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Abstract: 

Indian planetary tables can be classified into several distinct types with respect 

to their underlying mathematicbal structure. One of these, the so-called “cyclic” 

scheme was inspired by goal-year periods introduced via Islamic channels no 

later than the early seventeenth century. The first set of such cyclic planetary 
tables is the Jagadbhý½aṇa of Haridatta, composed in Mewar, R×jasthan with an 

epoch of 31 March 1638. This substantial work, spreading over more than 100 

folia in some manuscripts, computes the true longitudes of the planets in a 

manner similar to those in the Babylonian goal-year texts, Ptolemy, and al-

Zarq×l÷. We will consider the inspiration from these earlier sources and how they 

are incorporated into a distinctly Indian context, with respect to mathematical 

structure, astronomical foundation, and layout and arrangement of the data in the 

tabular format. 

 

Keywords: Numerical tables, Haridatta, z÷j, goal-year, al-Zarq×l÷, Indian 

astronomy  

 

1. Introduction 

It has been argued that the emergence of the tabular format in India, that is the 

spatial presentation of data aligned in rows and columns, is linked to Islamic 

influences
1
 particularly through the popularity of the Zīj compositions. In 

addition to inspiration in format and layout, tabular content and structure also 

travelled from Islam to India. An instance of this are the so-called cyclic tables, 

a scheme in which true longitudes of the planets are computed via large period 

                                                           
1 See Pingree, D. E. (1981). Jyotihs×stra, Otto Harrassowitz, Wiesbaden, 41-6 and Plofker, Kim. 

(2009). Mathematics  in India, Princeton: Princeton University Press, 274-7. 
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relations: a set number of revolutions over a known time interval for each planet, 

such as the schemes used in Babylonian Goal-Years, Ptolemy, and al-Zarq×l÷. 

Cyclic tables were eventually transmitted to India. The first set of such cyclic 
planetary tables is the Jagadbhý½aṇa of Haridatta, composed in Mewar, 

Rājasthan with an epoch of Saturday 31 March 1638. This substantial work, 

spreading over more than 100 folia in some manuscripts, tabulates the true 

longitudes of the planets, as well as some lunar and solar phenomena. The extent 

to which they rely on earlier inspiration, notably from Islamic sources, is an 

outstanding question. In order to begin to answer this question, the tables 

themselves must be better understood so that comparisons can be made.  

 

2. Analysis 
Haridatta composed the Jagadbhý½aṇa during the region of Jagatsiṃha I (1628—

1652). The title of this work is no doubt a double-entendre; bhý½aṇa means 

‘ornament’ and jagat means ‘world’ but also here refers to Jagat-siṃha, so the 

title means “ornament of the world’ and also ‘ornament [offered to the ruling 
prince] Jagat[siṃha]’. The work has been preserved in at least two dozen 

manuscripts, many of which are incomplete.
2
 The numerical entries in various 

tables reveal that the terrestrial latitude for which these tables were computed is 

approximately φ = 24ºN, which corresponds to the latitude of Ujjain. The 

primary manuscripts available for this study are: 

 P: Poleman 4869 (Smith Indic 146) 100ff  

 J1: Jaipur 10192 66ff 

 J2: Jaipur 20253 88ff 

Apart from the title, none of these manuscripts contains any more information 

about the work.  None of them have a colophon, so we can not be sure of their 

provenance, their date of copying nor the details of their production. 

There is a text which accompanies the tables.
3
 Material in the colophon tells 

us that Haridatta’s father was Harajī. The text is divided into 5 chapters which 

cover topics on the true longitudes of the sun, the moon, and the planets, and 

gives key dates, parameters, and algorithms on how to use the tables.  The text is 

around 130 verses long, with variations in chapter composition between different 

copies. 

                                                           
2 For a detailed list see Pingree, D. E. (1968). “Sanskrit Astronomical Tables in the United States” 

Transactions of the American Philosophical Society New Series, vol. 58, no. 3, 55—59. 
3 The two copies available for consultation were 5420 City Palace Jaipur 7ff and  BORI 399/1899-

1915 4ff. 
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An overview of the contents of the tables is given in table 1 below. The 
majority of the Jagadbhý½aṇa is devoted to tables which provide the true 

longitudes of the planets and related phenomena according to the cyclic scheme 

(around 95 folia out of the 100). Each planet is assigned a great cycle, or number 

of years, in which the various planetary phases and circumstances repeat. These 

cyclic periods and the order of presentation of the planets as they appear in P are 

presented in Table 2. 
 
