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Abstract
Introduction: Calculating accurate blood volume to process is a critical practice in apheresis planning; therefore, re-
searchers try to develop dedicated prediction models. In this analysis, we have attempted to compare three algorithms 
for two different apheresis collection protocols.
Methods: In a retrospective study, we have analyzed 137 apheresis procedures performed on 100 autologous patients. 
Apheresis procedures were performed with the Spectra Optia apheresis device with two protocols: mononuclear cell 
collection (MNC) and continuous mononuclear cell collection (cMNC). Three algorithms: a model based on mean col-
lection efficiency (CE2), a linear regression model, and a power regression model were validated by plotting collected 
CD34+ cell dose versus predicted CD34+ cell dose.
Results: All models showed high predictability for MNC procedure, a high correlation of predicted CD34+ yield and ac-
tual CD34+ yield (R2 =0.9547; 0.9487; 0.9474 for CE2-based model, linear and power regression model, respectively). 
In contrast, alteration between models for the cMNC procedure was greater (R2 =0.8049, 0.7970, and 0.8169) with 
a higher number of overpredictions. Further analysis revealed that for low CD34+ precounts blood volume to process, 
calculated with the three models, differ significantly up to fivefold times.
Conclusions: Utilizing regression models may lead to calculation errors, which can affect undercollection, repetition of 
apheresis, or even mobilization failure. Contrary to regression models, the model based on mean CE2 gave the most 
accurate prediction both for MNC and cMNC procedures. Although new prediction algorithms are created, this simple 
formula remains a reliable tool that promotes careful planning of apheresis, thus improving patient safety.
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Introduction

Understanding the principles of the apheresis technique 
is crucial for performing an efficient and safe peripheral 

blood stem cell (PBSC) collection. Optimizing all steps of 
the mobilization process, that is, preparation of patient, 
timing of the collection, and collection itself has been 
of interest to all haematology professionals involved in 
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Methods

Patients and apheresis
A retrospective study was performed on 100 consecuti-
ve patients, 137 peripheral blood stem cell collections, 
completed in a single center between May 2015 and No-
vember 2017. Information was collected on patient age, 
sex, diagnosis, weight, height, peripheral CD34+ precount 
before the procedure (CD34+pre), total blood volume (TBV) 
processed and yield — number of CD34+ cells collected per 
kg of recipient body weight (CD34+/kg body weight). Patient 
data are summarized in Table I.

All procedures were performed with Spectra Optia 
apheresis device with two protocols: MNC (n =77) and 
cMNC (n =60); the latter was introduced in 2014. Pe-
ripheral venous access was used whenever the nursing 
staff was able to insert cannulas (18 G–16 G) palpably; 
otherwise, a central venous catheter (13 F) was inserted 
before apheresis. A median inlet flow rate of 39 mL/min 
(range, 27–53 mL/min) was used for MNC and 50 mL/ 
/min (range, 27–77  mL/min) was used for cMNC. An 
initial 12:1 inlet:anticoagulant (AC) ratio was used for 
both protocols. It was necessary to decrease the ratio in 
a few MNC procedures where clothing in collection line 
was observed.

The CD34 target dose was 8 ×106 cells/kg of body wei-
ght for multiple myeloma patients and 4 ×106 cells/kg of 
body weight for lymphoma patients. Total blood volume to 
the process was roughly estimated by the operator based 
on previous experiences.

Collection efficiency (CE2) was calculated only with 
the pre-apheresis CD34+ count. The mean CE2 value was 
used for formulating a collection efficiency-based predic-
tion model.

  
CE2 = +CD34 /µL pre × TBV processed

 
+CD34 /µL prod × vol

2

  
CE1 = + +CD34 /µL pre + CD34 /µL post

 
+CD34 /µL prod × vol

× TBV processed

Prediction models and validation
The purpose of each model is to determine blood volume to 
process knowing the CD34+ pre. To validate their accuracy, 
created formulas were used for calculation of the predicted 
CD34+ yield based on the actual blood volume processed 
(TBV processed). The predicted CD34+ yield was compared 
to the actual CD34+ yield. Trend lines were set to cross 
point 0; 0 to eliminate an error where the points lie close 
to the trend line but are located in the underprediction or 
overprediction area of the validation graph.

