] 
upon doping with interstitial F atoms. 
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Similarly, in Figure 4b–d the rise of gap states is mainly created by the O-2p and 
Cl-2p and O-2p and Br-4p and I-5p. This probably indicates that the formation of mid-gap 
states in halogen doped n-type metal oxides such as SnO2 and TiO2 may have a universal 
origin. In any case, further investigation is needed, which is beyond the scope of the 
present manuscript. 

3.3. Optical Properties 

The complex dielectric function can provide important information concerning the 
polarization mechanisms of the solid. The dominant dispersion/absorption mechanisms in 
the visible and ultraviolet range are caused by electronic excitations, i.e., transitions from 
occupied to empty electron levels. The dielectric function can describe these transitions. 

In Figure 5a, the complex dielectric function of undoped SnO2 is presented. The real 
part of the dielectric function of the undoped SnO2 is descended as we increase the energy, 
reaching a maximum at 8.5 eV. The negative value in the energy range from 16–17 eV 
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indicates that SnO2 has metallic properties [49,50]. The probability of photon absorption is 
calculated through the imaginary part of the dielectric function. Specifcally, we observe 
two major peaks at 10 eV and at 12.5 eV, which are assigned to the electronic interband 
transition from O-2p to Sn 5p. The dielectric constant for the undoped case is calculated to 
2, which agrees well with the experimental value of 1.6 [49] and similar DFT works predict 
a value of 2 [50]. In Figure 5b–i, all the dielectric functions for the doped cases are shown. 
It is evident that in the case of the interstitial doping with F, there is a notable improvement 
to the dielectric constant as it reaches the value of 3.2 from the real part of the dielectric 
function. The existence of a major peak at 1 eV can be attributed to the electronic transition 
of F-2p and the Sn-5p in the conduction band. As regards the other interstitial cases, it is 
predicted that the dielectric constant is almost unchanged except the Ii: SnO2, which shows 
an improvement, and it reaches a value of 2.7. For the substitutional doping cases, in the 
case of Io: SnO2, we calculate that the maximum value of the dielectric constant is achieved, 
which is 2.4. 
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The calculated refractive index (refer to Figure 6) for the undoped SnO2 is 1.40. This re-
sult is more underestimated than the experimental value of 1.70 [51], but agrees well with 
the value of other DFT studies [50]. The extinction coeffcient can be described through 
the imaginary part of the refractive index, k. The major peak at the imaginary part of the 
undoped case is located at 12.5 eV. For the interstitial cases, we calculated that Fi shows an 
increase at the refractive index and reaches a value of 1.8. Affy et al. [52] experimentally 
predicted that the refractive index of F: SnO2 was between 1.85–2.2, which agrees well 
with the present study. For the substitutional cases, the refractive index has its maximum 
value of 1.51 in the case of Io: SnO2. The increase of the refractive index for Fi and Io 
boosts the antirefectivity (AR) of SnO2 and might be benefcial for application in energy 
harvesting devices. 
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Lastly, the absorption co-effciency is presented in Figure 7. The major peaks range 
from 5 eV to 22 eV, and it is in good agreement with previous DFT studies [50]. The ab-
sorption of pure SnO2 starts at 380 nm, which is somewhat underestimated than the 
experimental value, which is around 400 nm [52]. It is seen that in the visible region 



Appl. Sci. 2021, 11, 551 12 of 14 

(1.78–3.12 eV), I doped SnO2 has the highest absorption both for the interstitial and the 
substitutional positions. 
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4. Conclusions 

DFT calculations were performed for halogen doped SnO2 and the effects of the exact 
kind of doping on the bandgap value and electronic properties were discussed. In this 
research, interstitial and substitutional halogen defects were examined. In all cases, it was 
observed that gap states were created from hybridization of O-2p with halogen 1s orbitals. 
Such energy states are benefcial for the oxide’s photocatalytic activity as they signifcantly 
reduce the optical band gap concerning that of undoped SnO2. They can also serve as charge 
transport paths in a certain type of optoelectronic device, whereas this might be detrimental 
for the application of halogen-doped oxide as electron transport material in other classes 
of photovoltaic devices. Iodine doped SnO2 has the lowest bandgap value of 2.60 eV and 
it is one of the lowest values reported for SnO2. Interestingly, when iodine resides in an 
oxygen site, it has a better refractive index and absorbance than the other halogen dopants. 
This makes it a suitable dopant candidate for SnO2-based energy harvesting devices. 
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