Mars True longitudes and true velocities for 27 14-day periods over 79 years (79 

rows) 

Mercury True longitudes and true velocities for 27 14-day periods over 46 years ( 

46 rows) 

Jupiter True longitudes and true velocities for 27 14-day periods over 83 years ( 

83 rows) 

Venus True longitudes and true velocities for 27 14-day periods over 227 years 
(227 rows) 

Saturn True longitudes and true velocities for 27 14-day periods over 59 years (59 

rows) 

Lord of the Year For 0 to 88 years 

Epact 0 to 121 years 

Moon Mean annual motion for 0 to 121 years 

Anomaly Mean annual motion for  0 to 42 years 

Moon Mean motion for 27  14-day periods 

Anomaly Mean motion for 27  14-day periods 

Moon Mean motion for 1 to 13 days 

Anomaly Mean motion for 1 to 13 days 

Moon Mean motion for 1 to 60 ghaÐik×s 

Moon Table of lunar equations for arguments 0 to 90 degrees (5 columns of 

entries) 

Avadhi (14-day period) 
Conversion 

Table to transform 14-day periods from 24 hour days to sunrise days 

Sun True longitudes for 1 to 27 14-day periods 

Length of daylight Length of daylight at the beginning of each of the 27 14-day periods 

Lunar Node Mean motion for 0 to 92 years. 

Lunar Node Mean motion for 1 to 27 14-day periods 

Solar transits Day and fraction thereof on which the sun enters each of the 12 signs of 

the zodiac. 

Table 1: An outline of the contents of the tables 
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Planet Location Cyclic Period 

Mars 

Mercury 

Jupiter 

Venus 

Saturn 

ff. 1v–21 

ff. 22–33 ff.  

34–47v ff.  

48–85v ff.  

86–95v 

42 revs in 79 years 

46 revs in 46 years 

7 revs in 83 years 

227 revs in 227 years 

2 revs in 59 years 

Table 2: The lengths of Haridatta’s cyclic periods 

 

Some cyclic periods are relatively short (for instance, Mercury's cyclic period 

is 46 years) and others are much longer (for instance, Venus is notably long at 

227 years). What is also notable about this ordering of the planets is that they 

appear in the following order: Mars─Mercury─Jupiter─Venus─Saturn, 

following the “week-day” order.
4
  

Unlike other tabular formats that existed in India at the time, such as the mean 

linear and the true linear tables which required the consultation of multiple 

tables to establish the true position of a given planet, cyclic tables provided their 

users with the true longitude of the planet for a single look-up. All one needed to 

enter the tables with was the number of years and 2—week  periods since the 

epoch to retrieve the true longitude for that date.  

Great cycles for planetary phenomena had been used in many other cultures of 

inquiry. In fact some of the earliest planetary schemes were based on such a 

system, such as the Babylonian “Goal-Year” periods which emerged some time 

in the first millennium BCE (see table 7).
5
 Later authors in different traditions 

who used similar schemes often introduced small corrections to the Goal Years 

for increasing their accuracy over time. 

As well as the true longitudes, Haridatta's tables give the true daily velocity 

for that position. The true longitudes are given in zodiacal signs, degrees, 

minutes and seconds. The true velocities are given in minutes and seconds. In 

addition, the date and times of the synodic phases for the planets are given as 

                                                           
4 For the significance of the ordering of the astronomical day names, see, for instance, Falk, M. 

(1999) “Astronomical Names for the Days of the Week” in Journal of the Royal Astronomical 
Society of Canada, (93), 122-3. 
5 A good overview of the goal-year texts can be found in Evans, James. (1998). The History and 
Practice of Ancient Astronomy,  New York Oxford: Oxford University Press, pp. 312—321.  

