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Abstract Lymphoblastoid cell lines (LCLs) are generated by transforming primary B cells with

Epstein–Barr virus (EBV) and are used extensively as model systems in viral oncology, immunology,

and human genetics research. In this study, we characterized single-cell transcriptomic profiles of

five LCLs and present a simple discrete-time simulation to explore the influence of stochasticity on

LCL clonal evolution. Single-cell RNA sequencing (scRNA-seq) revealed substantial phenotypic

heterogeneity within and across LCLs with respect to immunoglobulin isotype; virus-modulated

host pathways involved in survival, activation, and differentiation; viral replication state; and

oxidative stress. This heterogeneity is likely attributable to intrinsic variance in primary B cells and

host–pathogen dynamics. Stochastic simulations demonstrate that initial primary cell heterogeneity,

random sampling, time in culture, and even mild differences in phenotype-specific fitness can

contribute substantially to dynamic diversity in populations of nominally clonal cells.

Introduction
Lymphoblastoid cell lines (LCLs) are immortalized cells prepared by in vitro transformation of resting

primary B cells from peripheral blood with Epstein–Barr virus (EBV) (Bird et al., 1981; Anderson and

Gusella, 1984). LCLs are used extensively in research as a model for EBV-associated malignancies

including diffuse large B cell lymphoma (Nichele et al., 2012; Tazzari et al., 1999) and post-trans-

plant lymphoproliferative disorder (Markasz et al., 2009; Rea et al., 1994). Because EBV is a non-

mutagenic transformant in this context, LCLs constitute an important renewable source of human

cells and genomic DNA that are used in immunological, genetic, and virology research

(Çalışkan et al., 2014; Choy et al., 2008; Oh et al., 2013; Stark et al., 2010; Volkova et al., 2019).

EBV is a double-stranded oncogenic gammaherpesvirus infecting over 90% of humans

(Rickinson and Kieff, 2007). In vivo, the virus typically establishes an asymptomatic persistent latent
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infection in episomal form (Lindahl et al., 1976; Nonoyama and Pagano, 1972) within resting mem-

ory B cells (Longnecker et al., 2013). Latent infection can take one of several forms, each character-

ized by distinct programs of viral gene expression initiated from different promoters (Price and

Luftig, 2015). For example, classical EBV infection within resting memory B cells in vivo is character-

ized by the Latency I program in which expression from the Q promoter yields a single viral protein,

EBV Nuclear Antigen 1 (EBNA1), which functions to maintain the viral episome (Hung et al., 2001).

Latency I, termed ‘true latency’, is established only after a complex progression of infection through

pre-latency, Latency IIb, Latency III, and restricted forms of latency (e.g., Latency IIa), each occurring

in distinct tissues within the body (Price and Luftig, 2015). EBV can undergo lytic reactivation as a

replication strategy, which is relatively infrequent in cell culture despite being essential for transmis-

sion in vivo (Bhende et al., 2004).

In vitro, the process of LCL production also necessarily involves multiple transitions in viral tran-

scriptional programs. In the immediate-early stage of infection (the pre-latent phase), expression

from the W promoter yields EBNA-LP, EBNA2, and several noncoding RNAs (EBERs, BHRF1 miR-

NAs, and BART miRNAs). A brief burst of lytic gene transcription (without lytic replication) is also

observed during pre-latency (Woisetschlaeger et al., 1989). EBNA-LP and EBNA2 protein levels

increase gradually within these early-infected cells, eventually leading to Latency IIb in which EBNA2

activation of the C promoter upregulates expression of EBNA1, EBNA3A, EBNA3B, EBNA3C, and

additional EBNA-LP and EBNA2 proteins as well as noncoding RNAs (Alfieri et al., 1991). Latency

