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44 Abstract

45 PiWi-interacting RNAs (piRNAs) are small single-stranded RNAs that can repress transposon 

46 expression via epigenetic silencing and transcript degradation. They have been identified 

47 predominantly in the ovary and testis, where they serve essential roles in transposon silencing in order 

48 to protect the integrity of the genome in the germline. The potential expression of piRNAs in somatic 

49 cells has been controversial. In the present study we demonstrate the expression of piRNAs derived 

50 from both genic and transposon RNAs in the intersegmental muscles (ISMs) from the tobacco 

51 hawkmoth Manduca sexta. These piRNAs are abundantly expressed, are ~27 nt long, map antisense 

52 to transposons, are oxidation resistant, exhibit a uridine bias at their first nucleotide, and amplify via 

53 the canonical ping-pong pathway. An RNA-seq analysis demonstrated that 20 piRNA pathway genes 

54 are expressed in the ISMs and are developmentally regulated. The abundance of piRNAs does not 

55 change when the muscles initiate developmentally-regulated atrophy, but are repressed when cells 

56 become committed to undergo programmed cell death at the end of metamorphosis. This change in 

57 piRNA expression is associated with the targeted repression of several retrotransposons and the 

58 induction of specific DNA transposons. The developmental changes in the expression of piRNAs, 

59 piRNA pathway genes, and transposons are all regulated by 20-hydroxyecdysone, the steroid 

60 hormone that controls the timing of ISM death. Taken together, these data provide compelling 

61 evidence for the existence of piRNA in somatic tissues and suggest that they may play roles in 

62 developmental processes such as programmed cell death.

63

64

65

66

67
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68 Author Summary

69 piRNAs are a class of small non-coding RNAs that suppress the expression of transposable 

70 elements, parasitic DNA that if reintegrated, can harm the integrity of the host genome. The 

71 expression of piRNAs and their associated regulatory proteins has been studied predominantly in 

72 germ cells and some stem cells.  We have found that they are also expressed in skeletal muscles in 

73 the moth Manduca sexta that undergo developmentally-regulated atrophy and programmed cell death 

74 at the end of metamorphosis. The expression of transposons becomes deregulated when the muscles 

75 become committed to die, which may play a functional role in the demise of the cell by inducing 

76 genome damage. piRNA-mediated control of transposons may represent a novel mechanism that 

77 contributes to the regulated death of highly differentiated somatic cells. 

78

79
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80 Introduction

81 Small silencing RNAs are powerful regulators of gene expression. They can lead to epigenetic 

82 silencing of transcription, transcript degradation, and inhibition of mRNA translation. The best 

83 characterized class of small silencing RNAs are the microRNAs (miRNAs)(1-3). miRNAs are ~22 

84 nucleotides (nt) long, are ubiquitously expressed, and can repress their target transcripts through seed-

85 based partial complementarity (4-6).

86 The most recently discovered group of small silencing RNAs are PIWI-interacting RNAs 

87 (piRNAs). piRNAs are 23-35 nt in length and predominantly expressed in the germline of animals 

88 including humans (7-10). They guide the PIWI clade of Argonaute proteins to silence transposons 

89 and other selfish elements, and protect the integrity of the germline genome (reviewed in Ozata, 

90 Gainetdinov et al., 2019)(11).

91 The biogenesis and function of piRNAs has been well studied in the fruit fly Drosophila 

92 melanogaster (12). piRNAs are processed from long transcripts that can be up to hundreds of 

93 kilobases long that are transcribed from discrete genomic loci called “piRNA clusters” (13-15) . 

94 piRNAs are amplified via reciprocal target cleavages by PIWI proteins, a mechanism known as the 

95 ping-pong cycle (13, 16). Because PIWI proteins cleave the phosphodiester bond between the 

96 nucleotides in the target RNA that pair with the 10th and the 11th nucleotides of the guide piRNA, and 

97 3´ cleavage products is subsequently made into another piRNA, there is an enrichment of piRNAs 

98 that perfectly reverse complement each other in their first 10 nucleotides, the hallmark of the ping-

99 pong cycle. This process typically creates piRNAs with a uridine residue as the first nucleotide of the 

100 primary piRNA, and complementarity over the first 10nt of post-transcriptionally amplified piRNAs 

101 (13, 17-19).

102 piRNAs predominantly target transposons, retroviruses and other “selfish” genetic elements. In 

103 the absence of piRNAs, transposons can mobilize resulting in double-stranded DNA breaks in the 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2021.03.02.433533doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433533
http://creativecommons.org/licenses/by/4.0/


5

104 germline genome leading to infertility (20, 21). Consequently, the expression and function of piRNAs 

105 has been most extensively studied in germ cells, gonadal somatic cells, and certain progenitor cells 

106 (13, 22, 23). 

107 While there have been several reports demonstrating the presence of both piRNAs and the 

108 associated protein machinery in non-gonadal cells, their role in cellular processes has been a 

109 controversial subject (24-28). Somatic piRNAs have been observed broadly in arthropods where they 

110 may provide genome defense against transposable elements and viruses (29). In agreement with this 

111 hypothesis, piRNAs from fat body and midgut cells elicits antiviral response against 

112 nucleopolyhedrovirus in the silkmoth Bombyx mori (30). In addition, piRNAs derived from 

113 endogenous viral elements system in the mosquito Aedes aegypti help maintain long-lasting adaptive 

114 immunity (31, 32).  Data has been generated suggesting that piRNAs may act in the nervous system 

115 and influence transposon activity, learning and memory. For example, in Drosophila, the piRNA 

116 pathway proteins Aub and Ago-3 regulate transposon expression and mobilization in the mushroom 

117 bodies, brain structures that regulate memory formation and cognitive function (33). These proteins 

118 are also found in specialized structures within glial cells in the adult Drosophila brain where they 

119 appear to repress transposon activity (34). In the sea slug Aplysia, a specific piRNA has been shown 

120 to modulate synaptic plasticity and memory (35, 36). 