More detailed descriptions can be found in Asger Aaboe, Episodes from the Early History of 
Astronomy, New York: Springer, 2001 and Steele, John. (2011). “Goal-Year Periods and their Use 

in Predicting Planetary Phenomena” in Selz, Gebhard J. and Klaus Wagensonner, (eds.) The 
Empirical Dimension of Ancient Near Eastern Studies, Wiener Offene Orientalistik, band 6, pp. 

101—110. 
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well. The very first entries of the tables contain a sidereal epoch correction. For 

each of the planets these are as follows: 
 

Planet Epoch value 

Saturn 4,43;58,13◦ 

Jupiter 6,14;10,15◦ 

Mars 4,2;48,17◦ 

Venus 22;7,34◦ 

Mercury 5,40;37,15◦ 

Table 3: Epoch corrections 
 

Marginal labelling suggests that the epoch of the tables is 31 March 1638, 

which was a Saturday. This is confirmed by modern retrodictions.
6
  

More broadly, establishing the methods of computation to generate the tabular 

entries and the base tables on which these cyclic tables depended on is a hugely 

complex enterprise. Scant literature exists even in well documented traditions 

such as those of medieval Europe.
7
  In this case, the accompanying text to 

Haridatta’s tables may provide some clues, however in general reconstructing 

the precise numbers that are found in the tables can be extremely difficult, even 

when the method of computation is made explicit by the author.  Intermediary 

roundings, interpolation, unexpressed assumptions, and tacit mathematical 

shortcuts used by the original calculator can be near impossible to reproduce.
8
 

 

3. Case Study: Jupiter 

Haridatta's planetary tables address the following three questions: Where is the 

planet? How fast is it going? Where and when are the key synodic phases going 

to occur? The tables tabulate the data necessary to answer these questions using 

time since the epoch as their argument. Given the extent and complexity of the 

tables, we select a single planet, Jupiter, to describe some salient features of the 

data and its arrangement. Jupiter is a superior planet whose synodic arc is about 

30 degrees. Here, as mentioned, its cyclic period is 83 years within which time it 

                                                           
6 Pingree, D. E. (1968). “Sanskrit Astronomical Tables in the United States” Transactions of the 
American Philosophical Society New Series, (58-3), 1–77. 
7 See for instance, Chabás, José and Bernard R. Goldstein (2012). A survey of European 
Astronomical Tables in the Late Middle Ages, Leiden: Brill. 
8 Some of these issues are outlined in Van Dalen, Benno. (1993). Ancient and Mediaeval 
Astronomical Tables: Mathematical Structure and Parameter Values, Netherlands. 
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makes 7 revolutions. The very first value in the table for the true longitude is 6s, 
14º;10״5,׳ and the very last, eighty-three “cyclic-years” later, is 6s, 13º;31״24,׳. 

Given that the previous (penultimate) tabulated value is 6s, 14º;43’,0’’ (i.e., 

Jupiter is undergoing a period of retrogradation), one can infer that Jupiter made 

7 complete revolutions in just under 83 years. 

The argument of the planetary tables is time, which is divided into years and 

avadhis. An avadhi is a 14-day interval and this division of time is specific to the 

Indian tradition.
9
 One year thus includes 27 avadhis. The first avadhi begins on 

the first day of the year, the second, 14 days later, and so on, so that the 26th 

avadhi begins on the 350th day of the year, and thus the 27th avadhi begins on 

the 364th day of the year. Each one of the 83 years of Jupiter's scheme has 27 

avadhis as its argument and the true positions and true velocities for these dates 

are tabulated underneath in a horizontal band. 

The way the data is laid out can be seen in figure 1. This page from the tables 

contains three distinct horizontal bands of numerical data. Here the first band is 

for the 39th year of the cycle of Jupiter, the second the 40th, and the third the 

41st. These cycle numbers are indicated on the far left. Each band is divided into 

three rows. The first contains the argument, here  avadhis, which goes from 1 to 

27. The next row of numbers gives the true longitudes in zodiacal signs and so 

on to a precision of seconds. The final row of numbers gives the planet's daily 

velocity at that longitude in minutes and seconds. The numerical entries 

themselves hang vertically; that is zodiacal signs are above the degrees, which 

are above the minutes which are above the seconds. This vertical format is 

typical of most tables in Sanskrit mathematical astronomy.  