IIb gene products induce hyperproliferation, a period of several days during which infected B cells

divide every 10–12 hr (Nikitin et al., 2010). During hyperproliferation, EBNA1 mediates viral

genome replication while EBNA3 proteins inhibit host cell antiviral and tumor-suppression

responses. Variance in virally mediated rates of proliferation ensures that some infected cells

undergo DNA damage-induced growth arrest (Nikitin et al., 2010; Nikitin et al., 2014) while others

continue to proliferate, eventually outgrowing as immortalized LCLs. LCLs largely exhibit the Latency

III transcriptional profile, characterized by expression of all six EBNAs (EBNA-LP, EBNA1, EBNA2,

and EBNAs 3A–3C) in addition to latent membrane proteins 1 and 2 (LMP-1, LMP-2A/B) and non-

coding RNAs (Young and Rickinson, 2004). In Latency III, EBNA2 stimulates expression of LMP-1, a

constitutively active tumor necrosis factor receptor (TNFR) homolog (Mosialos et al., 1995). LMP-1

signaling drives proliferation and survival via NFkB pathway activation (Devergne et al., 1996),

which has been shown to be essential for LCL outgrowth (Cahir-McFarland et al., 2000).

Although studied extensively, complete characterization of the viral and host determinants of

growth arrest versus immortalization of early-infected cells remains elusive (Mrozek-Gorska et al.,

2019). As one consequence, it is unclear whether or to what extent viral transformation may influ-

ence the resulting LCL cell populations. The possibility of significant phenotypic diversity within and

across LCL samples warrants consideration, given the intrinsic variance of the human primary B cell

repertoire (Morbach et al., 2010; Perez-Andres et al., 2010) and the multiplicity of viral transcrip-

tion programs active in the journey to immortalization. Indeed, we recently described a gene expres-

sion program having low expression of LMP1 and NFkB targets which was unique to early infection

(Latency IIb) relative to an otherwise identical population of LCLs (Messinger et al., 2019). The wide

distribution in LMP1 and NFkB target expression levels within an LCL has been characterized and

ascribed to the dynamic sampling of a distribution of immune evasive states, at the fringes of which

growth and survival can be compromised (Brooks et al., 2009; Lam et al., 2004; Lee and Sugden,

2008).

In this study, we characterize the transcriptomic profiles of five different LCLs with single-cell reso-

lution to assess inter- and intra-sample heterogeneity. Four of the sampled LCLs (two in-house and

two commercial cell lines) were transformed with the prototypical B95-8 strain of EBV derived from

an infectious mononucleosis patient (Miller and Lipman, 1973), while a fifth sample (in-house) was

prepared from cells transformed with the M81 strain isolated from a human nasopharyngeal carci-

noma sample (Desgranges et al., 1976; Tsai et al., 2013). Primary cells used in establishing the five

LCLs were isolated and transformed from a total of four donors; cells from one donor were trans-

formed concomitantly to establish LCLs with each of the tested EBV strains. We observe B cell

genetic heterogeneity in the form of differential heavy chain isotype expression across LCLs and, in

three instances, within a sample. Further, comparable patterns of phenotypic variance with respect

to NFkB pathway and plasma cell-like differentiation genes are evident in each LCL. Expression of

host and viral genes indicate that individual cells within LCLs occupy a continuum of infection states.
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We also present an initial stochastic model to explore factors beyond the nuances of host–pathogen

interactions that may generate profound phenotypic diversity within cultured cell lines. Our findings

highlight some of the underappreciated complexity inherent within LCLs and broadly underscore the

importance of understanding and accounting for sources of heterogeneity within presumptive cell

lines.

Results

LCL generation and data provenance
Three LCLs were prepared in-house by infection of PBMCs from two donors (sample numbers 461

and 777) with one of two different EBV strains (B95-8 or M81). Each of these three samples (LCL 461

B95-8, LCL 777 B95-8, and LCL 777 M81) was prepared and processed using standard single-cell

RNA sequencing workflows (see Materials and methods). Two additional, publicly available data sets

were obtained for commercially available samples of the GM12878 and GM18502 LCLs, which were

generated as previously reported by Osorio and colleagues (Osorio et al., 2019). These five samples

yielded single-cell RNA count matrices for subsequent analysis.