Model based on the mean collection  
efficiency (CE2)
Blood volume to process can be calculated by equation:

hemopoietic stem cell transplantation (HSCT). PBSC 
collection aims to gather a sufficient number of cells for 
HSCT with minimizing the risk of adverse events associa-
ted with the procedure. It indicates performing apheresis 
at the right time with the application of a minimal number 
of procedures [1]. The kinetics of CD34+ cell increase in 
patients mobilized with granulocyte colony-stimulating 
factor (G-CSF), combined with chemotherapy, is difficult 
to predict. Numerous investigators focus on the timing of 
apheresis, that is, initiation of the procedure. It is widely 
approved to start apheresis with CD34+ cells circulating 
in blood at a minimal level of 10–20 cells in microliter 
[2–5]. A very strong correlation between CD34 precount 
and yield (CD34+ cells/kg of body weight) enables to 
determine a minimal CD34+ precount required for the 
collection of a minimal target dose and, in consequence, 
decreasing the number of unnecessary procedures [6–8]. 
This scheme, however, in which a fixed blood volume is 
processed through a separator, seems to be insufficient 
considering the difference in the patient’s height and 
body weight.

A need for an individualized approach to a patient led 
to a development of different algorithms, which determine 
blood volume to process through a blood separator to re-
ach a particular CD34+ cell target. Calculations based on 
the mean collection efficiency (CE2) (with an assumption 
that the CD34+ cell level in blood is equal throughout the 
whole procedure) provided a simple and fast method for 
calculating blood volume required to be processed [9–13].  
This method enables to reduce citrate toxicity, improves 
quality control, and promotes best practices by enabling 
benchmarking [12]. Furthermore, this algorithm was modi-
fied by decreasing the calculated CE to decrease the num-
ber of underestimated procedures, which could result in 
mobilization failure [14, 15].

An alternative method, first introduced by Mitterer et al. 
in the mid-1990s, applies a linear regression model [16]. 
A plot with CD34+ cell precount against CD34+ cells col-
lected per 10 L whole blood volume processed is used for 
creating equations to determine blood volume to process 
and predicted CD34+ yield [17, 18].

To increase accuracy, these models can be applied 
for stratified groups, that is, healthy donors, patients with 
different diagnoses [18]. Furthermore, the regression mo-
del could be tested for a nonlinear correlation. It leads to 
creating many models, but a question arises which model 
should be chosen? In this article, we try to compare the 
utility of these models and assess their accuracy. Addi-
tionally, to enlarge the extent of research, we build each 
model for two different PBSC collection protocols. We also 
observe the efficacy of the mononuclear cell collection 
(MNC) protocol and continuous mononuclear cell collec-
tion (cMNC) protocol.
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× body weight [kg]
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blood volume to process [mL] =

 +CD34 target

 +CD34 pre   
  

cells

mL
× CE2 [%]

=

Predicted CD34+ dose [cells/kg body weight] can be 
calculated by equation:

 +CD34 predicted   
  

cells

kg body weight
=

=

 +TBV processed [mL] × CD34 pre   
  

cells

mL
× CE2 [%]

body weight [kg]

Regression model
A plot with CD34+ collected/TBV processed [cells/kg body 
weight/mL] against CD34+pre enables creation of linear 
and power estimation curves, which are elucidated with 
equations y =ax +b and y =cxn. This regression model allows 
for the formation of the following formulas.