                                                           
9 See, for instance, Pingree, D. E.(1981). Jyotihs×stra, Otto Harrassowitz, Wiesbaden, p. 41 or  
Montelle, C., & Plofker, K. (2014). “The Karaṇakesari of Bhāskara: a 17th-century Table Text for 

Computing Eclipses”. History Of Science In South Asia, 2(1), 1-62. Retrieved from 

http://hssa.sayahna.org/ojs/index.php/hssa/article/view/6, p. 13-14, 52.  

 

http://hssa.sayahna.org/ojs/index.php/hssa/article/view/6
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Figure 1: f. 40v from Haridatta's Jagadbhý½aṇa showing years 39, 40 and 41 for Jupiter 

 



70 Clemency Montelle 

 

In addition to giving the velocity, additional marks around the numbers reveal 

trends in the data. For instance, small crosses (an abbreviation for the Sanskrit 
word ṛṇaṃ) indicate that the planet is travelling in retrograde motion. This is not 

always consistently applied in this particular manuscript.  Here in figure 1, the 

crosses can be seen, for instance, in the first band, third row, 6
th
 entry, 10

th
 entry, 

12
th
 entry, 13

th
 entry, and 14

th
 entry. 

As mentioned, the synodic phases of the planet, often called the Greek Letter 

Phenomena,
10

 are included as part of the tables. The details concerning these 

phases are either inserted at the various appropriate entries or directly below 

them. More commonly, they are listed in the far right hand margin. The way in 

which this has been achieved is notable. The correspondence between the date 

and time of a specific synodic phenomenon and the appropriated column is 

captured via an indexing number. The synodic phenomena are recorded via an 

abbreviation for the particular phase in question, followed by 2 numbers. The 

first number is an avadhi day number (from 1 to 13) and the second a measure of 

ghaÐik×s (one day is divided into 60 ghaÐik×s so that 1 ghaÐik× is 24 minutes) 

from 1 to 60. Above this data, the avadhi number to which it is to be applied is 

given (from 1 to 27). The synodic phenomena for a superior planet and its 

Sanskrit equivalent and abbreviation can be seen in table 4. 
 

Sanskrit Abbreviation Sanskrit Term Phenomenon 

va 

m× 

a 

u 

vakra 

m×rga 

asta 

udaya 

first station (φ) 

second station (ψ) 

disappearance (Ω) 

reappearance (Γ) 

Table 4: Greek letter phenomena and the Sanskrit equivalents for a superior 

planet. 

 

On the right hand side of the page, this specific arrangement and indexing can 

be seen; for instance, on f. 40v (see figure 2 and table 5) the synodic phenomena 

are recorded as: 

                                                           
10 For an explanation of these, see for instance Neugebauer, Otto.  (1975) The History and Practice 
of Ancient Astronomy,  New York, Springer-Verlag, p. 386—7.  
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5 14 23 25 

va 

10 

0 

mā 

3 

36 

a 

2 

21 

u 

6 

14 

Table 5: Table of the presentation of the synodic phenomena 

on the first band of f. 40v. 

 

 
Figure 2: Close up of the synodic phenomena being indexed for 

cycle 39 

 

The first row gives the column to refer to (in avadhis), the second row the 

synodic phase, the third row the number of days after that particular avadhi, and 

the fourth the time of day (in ghaÐik×s) in which the synodic phase occurs. 

Thus: 

 5 va 10 0 means the first station vakra occurred 10 days after the 

5th avadhi (or (5-1) x14 = 56 days), that is on the 66th day on the zeroth 

ghaÐik×.  

 14 mā 3 36 means the second station marga occurred 3 days after 

the 14th avadhi (or (14-1) x 4 = 182 days), that is on the 185th day of 

the year during the 36th ghaÐik×. 

 23 a 2 21 means the disappearance asta occurred 2 days after the 

23rd avadhi (or (23-1) x 14 = 322 days), that is on the 324th day of the 

year during the 21st ghaÐik×. 