121 In the current study we provide substantial data demonstrating the presence of piRNAs and their 

122 synthetic machinery in the intersegmental muscles (ISMs) from the tobacco hawkmoth Manduca 

123 sexta. We further demonstrate that transposon expression becomes deregulated when these cells 

124 become committed to undergo programmed cell death at the end of metamorphosis.

125 The ISMs are a classical model system for skeletal muscle atrophy and death (37-39). These 

126 muscles are composed of giant syncytial cells, each of which is about 5 mm long and up to 1 mm in 

127 diameter. The ISMs are used by the larvae to crawl and by the developing adult moth to eclose 
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128 (emerge) from the overlying pupal cuticle at the end of metamorphosis. Three days before eclosion 

129 (day 15 of the normal 18-day period of pupal-adult development), the ISMs initiate a program of 

130 atrophy that results in a ~40% loss of muscle mass prior to eclosion. This atrophy is non-pathological 

131 and the muscles retain normal physiological properties such as resting potential and force per cross-

132 sectional area (40). Late on day 18, coincident with adult eclosion, the ISMs initiate programmed cell 

133 death (PCD) and die during the subsequent 30 hours. In fact, the term PCD was coined by Lockshin 

134 and Williams in 1965 to describe the death of these specific cells (41). PCD is a fundamentally 

135 different program than atrophy and results in the complete destruction of the contractile apparatus, 

136 loss of the resting potential, and enhanced autophagy (40, 42). The dying cells are not phagocytosed 

137 and instead activate the molecular machinery required for both cellular destruction and nutrient 

138 recycling (42, 43). The developmental timing of both atrophy and death is controlled by circadian 

139 declines in the circulating titer of the insect molting hormone 20-hydroxyecdysone (20E) (44). 

140 Judiciously timed administration of exogenous 20E can prevent atrophy or death, but once either of 

141 these programs has been initiated, it cannot be altered or delayed by 20E treatment.

142 Several studies have demonstrated that ISM PCD requires de novo gene expression, and 

143 numerous death-associated genes have been identified (42, 45, 46). During the transition from atrophy 

144 to death, some ISM transcripts display significant changes in stability and translatability that can be 

145 localized to their 3´ untranslated regions (UTRs) (47). Indeed, direct testing has demonstrated that 

146 the specific microRNAs can regulate the translation of specific death-associated transcripts (42). 

147 To further examine the potential role(s) of small silencing RNAs in the control of ISM atrophy 

148 and death, we performed RNA-seq with the small RNAs isolated from the ISMs each day of 

149 development from before the initiation of atrophy (day 13) until when the muscles were committed 

150 to die (day 18) (42). We also analyzed ISMs from animals that had been injected with 20E on day 17, 

151 a treatment that delays cell death on day 18. In addition to miRNAs, we found that the ISMs also 
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152 contain high levels of piRNAs that are: ~27 nt long, map antisense to transposons, are oxidation 

153 resistant, exhibit a uridine bias at their first nucleotide, and amplify via the canonical ping-pong 

154 pathway. In addition, the ISMs express the genes required for piRNA synthesis and activity. When 

155 the ISMs become committed to die, there is a both a loss of piRNAs and the concurrent deregulation 

156 of transposable elements, with repression of some retrotransposons and the induction of DNA 

157 transposons. The expression of piRNAs and transposable elements are under the control of 20E. Thus, 

158 piRNAs are expressed in somatic tissues where they may regulate developmental processes such as 

159 PCD. 

160

161 Results

162 piRNAs in the intersegmental muscles prior to atrophy

163 On day 13 of the pupal-adult development the ISMs are fully functional and have yet to initiated 

164 either the atrophy or PCD (44). We isolated the 18-30 nt small RNAs at this time point, and either 

165 cloned and sequenced them directly, or first oxidized the sample to render small RNAs that are not 

166 2´-O-methylated at their 3´ termini (e.g., miRNAs) unclonable, thus enriching for piRNAs (48). 

167 Detailed mapping results for all small RNA-seq libraries are provided in Table S1.

168 We obtained 17.8 million and 11.4 million reads in the control and oxidized day 13 small RNA 

169 libraries respectively, of which 71.7% and 75.8% mapped to the Manduca genome. When the mapped 

170 reads in the unoxidized small RNA library were partitioned by size, we observed a bimodal 

171 distribution, with peaks at 22 and 27 nt (Figure 1). Among the reads shorter than or equal to 23 nt, 

172 we annotated 77.7% (78.1% for total reads) as miRNAs (42). In sharp contrast, among the reads 

173 longer than 23 nt, only 0.4% were miRNAs and instead, these RNAs displayed a strong 5´ uridine 

174 bias and a weak adenine signal at the 10th position (Figure S1).
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175 Oxidation resulted in an almost complete loss of the 22 nt peak and 98.6% of the reads in the 

176 oxidized library were >23 nt (Figure 1). The majority of these reads started with a uridine base at the 

177 5´ position (Figure S1). Only 0.3% of the reads in this library were identified as miRNAs. In contrast, 

178 53.6% of the reads mapped to genes, 21.4% mapped to transposons, and 23.1% mapped to 

179 unannotated regions of the genome (Figure 1). These percentages were much higher than the reads ≤ 

180 23 nt reads in the unoxidized library (0.8%, 0.3%, and 0.6% respectively), and comparable to the 

181 reads >23 nt in the unoxidized library (9.7%, 3.2%, and 5.6% respectively). Based on size and 

182 resistance to oxidation the 27nt peak appears to represent piRNAs. 