LCL sample quality control (QC)
Count matrices for the five samples exhibited similar feature, total RNA count, and mitochondrial

gene distributions (Figure 1—figure supplements 1 and 2) and were subjected to standardized QC

thresholding (see Materials and methods). Cell cycle marker expression (Figure 1—figure supple-

ment 3) was scored and regressed out during selection of highly variable genes as features to avoid

clusters arising solely from cell cycle phase. Selected features were used to derive principal compo-

nents which were evaluated (Figure 1—figure supplement 4) and subsequently used for dimen-

sional reduction (see Materials and methods). Separate analysis of the merged sample data set

indicated that inter-donor variability is the predominant source of heterogeneity (Figure 1—figure

supplement 5).

Immunoglobulin isotype heterogeneity within and across LCL samples
The five LCL populations exhibit distinct immunoglobulin (Ig) profiles with respect to both gene

expression levels and isotype frequencies (Figure 1). Three of the five samples (LCL 777 B95-8, LCL

777 M81, and GM12878) contain IgM+ and class-switched IgA+ and IgG+ subpopulations, whereas

two samples (LCL 461 B95-8 and GM18502) almost exclusively expressed IgG (IGHG1-4; Figure 1A).

Additionally, cells within each isotype class exhibit a wide range of Ig transcript levels across all sam-

ples in an apparent class-independent fashion. No significant expression of IGHE was observed in

any of the five samples, consistent with the isotype’s rarity in the peripheral blood (He et al., 2017;

Saunders et al., 2019). The immunoglobulin compositions observed for each LCL were confirmed

subsequently by RT-PCR and sequencing, which revealed that each isotype represents a distinct

clone within the culture (Figure 1—figure supplement 6). Significant IGHD transcript levels were

observed in one sample (LCL 777 B95-8), where the gene’s expression was constrained to (and var-

ied inversely with expression levels of) IgM+ cells (Figure 1—figure supplement 7).

The proportion of cells expressing each isotype varied substantially among LCLs (Figure 1B). IgG

was the only isotype observed in LCL 461 B95-8. Cells in the GM18502 sample were also homoge-

nous for IGHG1, although low levels of IGHM transcripts are observed in up to half of the popula-

tion. The proportion of IgM+, IgA+, and IgG+ subpopulations in LCL 777 B95-8 were 69%, 7%, and

24%; in LCL 777 M81 were 1%, 35%, and 64%; and in GM12878 were 6%, 73%, and 18%. Abun-

dance of Ig light chain gene (kappa or lambda) and heavy chain isoform expression are generally cor-

related with variable heavy chain expression in each of the five samples (Figure 1—figure

supplements 7–16). The isotype and clonal frequency differences between LCL 777 B95-8 and LCL

777 M81 are notable, given that these samples originated from the same donor and were trans-

formed at the same time with different viral strains.

Differential Ig isotype expression is a significant source of variation in LCLs, as captured by the

loadings from principal component analysis (PCA), typically within the first four PCs. Consequently,

differences in Ig isotype are effectively captured in dimensionally reduced data sets generated from

PCs using t-distributed stochastic neighbor embedding (tSNE) even at low clustering resolution. In

SoRelle et al. eLife 2021;10:e62586. DOI: https://doi.org/10.7554/eLife.62586 3 of 24

Research article Immunology and Inflammation Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.62586


Figure 1. Immunoglobulin isotype heterogeneity within and across lymphoblastoid cell lines (LCLs). (A) Relative expression of immunoglobulin heavy

chain genes (IGHM, IGHA1, and IGHG1) in five LCLs analyzed by single-cell RNA sequencing. Data are represented by dimensional reduction (t-

distributed stochastic neighbor embedding) of principal components generated from feature selection following out-regression of cell cycle markers

(see Experimental methods). (B) Percentage of cells in LCL population within each isotype class. Null classification represents cells exhibiting negligible

immunoglobulin heavy chain expression.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Distributions of features used for QC across five lymphoblastoid cell line (LCL) samples.