Linear regression:

blood volume to process [mL] =

 +CD34 target   
  

cells

kg body weight

 +CD34 pre   
  

cells

mL
× a + b

=

 +predicted CD34   
  

cells

kg body weight
=

 +TBV processed [mL] ×  CD34 pre   
  

cells

mL
× a + b=

Power regression:

blood volume to process [mL] =

 +CD34 target [cells/kg body weight]

  
  

cells

mL
c ×  +CD34 pre

n
=

+CD34  predicted   
  

cells

kg body weight
=

TBV processed [mL] × c ×=   
  

cells

mL

 +CD34 pre
n

CE — collection efficiency; TBV processed — actual blood 
volume processed during collection; vol. — product volume; 
CD34+/µL pre — patient pre-apheresis CD34+ blood cell co-
unt; CD34+/µL post — patient post-apheresis CD34+ blood 
cell count; CD34+/µL prod — product CD34+ cell count.

Table I. Patient characteristics

Variable MNC cMNC

Number of patients n =50 n =50

Sex (male, female) 30, 20 32, 18

Age, median  
(range)

61  
(23–69)

60  
(26–70)

Donor body weight [kg], 
median (range)

70  
(42–110)

74  
(49–114)

Height, median (range) 168  
(148–190)

170  
(149–190)

Donor TBV [mL],  
median (range)

4555  
(3004–6470)

4693  
(3112–6470)

Diagnosis

Multiple myeloma 40 36

Hodgkin lymphoma 1 6

Mantle cell lymphoma 3 3

Diffuse large B-cell 
lymphoma

2 4

Peripheral T-cell  
lymphoma

1 1

Follicular lymphoma 1 0

Burkitt lymphoma 1 0

Blastic plasmacytoid 
dendritic cell neo-
plasm

1 0

Mobilization regimen

Cytarabine + G-CSF 35 36

Cytarabine + G-CSF  
+ plerixafor

2 1

DCEP + G-CSF 4 3

R-DHAP + G-CSF 1 2

ICE + G-CSF 1 2

Dexa-BEAM + G-CSF 1 1

DHAP + G-CSF 2 5

R-GDP + G-CSF 1 0

IGEV + G-CSF 1 0

DCEP + G-CSF  
+ plerixafor

1 0

G-CSF + plerixafor 1 0

Venous access

Peripheral access 37 29

Central venous  
catheter

13 21

MNC — mononuclear cell collection; cMNC — continuous mononuclear cell collection; TBV — total 
blood volume; G-CSF — granulocyte colony-stimulating factor; DCEP — dexamethasone, cyclophos-
phamide, etoposide, and cisplatin; R-DHAP — dexamethasone, cytarabine, cisplatin, rituximab; 
ICE — ifosfamide, carboplatin, etoposide; Dexa-BEAM — dexamethasone, carmustine, etopo-
side, cytarabine, melphalan; DHAP — dexamethasone, cytarabine, cisplatin; R-GDP — rituximab, 
gemcitabine, cisplatin, dexamethasone, rituximab; IGEV — ifosfamide, gemcitabine, vinorelbine, 
prednisone
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Statistical analysis
For patient characteristics and device performance, 
descriptive statistics was used. Results are presented 
as median (min, max). The Spearman’s rank correlation 
coefficient was used to determine a relationship between 
the variables. The Wilcoxon signed-rank test assessed the 
hemoglobin loss after the procedure. Mann–Whitney U test 
compared the differences between protocol parameters 
(STATISTICA, version 13, StatSoft).

Results

MNC vs. cMNC protocol
Safety
The default setting of 12:1 inlet:anticoagulant (AC) ratio 
and the same blood volume processed expectedly did not 
contribute to difference in the volume of ACD(A) infused to 
patients: MNC 973 mL (337, 1543), cMNC 894 mL (451, 
1600) (Table II). In both procedures, only mild adverse 
events occurred occasionally, and they were mitigated 
by oral supplementation and calcium gluconate in saline 
intravenous drip infusion.