183 piRNA expression changes during the ISM development

184 In addition to the libraries on day 13, we generated and sequenced unoxidized small RNA 

185 libraries from seven more time points of ISM development: days 14, 15, 16, 17, 18, 1-hour post-

186 eclosion (PE) and 20-hydroxyecdysone (20E) treated animals. Similar to what was seen with the day 

187 13 unoxidized sample, the small RNAs from the other time points also displayed a bimodal 

188 distribution of small RNAs, with the majority of the ~22nt sequences mapping to miRNAs (Figure 

189 S1). In all of these samples, there was a strong bias for uracil in the first nucleotide, especially for the 

190 piRNAs (reads >23 nt).

191 piRNAs abundance from each stage was normalized by the sequencing depth and calculated as 

192 “parts per million” (ppm). The expression of both genic and transposable element piRNAs gradually 

193 declined from day 13 to day 16, increased sharply on day 17, and then declined dramatically on day 

194 18 (Figure 2A). piRNA abundance was elevated in the one-hour post-eclosion (PE) sample. While 

195 treatment with 20E on day 17 delays ISM death (44) it did not significantly alter piRNA abundance 

196 in the muscles relative to the corresponding PE timepoint. Interestingly the number of piRNAs 

197 mapped to genes was more abundant than those mapping to transposons (Figure 2A).
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198 Of the 64 known transposon families in Manduca, 34 generated piRNAs that mapped to the 

199 genome. Among them, piRNAs for 27 transposon families mirrored the pattern of expression 

200 observed for all piRNAs and transposon-mapping piRNAs (e.g. LTR:Copia in Figure 2A) during ISM 

201 development. In contrast, the expressions of piRNAs mapped to five transposon families (two DNA 

202 transposon families: P and TcMar; and two LINE families: CR1 and I; and one SINE family: tRNA) 

203 were reduced gradually during the ISM development (Figure S2).

204

205 piRNAs predominantly map antisense to transposons

206 The majority of piRNAs in flies that map to transposons are antisense to the mRNAs in order 

207 to guide the PIWI proteins Aub and Piwi to repress transposon expression (7). Consequently, 

208 mutations in piRNA pathway proteins that alter this antisense bias, such as Qin, lead to transposon 

209 de-repression (49). We examined the strand bias of transposon-mapping piRNAs at each stage of ISM 

210 development. Of the 34 transposon families with mapped piRNAs, we found that the majority of them 

211 (28 families) displayed strong antisense bias, while the remaining 6 families displayed a sense bias. 

212 The antisense piRNAs to transposons tend to be 27nt in length (e.g. LTR:Gypsy in Figure 2B), and 

213 the sense piRNAs to transposons tend to be either 26nt or 27nt (e.g. DNA:PIF-Harbinger in Figure 

214 2B). Although the relative abundance of piRNAs was regulated during the course of ISM 

215 development their length distributions were constant.

216 piRNAs expressed in the ISM amplify via the ping-pong amplification loop

217 Following transcription from piRNA clusters, the primary transcripts are processed and 

218 cyclically amplified by a mechanism known as the “ping-pong amplification loop” (7, 50). The 

219 secondary piRNAs generated via ping-pong tend to have a 10nt 5´ end overlap with other piRNAs on 

220 the opposite strand. This ping-pong activity is quantified by calculating the frequency of 5´-5´ 
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221 overlaps between piRNA pairs, normalized as a Z-score (51).

222 We detected high Z-scores at all stages examined. For example, piRNAs from day 17 had an 

223 overall Z-score of 234.6 (Figure 2A). piRNAs from both transposons and genic sequences were 

224 amplified by ping-pong as demonstrated by Z-scores of 98.7 and 105.5 respectively. Z-scores were 

225 high on day 13, fell precipitously during the next three days, and then rose on day 17 and remained 

226 high for the rest of development, which agrees well with the abundance of piRNAs in the tissue. It 

227 should be noted that these developmental changes in Z-score were not artifacts arising from variations 

228 in sequencing depth since these same patterns were retained when we down sampled to 8 million 

229 reads per stage prior to our analysis.

230 As part of our analysis, we computed the Z-scores for piRNAs that mapped to each transposon 

231 class. Out of 34 transposon families with detectable piRNAs, 20 families displayed a high ping-pong 

232 signature throughout ISM development (e.g. LTR:Copia in Figure 2A), and 14 families displayed 

233 statistically significant Z-scores at least transiently. Intriguingly, in 12 out of 14 transposon families, 

234 the ping-pong signature peaked on day 17 in advance of the commitment of the ISMs to die. These 

235 data support the hypothesis that ISM piRNAs amplify via the traditional ping-pong amplification 

236 loop.