Figure supplement 2. Summary of QC statistics across five lymphoblastoid cell line (LCL) samples.

Figure supplement 3. Distributions of representative markers used for cell cycle scoring and regression.

Figure supplement 4. Elbow and Jackstraw plots used for determination of principal components to use for dimensional reduction and clustering.

Figure supplement 5. Merged sample analysis.

Figure supplement 6. Validation of Ig heavy and light chain (poly)clonality for five lymphoblastoid cell lines (LCLs).

Figure supplement 7. Expression of key gene groups in LCL 777 B95-8.

Figure supplement 8. Expression of key gene groups in LCL 777 M81.

Figure supplement 9. Expression of key gene groups in LCL 461 B95-8.

Figure supplement 10. Expression of key gene groups in GM12878.

Figure supplement 11. Expression of key gene groups in GM18502.

Figure 1 continued on next page
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samples with more homogenous isotype expression (LCL 461 B95-8 and GM18502), the relative Ig

expression level is a significant factor in distinguishing clusters.

Genes involved in B cell activation and differentiation exhibit inverse
expression gradients
Across all samples, LCL populations display variable mRNA transcript levels for genes involved in

cell activation, inhibition of apoptosis, response to oxidative stress, and differentiation (Figure 2).

Gradients in Ig expression exhibit strong anticorrelation with expression of NFkB pathway transcripts

(e.g., NFKB2, NFKBIA, and EBI3) central to B cell activation and survival (Figure 2A, Figure 2—fig-

ure supplement 1A). Similar gradients are observed for metabolic and oxidative stress response

transcripts (e.g., TXN, PRDX1, PKM, LDHA, ENO1, and HSP90AB1); however, these transcripts are

present more broadly (>80% of cells) and at higher levels than NFkB-related genes (20–30% of cells)

in each sample (Figure 2—figure supplement 2). While NFkB family gene expression is consistently

anticorrelated with that of B cell differentiation factors, significant diversity exists in NFkB-high cells

with respect to specific subunits including REL, RELA, and RELB (Figure 2—figure supplement 3).

This implies differential intercellular NFkB dimer composition and, consequently, intra-sample varia-

tion in NFkB-mediated transcriptional programs. Expression of NFkB regulated BCL2 family mem-

bers (e.g., BCL2L1/Bcl-xL and BCL2A1/BFL1) displays strong anticorrelation with Ig expression level.

However, MCL1 and BCL2 mRNAs are more broadly expressed across cells within each LCL, while

BCL2L2/BCL-W is only modestly expressed in LCLs (Figure 2—figure supplement 4).

Ig gradients are closely related to expression of differentiation and maturation markers (e.g.,

CD27, TNFRSF17/BCMA, XBP1, MZB1, and PRDM1) (Bhende et al., 2007; Hatzoglou et al., 2000;

Rosenbaum et al., 2014), which are likewise anticorrelated with NFkB pathway markers

(Figure 2B and C, Figure 2—figure supplement 1B). The apparent inverse relationship between

these gene sets defines a major axis of phenotypic variance within LCL samples comprising multiple

Ig isotypes (Figure 2D). The orthogonality of the pro-survival/differentiation and isotype class diver-

sity axes implies that these two aspects of phenotypic variance are decoupled. Continuity between

phenotypes resembling activated B cells (ABC) and antibody-secreting cells (ASC) is also captured in

the expression profiles of key genes involved in the mutually antagonistic control of B cell state (Fig-

ure 2—figure supplement 5; Nutt et al., 2015). In this model, genes including PAX5 and IRF8 pro-

mote the ABC state; IRF4 and MKI67 (a G2/M cell cycle marker) are markers of a transitional

phenotype; and PRDM1 (BLIMP1) and XBP1 promote the ASC state. As cell cycle marker expression

was regressed out, mitotic phase has negligible influence on the observed trends.