Conversely, a significant difference was observed in pla-
telet loss, higher for the MNC protocol by 24.2% (−5.7 to 
60.9), lower for the cMNC protocol 12.2% (−17.3 to 38.3). 
The platelet CE2 confirms higher platelet attrition for the 
MNC protocol 21.9% (9.1–47.5) versus 15.9% (10.2–21.3) 
for cMNC. The better performance of the cMNC protocol is 
a result of lower packing factor (lower g force), implemen-
ted in the Spectra Optia centrifuge. Thicker buffy coat in 
the cMNC protocol allows for more selective separation in 
terms of platelet product contamination.

In contrast, the level of hemoglobin in patient does not 
change for the MNC protocol after the procedure p =0.47, 
but it decreases significantly after the collection proce-
dure performed with the cMNC disposable set procedure 
p =0.009 (Table III). Again, this is a result of the technical 
solution implemented in the Spectra Optia centrifuge. The 
manufacturer recommends in the cMNC protocol to set the 
collection preference setting to collect product containing 
approximately 5% RBC. The Htc level we reached in our 
center is 3.0% (0.7–5.6), which is significantly higher than 
in the MNC setup (Htc 1.4% (0.8–3.7)). We indeed collec-
ted more RBC in the collection bag with the cMNC protocol 
4.94 mL (1.9–14.03) than with MNC 3.96 mL (1.40–13.34).

The difference between the procedures is also distinguis-
hable in cell concentration. White blood count (WBC) and gra-
nulocyte count in 1 µL of product was higher when performed 
with a new procedure. Despite this fact, the granulocyte per-
centage and overall number of granulocytes did not differ.

Performance
The time and effective collection time (average flow rate) 
differed favorably for the cMNC procedure (Table II). The 

manufacturer recommends not to exceed the blood flow rate 
of 62 mL/min for the MNC procedure to maintain the desired 
packing factor in the centrifuge, which elsewise could lead 
to reduced collection efficiency. The new protocol allows us 
to perform the procedure at higher inlet flows equally effec-
tive. However, with the application of this new procedure, 
we reached blood inlet flow above 62 mL/min only in seven 
cases, which was caused by vascular access limitations. With 
peripherally inserted cannulas, it is difficult to exceed the 
blood flow rate of 60 mL/min. Moreover, the blood flow rate 
may be limited by the recommended maximum anticoagu-
lant infusion rate of 1.2 mL/min/kg body weight. The higher 
effective collection time, obtained with the cMNC procedure, 
can be explained by lower sensitivity to blood flow changes.

Collection efficiency CE2 calculated with CD34+ preco-
unt alone was significantly higher for the MNC protocol. The 
different efficiency for both protocols is also confirmed by 
other useful and widely utilized parameters, that is, collec-
tion rate (Table II). Although the CD34+ precount did vary 
between the two cohorts, the performance parameters can 
be compared between the two groups of patients as long 
as the processed TBV is similar [19]. In our study, CE2 is 
independent of CD34+ precount (p =0.095 for MNC and 
p =0.281 for cMNC), which hereby supports this reasoning.

Regression analysis
The regression models showed a strong and very strong 
correlation between CD34+ precount and cells collected per 
1 L of blood volume processed both for MNC and cMNC 
protocol (Figure 1). This supports the use of CD34+precount 
for the calculation of blood volume to process. For the MNC 
protocol, the linear and power model did not show diffe-
rences resulting in similar R2. Interestingly, for the cMNC 
protocol, power regression showed a better correlation 
(R2 =0.9122 vs. R2 =0.7925).

Validation
We observed a high correlation of predicted CD34+ yield 
and actual CD34+ yield for the MNC protocol for all three 
algorithms: based on the mean CE2, linear, and power 
regression (Figure 2A–C). R2 was equal to 0.9547, 0.9487, 
and 0.9474 respectively. It confirms high reproducibility and 
stability of the procedure.