237 Genic piRNAs preferentially map to 5´UTRs 

238 Combining the RepeatMasker result with our own gene annotation, 8,633 (45.9%) of the 18,806 

239 genes in M. sexta contain transposons within their introns. From the mapping results with our oxidized 

240 small RNA-seq library, we observed that piRNAs (24.38 ppm per intron in median) fell into the 

241 transposon-derived introns from 6,902 genes (80.0% of 8,633 genes containing transposons). piRNAs 

242 also mapped to introns that did not contain transposons, although the abundance was far lower (1,731 

243 out of 18,806 genes (9.2%)). Compared to the abundance of piRNA reads on transposon-derived 

244 introns, there were very few non-transposon introns (2.29 × 10-2 ppm per intron in median).
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245 It has been demonstrated that genic piRNAs tend to map to the sense orientation of 3´UTRs in 

246 germline and somatic cells (52-54). However, in the ISMs, we observed that the genic piRNAs tended 

247 to map to the antisense strand and preferentially within the 5´UTRs rather than the 3´ UTRs or coding 

248 sequences (CDSs). The strand bias patterns of the genic piRNAs uniquely mapped to 5´UTRs, CDSs, 

249 3´UTRs, and introns were the same as those with all genic piRNA reads. Focusing on top 25% of the 

250 genes highly enriched with piRNAs, we next investigated the enrichment of piRNAs in 5´UTRs, 

251 CDSs, and 3´UTRs. In the oxidized small RNA-seq library, 5´UTRs tended to be more enriched with 

252 piRNAs mapped to the sense strands of genes as compared to other gene domains. In unoxidized 

253 small RNA-seq libraries, the overall trends were stably observed through all time points.

254 Considering the result that genic piRNAs tend to fall into the sense strands of 5´UTRs, we 

255 investigated the relative mapping positions of piRNAs in genes by examining the oxidized small 

256 RNA-seq library on day 13. Interestingly, when the piRNAs that mapped to highly expressed genes 

257 were plotted onto the gene map, there was a striking peak in the sense orientation in the 5´UTRs 

258 (Figure 3). (Only a modest number of piRNAs mapped to low abundance transcripts). In unoxidized 

259 small RNA-seq libraries, genic piRNAs tended to map to 5´UTRs and to form the peaks of mapped 

260 piRNAs (Figure S3).

261 piRNA biogenesis pathway factors are differentially expressed during ISM atrophy and the 

262 commitment to die

263 We next sought to determine which piRNA pathway protein components are expressed in the 

264 ISMs. Based on piRNA pathway genes characterized in Drosophila, we identified all 20 of the genes 

265 we sought in the ISMs (ago3, armi, aub, piwi, BoYo, egg, krimp, mael, papi, qin, rhi, shu, spn-E, tej, 

266 tud, vas, vret, Tejas, Hen-1, BoYB, and zuc), plus two small RNA biogenesis pathway factors (ago1 

267 and ago2). In agreement with published reports, we only identified a single Aub/Piwi protein 

268 sequence, which is also the case for other Lepidopterans like Tricoplisia ni and Bombyx mori (55). 
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269 Consequently, we refer to this protein as aub/piwi. 

270 Next, we examined the mRNA-seq reads from six developmental stages (days 13, 14, 15, 16, 

271 17, 18) plus 20E-treated to determine if these factors are differentially expressed. While the 

272 expression levels of ago3 and aub appear to be low, their expression was nevertheless ranked within 

273 the top 64.4% and 31.1% respectively of all expressed genes (Figure 4A). The expression levels of 

274 other genes in this pathway were also within the top 18%-65% of all expressed genes (Figure S4). 

275 Computational analysis suggests that the expression of many of the small RNA biogenesis 

276 pathway factors were developmentally regulated, with a general trend for stable or increasing 

277 expression prior to the initiation of atrophy (days 13-16), a sharp decline on day 17, and a near loss 

278 of expression when the ISMs became commitment to die on day 18. Four genes were significantly 

279 repressed on day 18: papi (q = 5.8 × 10-9, fc = -2.6), qin (q = 2.9 × 10-7, fc = -2.1), zuc (q = 3.9 × 10-

280 3, fc = -2.1), and spn-E (q = 1.7 × 10-9, fc = -2.0) (Figure 4B) and five other demonstrated this general 

281 trend (ago3, armi, egg, krimp, and tud), although their changes did not reach statistical significance 

282 (Figure S4). In contrast, mael mRNA levels were increased with the commitment to die (q = 6.4 × 

283 10-19, fc = 2.5; Figure 4B) as were some members of the shu family (Figure 4B). In all cases, 

284 expression of piRNA pathway components were regulated by 20E and displayed their highest levels 

285 of expression when exposed to the exogenous steroid, suggesting that these genes are regulated by 

286 the same developmental signals that control ISM atrophy and death. 

287 Transposon expression becomes deregulated when the ISM become committed to die

288 We observed that the abundance of both piRNAs, and the majority of the factors that mediate 

289 their biogenesis, declined precipitously when the ISMs became committed to die on day 18. 

290 Consequently, we sought to test the hypothesis that this loss might lead to changes in transposon 

291 expression. Using the RNA-seq reads mapped to transposon loci as the input, we computed the 

292 expression of each transposable element and the fold change between pairs of stages during: 
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293 homeostasis (day 13 vs day 15); atrophy (day 14 vs day 17) and commitment to die (day 17 and day 

294 18); as well as the response to hormone treatment (day 18 vs 20E) (Figure 5). There were no 

295 significant differences in transposon expression between the pairs of homeostatic or atrophic muscles. 