Whereas distinctions in Ig isotype class expression tend toward discrete partitioning, intra-isotype

expression of differentiation and maturation genes reflects a continuum of transcriptomic states and

cellular functions. Thus, within a given isotype, elevated Ig heavy chain expression is negatively cor-

related with activation/anti-apoptotic gene expression and positively correlated with maturation/dif-

ferentiation gene expression. These relationships are most readily evident in LCL samples consisting

of a single class-switched population, such as GM18502 (Figure 2—figure supplement 1C).

Finally, the viral EBNA2 and EBNA3 proteins are responsible for transcriptional regulation that we

specifically interrogated within the single cell data. The direct EBNA2 targets RUNX3 and FCER2/

CD23 correlated with NFkB expression (Figure 2—figure supplement 6; Spender et al., 2002).

Indeed, the expression of RUNX3 and FCER2/CD23 was anticorrelated with Ig expression consistent

with the known role of EBNA2 in suppressing heavy chain transcription (Jochner et al., 1996). In

contrast, the EBNA3 repressed targets including CXCL9, CXCL10, BCL2L11/BIM, and ADAMDEC1

were uniformly repressed (Figure 2—figure supplement 7) consistent with the role of histone and

Figure 1 continued

Figure supplement 12. Pairwise Pearson correlation values across key gene groups in LCL 777 B95-8.

Figure supplement 13. Pairwise Pearson correlation values across key gene groups in LCL 777 M81.

Figure supplement 14. Pairwise Pearson correlation values across key gene groups in LCL 461 B95-8.

Figure supplement 15. Pairwise Pearson correlation values across key gene groups in GM12878.

Figure supplement 16. Pairwise Pearson correlation values across key gene groups in GM18502.
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DNA methylation in maintaining gene repression of EBNA3 targets (Harth-Hertle et al., 2013;

McClellan et al., 2013; Paschos et al., 2009).

Differential expression of genes involved in cell activation could affect rates of cell proliferation

within an LCL population. To explore this possibility, we sorted three additional LCLs by ICAM-1

expression and evaluated the growth and metabolic profiles of the sorted fractions. On average,

ICAM-1hi cells (consistent with the ABC phenotype) exhibited modestly faster growth in culture than

ICAM-1lo cells (ASC phenotype) between 1 and 4 days post-sorting. Notably, metabolic activity was

elevated in ICAM-1hi cells than ICAM-1lo cells across all three LCLs, as indicated by higher rates of

glycolysis and oxygen consumption (Figure 2—figure supplement 8).

Figure 2. Lymphoblastoid cell lines (LCLs) exhibit anticorrelated expression gradients of activation and differentiation genes. (A) Inverse expression

gradients of immunoglobulin genes (IGHM, IGHA1, and IGHG1) in magenta and NFkB targets (NFKB2, NFKBIA, EBI3, ICAM1, and BCL2A1) and TXN in

green. (B) Similar inverse gradients of NFkB targets in green and B cell differentiation markers (TNFRSF17, XBP1, MZB1, CD27, and CD38) in orange.

(C) Pearson correlation maps and hierarchical clustering reveal negative correlation of differentiation (orange) and activation (green) gene sets and

positive correlations between genes within each set. (D) In LCLs comprising multiple immunoglobulin isotypes, heavy chain class and differentiation/

activation gradients constitute orthogonal (independent) axes of phenotypic variance.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Expression of individual genes within activation and differentiation gene sets.

Figure supplement 2. Expression of metabolic and oxidative stress genes.

Figure supplement 3. Expression of NF-kB subunits c-REL, RELA, and RELB.

Figure supplement 4. Expression of BCL2 family genes across lymphoblastoid cell line (LCL) samples.