During the cMNC procedure validation, we noticed dif-
ferences between prediction algorithms. The power regres-
sion model and CE2-based one gave similar results regar-
ding R2 =0.8049 and 0.8169 (Figure 2D, F), respectively, 
but the relationship between the predicted and collected 
CD34+ yield in the linear model contributed to a poorer cor-
relation (R2 =0.7970, Figure 2E). Moreover, a comparison 
of validation outcomes for MNC and cMNC procedures re-
veals that overall the accuracy of cMNC prediction models 
is lower. The final yield is less predictive suggesting lower 
stability of the procedure or lesser device automation.
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Table II. Patient pre-apheresis haematology, procedure performance

Variable NMC cMNC p

n Median (range) n Median (range)

Preapheresis haematology
CD34 [/µL] 77 41.0 (2.5–1500.0) 60 110.5 (8.0–1106.0) 0.010
WBC [×109/L] 77 20.78 (5.05–100.02) 60 22.26 (4.00–65.12) NS
PLT [×109/L] 72 75 (37–233) 60 80 (41–282) NS
Granulocytes [×109/L] 77 16.62 (3.27–93.41) 60 17.58 (2.71–55.00) NS
Safety
PLT loss [%] 66 24.2 (–5.7–60.9) 56 12.2 (–17.3–38.3) 0.002
PLT CE1 [%] 66 21.9 (9.1–47.5) 56 15.9 (10.2–21.3) <0.001
ACD infused 65 973 (377–1543) 59 894 (451–1600) NS
Procedure
TBV processed 77 2.20 (1.10–3.00) 60 2.15 (1.30–3.20) NS
Whole blood processed [mL] 77 10162 (4218–16175) 60 9806 (4930–17603) NS
Procedure time [min] 77 261 (137–366) 60 203 (115–497) <0.001
effective collection time (average flow rate) 
[mL/min]

77 39 (27–53) 60 50 (27–77) <0.001

Product
Total collect volume pump [mL] 77 260 (100–580) 60 177 (104–295) <0.001
Htc [%] 77 1.4 (0.8–3.7) 60 3.0 (0.7–5.6)
WBC [×109/L] 77 60 260.805 (56.580–713.97) <0.001
PLT [×109/L] 77 60 636 (255–2426) NS
Granulocytes [×109/L] 77 60 71.790 (11.76–310.97) <0.001
Granulocytes [%] 77 60 29.523 (0.702–75.41) NS
Granulocyte content [×109] 76 12.9 (0.3–55.1) 59 13.5 (0.2–41.7) NS
MNC prod [×109/L] 77 98.44 (31.470–166.27) 60 133.655 (23.540–341.74) <0.001
MNC [%] 77 50.77 (24.26–94.66) 60 50.44 (14.07–87.88) NS
Neutrophils [×109/L] 77 46.88 (2.000–152.80) 60 63.905 (11.76–274.54) <0.001
Recipient CD34+/kg 77 3.10 (0.31–61.90 60 7.06 (0.40–48.30) 0.027
CD34+ total [×109] 77 201.24 (21.94 –5320.08) 60 567.94 (35.84–4103.72) 0.023
CD34+ [cells/µL] 77 1133.0 (93.8–22167.0) 60 2961.5 (128.0–22063.0) <0.001
RBC content [mL] 77 3.96 (1.40–13.34) 60 4.94 (1.9–14.03) 0.001
Performance
CD34 CE2 [%] 77 58.82 (31.55–157.38) 60 51.26 (11.27–100.20) 0.003
CD34 CE1 [%] 0 – 31 57.36 (28.69–107.58) –
MNC CE1 [%] 77 81.8 (28.1–233.5) 60 69.7 (9.2–253.4) 0.011
Collection rate [mL/kg] 77 71.93 (27.47–260.00) 60 59.50 (23.39–204.55) 0.027
Throughput [Cr/min] 77 0.2790 (0.1122–0.9886) 60 0.2970 (0.0629–0.6796) NS

MNC — mononuclear cell collection; cMNC — continuous mononuclear cell collection; WBC — white blood count; NS — not significant; PLT — platelets; TBV — total blood volume; RBC — red blood count;  
CE — collection efficiency

Table III. Hemoglobin loss (Wilcoxon signed-rank test)

Variable MNC cMNC

n Median (range) n Median (range)