296 Only the Tourist DNA mobile element was up-regulated on day 17 (q = 7.0 × 10-7, fc = 2.1) compared 

297 to day 13. Once the muscle became committed to die (but prior to the initiation of death later in the 

298 day), the patterns of the transposon expression changed dramatically. Four DNA transposable 

299 elements were up-regulated compared to those on day 13: Tourist (q = 8.0 × 10-13, fc = 4.0), hAT-

300 Pegasus (q = 4.1 × 10-5, fc = 2.6), TcMar-Tc1 (q = 6.4 × 10-12, fc = 2.2), and general DNA mobile 

301 elements (q = 4.6 × 10-11, fc = 2.4). Concurrently, the expression levels of four transposons were 

302 significantly down-regulated on day 18 as compared to day 13: 5S-Deu (SINE; q = 4.7 × 10-4, fc = -

303 2.0), LOA (LINE; q = 1.1 × 10-8, fc = -2.0), Penelope (LINE; q = 3.1 × 10-6, fc = -2.6), and CMC-

304 Transib (DNA transposon; q = 4.7 × 10-4, fc = -2.3). Interestingly, when ISM death was delayed with 

305 steroid injection (20E), the differential expression for most of the developmentally-regulated 

306 transposons was muted.

307 To help understand the molecular mechanisms that could facilitate differential transposon 

308 expression, we computed the correlation between transposon expression and ping-pong Z-score for 

309 the associated piRNAs (Figure S5). There was a general inverse relationship between the induced 

310 transposons and their corresponding piRNAs for the Tourist, hAT-Pegasus, and DNA element 

311 families (except for TcMar-Tc1). There were three families where there was no clear relationship 

312 between piRNA and transposon abundance. In the case of the down-regulated transposon families, 

313 only SINE/5S-Deu retrotransposons displayed the loss of associated piRNAs. As a general 

314 observation, transposon expression decreased when piRNAs were ping-pong amplified on the same 

315 or previous day (e.g. those of DNA/Kolobok-Hydra, DNA/P, DNA/hAT-Ac, and LINE/Jockey in 

316 Figure S5).  Taken together, these data suggest that there are significant changes in transposon 
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317 expression when the ISMs become committed to die that may be mediated by corresponding piRNA 

318 abundance.

319

320

321 Discussion

322 In this report we present substantial evidence supporting the presence of developmentally-

323 regulated piRNAs in striated skeletal muscle, a highly differentiated somatic cell. Like piRNAs 

324 characterized from ovary and testis, Manduca ISM piRNAs: are ~27 nucleotides long, have a strong 

325 5’ uridine bias, are oxidation resistant, amplify via a ping-pong mechanism, map to transposable 

326 elements, and are predominantly antisense. (Efforts to demonstrate that these piRNAs were physically 

327 bound to Aub were unsuccessful as none of the anti-Drosophila Aub antibodies that we tested 

328 recognized or precipitated Manduca Aub/Piwi (data not shown)). These piRNAs represent a 

329 substantial percentage of the small RNA pool within the tissue and are neither low abundance 

330 sequences nor potential contaminants from mRNA degradation. The ISMs are a very large and 

331 discrete tissue that can be isolated cleanly from the animal without contamination from other piRNA-

332 rich tissues such as gonads (39). As well, unlike mammalian muscle, the ISMs are composed of only 

333 a single fiber type and do not contain regenerative stem cells like satellite cells or pericytes that might 

334 complicate the analysis (56). 

335 The expression of piRNAs and the machinery required for their synthesis and action in somatic 

336 cells is controversial and the subject of debate (24, 27, 29). piRNAs have been also reported in a small 

337 number of somatic cells such as cancer cells (Mei et al., 2013) and regenerative stem-like cells in 

338 invertebrates (57). For example, PIWI-like proteins and piRNAs have been identified in somatic cells 

339 of the Cnidarian Hydra and the flatworm Macrostomum, although it is thought that their expression 

340 is restricted to stem-like progenitor cells that have the capacity to regenerate all cell types of the 
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341 animal including gonad (58, 59). Loss of somatic piRNA pathway in Drosophila fat body disrupts 

342 metabolic homeostasis by depleting lipids and stored metabolites leading shortened lifespan (54). In 

343 the silkmoth Bombyx mori, the primary sex-determining factor is regulated by a single piRNA 

344 originated from the sex-determining genomic locus of W chromosome (60). In the nematode C. 

345 elegans, the piRNA pathway components, including PRDE-1 and PRG-1, are expressed in neurons 

346 and their inhibition facilitates sensory neuron regeneration following injury in a cell autonomous 

347 manner (61). 

348 The best characterized system for the analysis of somatic piRNAs is follicle cells in the 

349 Drosophila ovary (27, 62, 63). Follicle cells are epithelial cells that are needed for the survival and 

350 maturation of the underlying germline cells, and disruption of the piRNA pathway in these cells leads 

351 to enhanced transposon activity and sterility (62). While follicle cells are derived somatically, they 

352 are physically connected to the germline via large ring canals, so it is not clear how much interplay 

353 may exist between them. Nevertheless, piRNA production can take place in the follicle-derived OSS 

354 (ovary somatic sheet) cell line, supporting the hypothesis that these specialized somatic cells can 

355 produce piRNAs (22, 51, 64, 65). However, piRNA production in these cells differs from that seen 

356 in ovarian cells in several key ways (14, 51). First, follicle cells lack both Aub and Ago3, and 

357 consequently do not display ping-pong amplification (14). Secondly, they preferentially express 

358 piRNAs from uni-strand genomic piRNA clusters, while ovarian cells produce piRNAs from both 

359 single and double-stranded transposable element clusters (14, 66). In contrast to follicle cells, the 

360 ISMs express both Aub and Ago3 and display efficient ping-pong amplification with high Z-scores. 

361 These data suggest that while the ISMs are clearly somatic cells, their piRNA pathway more closely 

362 represents the hallmarks of germline piRNA production. 