 25 u 6 14 means the reappearance udaya occurred 6 days after 

the 25th avadhi (or (25-1) x 14 = 336 days), that is on the 342th day of 

the year during the 14th ghaÐik×. 
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To contrast the layout given in P, the same tables are reproduced for J1 (see 

figure 3) and J2 (see figure 4). 

 

 
Figure 3 J1 Haridatta's Jagadbhý½aṇa showing years 36, 37, 38, and 39 for Jupiter 
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Figure 4 J2 Haridatta's Jagadbhý½aṇa showing years 39, 40, and 41 for Jupiter 
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4. First and Second stations 

Reconstructing the methods of computation of the various synodic phases in this 

case is complex. Selecting one synodic phenomenon, first stations, all the entries 

were extracted from the tables
11

 and their first and second differences were 

examined. Indeed, there were some obvious (scribal) errors in the data. 

However, neither the first differences nor the second differences were constant. 

Therefore, it can be concluded that these  stations were not computed via a step 

function to generate the differences from one entry to the next (one would expect 

the differences to be in blocks of largely the same number) nor via a linear zig 

zag function (as the second differences would be almost all constant). However, 

when the times of the stations were plotted, the general pattern in the data 

revealed that qualitatively these differences are nearly linear (see figures 5 and 

6). 
 

   

 
Figure 5 and 6 A graph showing the first (left) and second (right) stations 

 

5. Transmission 

In medieval Europe, the Almanac tradition, that is sets of tables giving the true 

longitudes of the sun, moon, and the planets per small interval of days via period 

                                                           
11 See table in appendix 
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relations, became increasingly popular.
12

 Such schemes were used by the 

Babylonians and these goal-year periods (see table 6) reached Greek 

astronomers and adaptations of them formed the basis of Ptolemy's Almagest. 
Ptolemy's periods are outlined in Almagest IX, 3 are as follows (see table 6) 

 

 

 Ptolemy 

Saturn 2 revs +1;40º  in 59 y + 1;35d 

Jupiter 6 rev + 4;50º  in 71y + 4;54d 

Mars 42 rev +3;10º in 79 y + 3;13d 

Venus 8 rev - 2;1º  in 8 y - 2;18d 

Mercury 46 revs + 1ª  in 46y + 1;2d 

Table 66 Ptolemy's cyclic periods 

 

 

 

 

Babylonian ‘Goal Years’ al-Zarq×l÷ 

 Saturn 

 Jupiter 

 Mars 

 Venus 

 Mercury 

 2 revs in 59 years 

 6 revs in 71 years 

 42 revs in 79 years 

 8 revs in 8 years (5 syn periods) 

46 revs in 46 years (145 syn periods) 

 2 revs in 59 years 

 7 revs in 83 years 

 42 revs in 79 years 

 8 revs in 8 years (5 syn periods) 

 46 revs in 46 years (145 syn periods) 

Table 7 Other cyclic periods 

 

 

One of the earliest known almanacs produced in Muslim Spain which proved 

to be highly influential is that of al-Zarq×l÷ (d.1100) working in al-Andalus. The 

epoch of these tables is September 1 1088, and while these tables appear to be 

based on Ptolemy there are several key differences which are critical for 

                                                           
12 Chabás, José and Bernard R Goldstein. (2000) “Astronomy in the Iberian Peninsula: Abraham 

Zacut and the Transition from Manuscript to Print”, Transactions of the American Philosophical 
Society, New Series, (90-2), pp. iii—xii + 1–196. 
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understanding the transmission to Indian sources. Al-Zarq×l÷'s tables are based 

on the following relations (see table 8): 

 

 al- Zarq×l÷ 

Saturn 

Jupiter 

Mars 

Venus 

Mercury 

59y + 1;55º 

83y - 2º 

79y + 1º 

8y + 1;30º 

46y - 2;45º 

Table 8: al-Zarq×l÷ 's cyclic periods 
 

Here, Jupiter's period is 83 years, which is the value that Haridatta uses in 

contrast to Ptolemy's 71 years. This suggests that the Indian cyclic tables derived 

from this particular tradition, initiated by al-Zarq×l÷. There do exist some 

important contrasts though. For instance, al-Zarq×l÷ tabulates his entries for 

Jupiter for 10 days periods (on the 1st, 11th, and 21st day of each month) to a 

precision of degrees. Whatever the passage of tables arranged in this way, they 

undergo two key modifications by Haridatta. The first is that these 10-day 

intervals have been reorganized into avadhis, or 14 day periods, a time-interval 

fundamental to much mathematical astronomy in the Indian subcontinent. 