Hb pre 70 9.6 (8.0–15.1) 55 10.0 (7.9–13.2)

Hb post 70 9.6 (7.1–14.9) 55 9.7 (7.6–12.4)

p 0.47 0.009
MNC — mononuclear cell collection; cMNC — continuous mononuclear cell collection; Hb — he-
moglobin

If we further analyze the linear regression validation 
plot for cMNC, we notice that the estimated and real CD34+ 
yields deflect from an ideal trend line toward lower yields. 
To further investigate models for each protocol, we plotted 
predicted blood volume to process to target 8 ×106 CD34+/ 
/kg body weight, which is the most common case (Figure 3). 
For CD34+ precount above 100 CD34+/µL, the calculated 
blood volume to process is comparable for all models. The 
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Figure 1. Regression model curves. Solid lines represent the linear model, dotted lines represent power regression model: mononuclear 
cell collection (MNC) protocol (A) and continuous mononuclear cell collection (cMNC) protocol (B)
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difference rises below 100 CD34+/µL, and the difference 
in the values is from twofold even up to fivefold.

Validation CD34+ precount <100 cells/µL
Again, by generating a validation plot we examined the ac-
curacy of models for collections with CD34+ precount below 
100 CD34+/µL (Figure 4). Similar to blood volume to process 
(Figure 3A), models for the MNC procedure, based on the 
mean CE2, linear, and power regression give comparable 
results (Figure 4A). A very good correlation, which is almost 
close to ideal, is observed for trend lines. The coefficient of 
determination equals 0.9092, 0.8652, 0.8652, respecti-
vely. For the cMNC protocol, the three models give different 
results (Figure 4B). The linear and power regression models 
show a low correlation, where R2 =0.6025, R2 =0.6763 with 
most points lying in the overprediction part of the validation 
graph. Only the model based on the mean CE2 proves a good 
correlation R2 =0.8118 with trend line lying close to ideal.

Underestimation and overestimation  
of blood volume to process
An algorithm can underpredict the target dose, which me-
ans that the predicted dose will be lower than actual. It can 
also overpredict the dose; therefore, the predicted dose 
will be higher than the collected one. Overprediction also 
means that the algorithm underestimates blood volume 
to process. This may result in the repetition of apheresis 
or even mobilization failure. We enumerated the number 
of underestimations and overestimations of blood volume 
to process to study the safety of each prediction model 
(Figure 5).

MNC models again showed consistent results with 
slightly more underestimations than overestimations (Figu-
re 5A–C). cMNC regression models underestimated blood 
volume to process in most cases (Figure 5E, F). Only the 
mean CE2 model gave a similar number of underestima-
tions and overestimations (Figure 5D).
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Discussion

MNC versus cMNC
Safety and performance
The relative safety and simplicity of peripheral stem cell 
collection rendered blood separators widely utilized in 
hematopoietic stem cell transplantation. Although severe 
adverse events happen rarely [20], professionals constantly 
pay attention to the safety of a procedure, particularly when 
introducing a new apheresis protocol [12]. Although some 
data about the new cMNC protocol have been published 
[11, 15, 21], we have carefully examined patient blood 
parameters to ensure safety.

The anticoagulant consumption did not differ, which 
made the new procedure as safe as the MNC in terms of 
anticoagulation optimization. This is not surprising as the 
device manages anticoagulation identically, and settings 
for both protocols are managed equally.

Hemoglobin and platelet count are often below the re-
ference level in mobilized patients after chemotherapy tre-
atment. Shlenke et al. [22] considered hemoglobin (Hg) 

level above 9 g/dL safe and platelet level above 30 ×109/L 
satisfactory for performing a safe apheresis. By selecting 
a proper Spectra Optia parameter setup and the appropriate 
collection set, transfusion can be avoided. The MNC proto-
col will be suited for patients with critically low hemoglobin 
levels, and the cMNC protocol will be beneficial in individu-
als with critically low platelet count. This is a very important 
conclusion that illustrates how understanding of apheresis 
principles impacts the planning of collection procedures.