363 Sequencing and mapping analyses have demonstrated that Manduca piRNAs are generated 

364 from both transposable elements and protein coding genes. In the few instances where genic piRNAs 
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365 have been analyzed, they have been shown to be derived predominantly from the 3’ UTR sequences 

366 within mRNAs (52-54, 64). In contrast, genic piRNAs analyzed from Manduca appear to be derived 

367 primarily from the start of translation in the 5’UTR. The possible regulatory role that these sequences 

368 might serve is unclear. There is the intriguing observation that mRNAs become more labile in day 17 

369 ISMs, which may facilitate the rapid upregulation of death-associated transcripts (47). It is not known 

370 if these genic piRNAs might participate in this process via some uncharacterized mechanism. 

371 However, considering the instability of ISM transcript mediated by 3’ UTRs, we speculated that 

372 miRNAs could play a role in facilitating the rapid transition from the atrophy program to the one that 

373 mediates death. Indeed, we have demonstrated that miRNAs targeting the 3’UTRs of death-associated 

374 transcripts can repress translation (42). 

375 The ISMs are a classic model system for the study of skeletal muscle atrophy and death (67-

376 69). Data presented here demonstrate that the expression of ISM piRNAs is developmentally-

377 regulated, with low levels during atrophy and peak expression on day 17 in advance of the 

378 commitment of the muscles to die late on day 18. Consequently, we examined the expression of 

379 transposable elements since they are the primary target of piRNAs. Transposon expression appears 

380 to be tightly controlled in the ISMs since there was almost no variation their abundance until day 17, 

381 at which point they became deregulated. Within a matter of hours, the expression of several DNA 

382 transposons increased significantly, while some elements, most notably retrotransposons, were 

383 concurrently repressed. The ability of the ISMs to initiate PCD occurs when the circulating levels of 

384 the steroid hormone 20E decline below a specific threshold on day 17 (44) . Hormone replacement 

385 with exogenous 20E on day 17 not only delays ISM death, it also prevents the developmental changes 

386 in piRNA and transposon expression that accompany PCD. This data supports the hypothesis that this 

387 pathway is also under hormonal control. It should be noted that the changes in transposon expression 

388 occur well in advance of the initiation of cell death and therefore do not appear to be a secondary 
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389 consequence of cellular suicide. In the germline, transposon expression is repressed in order to protect 

390 the genome from insertional mutagenesis and subsequent catastrophe. However, this same process 

391 may confer an advantage for the organism by ensuring that cell death is indeed an irreversible process. 

392 For example, during apoptosis, genome destruction is insured by the activation of endogenous 

393 nucleases that cleave chromosomal DNA into nucleosome sized fragments (70). However, the ISMs 

394 die by an autophagic process that does not include DNA fragmentation (56, 67, 71). Perhaps 

395 transposon expression and reintegration serve a similar role for cells undergoing non-apoptotic forms 

396 of cell death where it insures that condemned cells are truly “dead” by fragmenting the genome and 

397 depleting the cell of beta-nicotinamide adenine dinucleotide and ATP (72). Some support for this 

398 hypothesis comes from the observation that transposon expression is elevated in certain 

399 neurodegenerative disorders (73-75), a phenomenon that has been called a “transposon storm” (76, 

400 77). To date, none of these studies have examined the possible expression of piRNAs in the diseased 

401 tissues. We attempted to directly test the hypothesis that reintegration of transposons in Manduca 

402 would result in double stranded breaks in genomic DNA by sequencing genomic libraries generated 

403 from ISMs taken before and after adult eclosion. Unfortunately, laboratory reared Manduca are not 

404 isogenic, and the individual-to-individual variability in transposon copy number precluded a direct 

405 test of the hypothesis (data not shown). As well, we tried to use antibodies against phosphorylated 

406 histone H2Av since it is a marker of double stranded DNA breaks (78), but the antibodies directed 

407 against Drosophila phosphorylated H2Av did not cross react with the Manduca protein, and a 

408 Lepidopteran-specific antibody has not been identified (data not shown).

409 Taken together, we have presented compelling evidence that piRNAs are expressed in highly 

410 differentiated somatic cells. Their expression is developmentally regulated by the steroid hormone 

411 20E. piRNA expression is repressed when the ISMs become committed to die, which is correlated 

412 with the deregulation of transposon expression. The expression and possible re-integration of 
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413 transposons may help insure that the muscles, which do not die by apoptosis, nevertheless experience 

414 genome degradation. The work both verifies the expression of somatic piRNAs and may provide new 

415 insights into degenerative processes during aging and pathogenesis. 

416

417 Materials and Methods

418 Animals

419 The tobacco hawkmoth Manduca sexta was reared and staged as described previously (44). The 

420 lateral intersegmental muscles (ISMs) were dissected free from adjacent tissue under ice-cold saline, 

421 flash frozen on dry ice and stored in liquid nitrogen until used for RNA isolation. 

422 Some animals were injected on day 17 of pupal-adult development with 25ug of 20-

423 hydroxyecdysone (20E) (Sigma) in 10% isopropanol to delay ISM death (79) and then the ISMs 

424 removed prior to the normal time of eclosion on day 18.