Secondly their precision is to degrees, minutes, and seconds. These are but a few 

of the obvious traces of modification of astronomical tables transmitted from 

another culture of inquiry. 

 

6. Concluding Remarks 

Cyclic tables inspired a new way to organize planetary phenomena to Indian 

practitioners. Although they involved much computation to prepare the tabular 

data, the tables themselves offered the true longitudes of the planets with a 

single look up. Furthermore, modifications were made to the scheme, such as the 

arrangement with respect to avadhis, or two week periods, and some minor 

corrections to the goal years. Further analysis needs to be done to establish the 

precise details of the transmission from earlier sources, particularly from the 

Islamic near east.   

Firstly, the extent of the transmission needs to be established.  Was it simply 

the ‘goal year periods’ which were incorporated into existing Indian planetary 

motions or were more detailed parameters imported as well? The tables 

represent a huge computational effort.  The precise assumptions, operations, and 

parameters need to be determined by a through numerical analysis of the true 
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longitudes and their corresponding velocities to reconstruct the ways in which 

these tables were computed. A careful translation and technical commentary of 

the accompanying text will no doubt be crucial to this aim.  Other questions 

arise, such as the reception these tables had.  Did they prove to be more popular 

amongst practitioners than the existing tradition tables to compute planetary 

phenomena?  The efficacy of these tables should also be considered.  How close 

to the phenomena were these data in these tables?  Addressing these questions 

will help to shed light on the variety and scope of planetary phenomena 

computations in second millennium Sanskrit astral sciences. 
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Appendix: Jupiter's Second Stations 

 

Year Number Avadhi Day and ghaÐik× 

0 6 5 – 2 

1 8 3 – 27 

2 11 11 – 15 

3 13 2 – 47 

4 15 1 – 15 

5 18 6 – 23 

6 21 1 – 28 

7   

8   

9   

10 2 3 - 2 

11 4 1 – 8 

12 6 9 – 7 

13 2 11 – 51 

14 11 2 – 28 

15 13 6 – 48 

16 16 2 – 27 

17 18 11 – 41 

18 21 6 – 28 

19 23 13– 30 

20 26 5 – 12 

21   

22 2 7 – 18 

23 4  

24 6 12 – 48 

25 9 12 – 42 

26 11 13 -–25 

27 13 12 – 40 

28 16 7 – 32 

29 19 3 – 7 

30 21 11 – 35 

31 24 4– 27 
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32 26 9 – 45 

33   

34 2 11 – 4 

35 5 0 – 21 

36 7 3 – 12 

37 9 6 – 36 

38 12 11 – 38 

39 14 3 – 36 

40 16 12 – 45 

41 19 8 – 5 

42 22 2 – 3 

43 25 8 – 17 

44 26 13 – 48 

45   

46 3 2 – 25 

47 5 4 – 8 

48 7 7 – 25 

49 9 11 – 20 

50 12 8 – 34 

51 15 8 – 34 

52 17 8 – 18 

53 19 8 – 38 

54 22 3 – 25 

55 24 12 – 0 

56 27 4 – 12 

57   

58 2 6 – 25 

59 5 9 – 3 

60 7 11 – 59 

61 10 1 – 43 

62 12 6 – 44 

63 14 13 – 38 

64 17 2 – 35 

65 20 4 – 15 

66 22 12 – 7 

67 25 4 – 42 

68   
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69 1 7 – 12 

70 3 10 – 40 

71 5 13 – 15 

72 8 2 – 15 

73 10 5 – 18 

74 12 11 – 21 

75 15 4 – 32 

76 18 0 – 6 

77 20 9 – 20 

78 23 3 – 20 

79 25 12 – 49 

80 27 12 – 48 

81 1 11 – 32 

82 3 10 – 15 

 