The occurrence of adverse events after the infusion 
of PBSC is related to the number of granulocytes in the 
graft. It is stressed that high-quality apheresis product 
is needed for transplantation [23]. As the granulocyte 
content between two protocols did not differ, we conclu-
de that the new protocol again fulfills acceptance crite-
ria and is safe.

The mean CE2 value of 56.0% for MNC and 47.6% for 
the cMNC protocol correspond to the published ones [11, 
12, 15, 17, 21, 24, 25]. The consistency of Spectra Optia 
performance results, revealed by different authors, sup-
ports repeatability of devices. Consequently, our findings 
may have a relevant impact on the work of apheresis units, 
which utilize prediction algorithms to calculate blood vo-
lume to process.

Accuracy of prediction models
A reliable algorithm for determining blood volume to 
process should enable us to collect enough cells for 
a transplantation and prevent unnecessary long pro-
cedures. Prediction models for MNC procedures were 
comparable and suggest high reproducibility of the pro-
cedure. Performance variables support this conclusion 
as they are similar to those published by other authors 
[12, 15, 17, 21, 24–26].

The most significant differences between the algorit-
hms were observed in the cMNC protocol. Which model 
should be therefore utilized for clinical practice? Regres-
sion models showed either a worse correlation (particu-
larly for CD34+ precount below 100 cells/µL) or significant 
overprediction. The regression models are based on an 
entire range of CD34+ precounts. If the correlation is not 
ideally linear, high values can increase discrepancy. This 
observation is consistent with observations made by other 
authors who note that CD34+ precount >200 cells/µL is 
considered as an outlier [27]. This data, coming from pa-
tients called super mobilizers, affected the model, resul-
ting in overprediction. This can be especially dangerous 
for poor mobilizers when underestimation of blood volume 
to process can increase probability of mobilization failure.

In contrast to the MNC protocol, where all models were 
accurate, for the cMNC, only the mean CE2-based model 
was proven to be reliable. It contributed to a good correla-
tion during the validation and did not show overestimation 
or underestimation.
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CE2 based model
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Power regressionPower regression

Overestimation
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EB

FC
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Figure 5A–F. The white color represents the number of proce-
dures that overestimated blood volume to process and the gray 
color represents underestimation. The latter situation is partic-
ularly dangerous because of the need for apheresis repetition 
and mobilization failure risk; MNC — mononuclear cell collection;  
cMNC — continuous mononuclear cell collection
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Which algorithm to choose?
The authors have considered the regression model a good 
tool for determining blood volume to process. However, they 
have also reported that the prediction algorithm was not 
followed unreservedly as there was a risk of collecting an in-
sufficient number of CD34+ cells [17]. This approach did not 
enable to reveal the number of undercollections, but it was 
reasonable in terms of patient safety. The CE2-based mo-
del, applied and validated in the MNC protocol, did not differ 
from the regression models. When the model was applied 
in the cMNC protocol, the most accurate results were obtai-
ned.Hence, we suggest utilization of this model for clinical  
practice.

As was said in the introduction, many models and appro-
aches have been presented and examined, but there is no 
publication which would compare these models. Further 
studies in the field of prediction models are required. De-
spite limitations of retrospective studies, this analysis has 
provided a safe way to notice hazardous inaccuracy of re-
gression models. With a low CD34+ precount, the calcula-
ted blood volume to process differed fivefold between mo-
dels. The CE2-based model is simple, but yet no one has 
developed a model which would significantly change pre-
diction accuracy. Although WBC precount also correlates 
with CD34+ yield, it does not increase multiple regression 
model (data not shown).

In conclusion, the CE2 model is a simple method, yet 
reliable for all CD34+ precounts. Moreover, it can be easily 
adjusted by constrained CE2 decrease to avoid undercol-
lections. The utility and simplicity of this method should 
promote accurate planning of apheresis and procedure 
parameters among apheresis unit operators, which will 
improve patients’ safety.
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