425 RNA Isolation, Library Construction and Sequencing

426 The ISMs of 3-4 animals per developmental time point (eight time points in total: days 13, 14, 

427 15, 16, 17, 18, and 1-hour post-eclosion (PE); plus 20-hydroxyecdysone injection on day 17: 20E) 

428 were homogenized and total RNA was isolated using a mirVana RNA Isolation kit (Life 

429 Technologies). 

430 For small RNA-seq library construction, 50 ug of total RNA was fractionated by 15% urea 

431 polyacrylamide gel electrophoresis and the 18-30 nt fraction extracted for library construction. 3´ and 

432 5´ adaptors were ligated to the small RNA and the cDNA reverse transcribed and PCR amplified. The 

433 libraries were purified by polyacrylamide gel electrophoresis, and subjected to 50 nt single-end 

434 sequencing on an Illumina HiSeq™ 2000 (San Diego, CA) by Beijing Genomics Institute (Hong 

435 Kong).
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436 For RNA-seq, directional and random primed cDNA libraries were constructed with poly(A)+ 

437 RNA, analyzed with a Bioanalyzer (Agilent Technologies; Santa Clara, CA) and 50 nt single-end 

438 sequencing was performed as above. For each of the eight time points, we prepared three biological 

439 replicates of RNA-seq libraries.

440 All the sequencing libraries are accessible from Gene Expression Omnibus (GEO) (accession 

441 number GSE80830)

442 Oxidized small RNA-seq library

443 Unlike miRNAs, piRNAs are 2´-O-methylated at their 3´ termini, which renders them resistant 

444 to oxidation (48). Therefore, we oxidized small RNAs as outlined in (16), then cloned the resulting 

445 piRNAs as above. We sequenced the oxidized small RNA library at the Deep Sequencing Core 

446 Facility at the UMass Medical School. 

447 Genomic sequence and annotation data

448 We downloaded the genomic assembly of Manduca sexta (Msex1.0) and the transcript and 

449 the protein sequences (revised-OGS-June2012) from the Manduca Base 

450 (http://agripestbase.org/manduca/) (42). The genomic assembly contains 20,868 scaffolds, with a 

451 median length of 994 bp. We annotated protein-coding genes, transposable elements, low complexity 

452 regions, miRNAs, and other non-coding RNAs such as rRNA, tRNA, snoRNA, snRNA etc. The 

453 detailed annotation protocol and statistics are described in Supplementary materials (below). All the 

454 sequencing libraries are accessible from GSE80830 in Gene Expression Omnibus.

455 Sequence extraction and annotation of piRNAs

456 After computationally removing the adaptor sequences, we mapped the extracted sequences to 

457 the reference Manduca genome using the Bowtie algorithm (80). We only retained reads that matched 

458 the genome perfectly for downstream analysis. To identify potential piRNAs, we selected sequences 
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459 that were longer than 22 nt and not annotated as miRNAs or other non-coding RNAs (see 

460 Supplementary Materials for annotation of miRNAs and other non-coding RNAs). The reads of 

461 piRNAs that mapped to multiple loci in the genome were apportioned over these loci, and piRNA 

462 reads were normalized by the total number of genome mapping reads excluded other non-coding 

463 RNAs (rRNA, tRNA etc.). piRNA abundance is quantified in parts per million (ppm). 

464 piRNA ping-pong signature

465 To determine if Manduca piRNAs are amplified via the ping-pong cycle, we computed the Z-

466 score as described in (51). Briefly, we identified the piRNA pairs that mapped to overlapping genomic 

467 positions but on opposite genomic strands. We counted the numbers of such pairs with 5´-5´ 

468 overlapping distances from 1 to 20 nts, and calculated Z-score for the 10-nt overlap (the expected 

469 overlapping distance due to ping-pong) using the counts of 1-9 nt and 11-19 nt overlaps as the 

470 background.

471 Relative mapping position of piRNAs on genes

472 In order to characterize the relative positions in mRNAs that Manduca piRNAs map to, we 

473 scaled the 5´ UTRs, coding regions, and 3´ UTRs of mRNAs to 350, 1000, and 800 nts respectively, 

474 which we calculated are the median lengths of these regions in annotated M. sexta genes. Using scaled 

475 non-overlapping windows which are equivalent to each of the 2,150 nts of the scaled genes, we 

476 counted piRNA abundance in RPKM.

477 Gene expression and differentially expressed genes

478 We mapped reads in each RNA-seq library to the reference Manduca genome using the 

479 TopHat2 algorithm (81) allowing 2 mismatches (“-v 2”). To detect reads mapping to transposons, we 

480 allowed reads to map to multiple locations of the genome with the “-g” option in TopHat2. Since the 

481 most abundant transposon in Manduca is SINE, with 44,487 copies when all subfamilies are 
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482 combined (Table S2), we ran TopHat2 with “-g 45,000”. Reads were apportioned by the number of 

483 times they mapped to the genome.

484 After mapping, we counted the number of RNA-seq reads for each gene and transposon, 

485 expressed in the unit of RPKM (Reads Per Kilobase of transcript per Million mapped reads). To 

486 identify differentially expressed genes and transposons between a pair of time points during ISM 

487 development, we ran the DESeq2 algorithm (version 1.5.5) implemented in R (Anders and Huber, 

488 2010) using mapped read counts as the input, taking advantage of the three biological replicates per 

489 stage. Genes with q-value < 0.01 and absolute fold-change (fc) > 2 were considered to be 

490 differentially expressed between the two time points.

491
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695 Supporting information

696 S1 Methods: Methods for genomic annotation

697 S1 Table: Small RNA-seq reads statistics. 

698 S2 Table: Transposable elements in M. sexta. 

699 S1 Figure:  Length distribution, sequence logos, and genomic annotations of small RNAs in the ISM 

700 development.

701 S2 Figure:  Expression and change of piRNAs mapped to transposon families in the ISM 

702 development.

703 S3 Figure: piRNA relative mapping positions on genes.

704 S4 Figure: Gene expression of small RNA biogenesis pathway factors.

705 S5 Figure:  Transposon expression and ping-pong piRNA Z-scores.

706

707 Figures

708 Figure 1: Length and mapping locations of Manduca piRNAs. Length distribution of the small 

709 RNAs in day 13 unoxidized (top) and oxidized (bottom) libraries. Genomic annotations of the 

710 locations where the reads mapped are summarized in pie charts (right).

711

712 Figure 2: Characteristics of piRNAs expressed in the ISM. A: Changes in piRNA abundance 

713 during the ISM development (left); the frequency of 5´-5´ 10nt overlaps between piRNA pairs 

714 (middle); and the corresponding ping-pong Z-scores during development (right). The shaded bars on 
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715 the left panels indicate the fraction of piRNAs that are amplified via the ping-pong amplification loop. 

716 Almost all of the Z-scores were statistically significant (red dots). B: Size distribution and strand bias 

717 of piRNAs mapped to transposons (left), and the change in piRNAs expression during the ISM 

718 development (right). Blue reflects sense strand bias while red is indicative of antisense. As examples, 

719 piRNAs mapped to DNA/PIF-Harbinger are in the upper panel while those mapping to LTR/Gypsy 

720 are on the bottom panel.

721 Figure 3: Relative mapping positions of genic piRNAs. The relative mapping position of piRNAs 

722 on highly expressed genes. piRNAs mapping to the sense and antisense strands of genes are 

723 highlighted in blue and red respectively.

724

725 Figure 4: Expression of piRNA biogenesis pathway factors. A: Gene expression of ago3 and 

726 aub/piwi based on RNA-seq analyses (top) B: Downregulated (zuc, qin, spn-E, hen1, brother of Yb, 

727 tejes and papi), mixed (shu), and upregulated (mael) piRNA pathway factors in the ISMs prior to the 

728 initiation of cell death. Red and blue circles on day 18 indicate up- and down-regulation of the factors 

729 compared to expression on day 13. Those circles in the 20E lane indicate statistically significant 

730 changes in ISM gene expression animals injected on day 17 with 20E to delay cell death on day 18.

731

732 Figure 5: Transposon expression in atrophy and ping-pong piRNAs. Changes in transposon 

733 expression during ISM development relative to day 13 (from day 14 to day 18, and 20E). Up-regulated 

734 and down-regulated transposons are highlighted in red and blue respectively.

735

736 Data reporting

737 All the sequencing libraries are accessible from GSE80830 in Gene Expression Omnibus.

738
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739 Supplemental Figures

740 Figure S1:  Length distribution, sequence logos, and genomic annotations of small RNAs in the ISM 

741 development.  Bar plots in the leftmost column display the length distribution of small RNAs in the 

742 ISM developmental stages.  Pie charts in the second left column show genomic annotations of small 

743 RNAs in the M. sexta genome. Two sequence logos for miRNAs and reads longer than 23nt are shown 

744 for each developmental stage. Pie charts in the rightmost column show genomic annotations of reads 

745 longer than 23nt. Percentages without parentheses represent relative abundance in the reads longer 

746 than 23nt, and percentages within parentheses represent the abundance in total reads.

747

748 Figure S2:  Expression and change of piRNAs mapped to transposon families in the ISM 

749 development.  The expression of piRNAs mapped to each transposon family is shown.  Shaded bars 

750 indicate the fractions of piRNAs amplified via the ping-pong amplification.  The numbers in the 

751 parentheses are copy numbers of transposon families in the M. sexta genome.

752

753 Figure S3: piRNA relative mapping positions on genes.  The distribution of piRNA abundance on 

754 highly and low expressed genes in each time point is shown.  piRNAs mapped to sense and antisense 

755 are highlighted in blue and red respectively.

756

757 Figure S4: Gene expression of small RNA biogenesis pathway factors. Red and blue circles on day 

758 18 indicate up- and down-regulation of the factors compared to those on day 13.  Similarly, those 

759 circles on 20E indicate up- and down-regulation of the factors compared to those on day 18.  Only a 

760 single aub/piwi gene (Msex009073) is detected in the genome.

761
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762 Figure S5:  Transposon expression and ping-pong piRNA Z-scores.  Left Y-axis indicates transposon 

763 expression in RPKM, and right Y-axis indicates ping-pong Z-scores of the piRNAs mapped to the 

764 transposon.  Red and blue diamonds show up- and down-regulation of transposon 

765 expression.  Statistically significant Z-scores are colored in light blue, while non-significant ones are 

766 grey.  The numbers in the parentheses are copy numbers of transposon families in the M. sexta 

767 genome.

768 Supplemental Tables

769 Table S1:  Small RNA-seq reads statistics.  The sample on day 13 has both unoxidized and oxidized 

770 small RNA-seq libraries. “ncRNAs” refer to non-coding RNAs such as tRNA, rRNA, and snoRNA. 

771 “Reads excluding ncRNAs and miRNAs” correspond to the piRNAs analyzed in this study.  

772 “Transposon matching reads” and “Gene matching reads” indicate piRNAs mapped to transposons 

773 and genes respectively. Due to the fact that a piRNA read can map to both the sense and the antisense 

774 orientations of a transposon, the sum of these transposon matching reads is greater than the total 

775 number of transposon matching reads. The numbers in parentheses avoid this discrepancy by 

776 apportioning a value of 0.5 to sense and antisense for each read that maps to both orientations.

777

778 Table S2:  Transposable elements in M. sexta.  Copy numbers, total bases, and fractions within the 

779 M. sexta genome are shown for the 64 transposon families detected with RepeatMasker.
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