Figure supplement 5. Expression trends in key transcriptional regulators controlling activated B cell (ABC) and antibody-secreting cell (ASC)

phenotypes.

Figure supplement 6. Expression of host targets upregulated by EBNA2.

Figure supplement 7. Expression of host targets repressed by EBNA3.

Figure supplement 8. Cell proliferation and metabolic profiling by ICAM expression.
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Viral state heterogeneity affects host expression profile distributions in
LCLs
Clusters with high EBV lytic gene expression are observed in two of the three data sets (LCL 777

B95-8 and LCL 777 M81) aligned against the human reference genome containing the viral genome

as an extra chromosome (see Materials and methods; Figure 3). Lytic cluster cells are small, account-

ing for 2.2% and 0.9% of the LCL 777 B95-8 and LCL 777 M81 cell populations, respectively

(Figure 3A). The higher rate of lytic cell capture in the B95-8 sample relative to the M81 sample is

somewhat surprising, as the M81 strain is known for increased frequency of lytic reactivation; how-

ever, this disparity may originate from the nature of single-cell sample preparation method (see

Discussion; Zheng et al., 2017).

The presence or absence of viral lytic transcripts is a significant source of phenotypic variance in

these samples, as reflected in population groupings by viral state (Figure 3B) and principal compo-

nent loadings (Figure 1—figure supplements 15 and 16, PC_3 and PC_7, respectively). Lytic cells

can be identified confidently from high expression of EBV genes including BLRF1, BALF1, and

BARF1, among others (Figure 3C). BHRF1 expression is also elevated in lytic cells, although BHRF1

transcripts are ubiquitous at low levels sample wide. This is likely because BHRF1 can be expressed

during both latent and lytic phases of EBV infection from different promoters (Xing and Kieff,

2007). Cells identified as lytic exhibit lytic gene expression ranging from approximately 3–15% of

total measured transcripts per cell (Figure 3—figure supplement 1). Thus, it is possible that this

cluster represents both truly lytic cells (>10% lytic transcripts) and abortive lytic cells (Chiu and Sug-

den, 2016). Alternatively, the cells with lower lytic transcript expression may have been at earlier

stages of lytic reactivation at the time of sample preparation.

While the absolute number of lytic cells in each sample is low, the data indicate that the lytic cells

are polyclonal with respect to Ig heavy chain expression, display upregulation of several host genes

including NFATC1, MIER2, SFN, and SGK1, and exhibit heterogeneous NFkB expression

Figure 3. Viral and host gene expression in lytic cell subpopulations. (A) Clustering of dimensionally reduced data sets for LCL 777 B95-8 and LCL 777

M81. (B) Grouping of cell clusters into latent (red) and lytic (cyan) cells based on viral and host gene expression signatures of principal components. (C)

Relative expression of four representative Epstein–Barr virus (EBV) lytic genes (BHRF1, BLRF1, BALF1, and BARF1) is elevated in lytic cell

subpopulations. (D) Lytic cell clusters exhibit elevated expression of several host cell genes (SGK1, NHLH1, NFATC1, MIER2, and SFN) relative to

latently infected cells. While under-sampled due to subpopulation size, immunoglobulin class frequencies in lytic cells roughly reflect the population-

wide frequencies.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Percentage of viral lytic transcripts relative to total transcripts in LCL_777_B95-8 lytic cell cluster.
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(Figure 3D, Figure 1—figure supplements 5 and 6). Ig isotype distributions in lytic cell clusters

appear roughly proportional to the whole-sample distributions. NFATC1, MIER2, SFN, and SGK1

transcript levels were queried for GM12878 and GM18502 samples to test whether the presence of

lytic cell subpopulations might be inferred from host gene expression. A sub-cluster representing a

small percentage of cells in GM12878 (<0.5%) were found to co-express MIER2 and NFATC1. Negli-

gible expression of either gene was observed in GM18502 (Figure 1—figure supplements 8 and 9).

Loss of mitochondrial and Ig expression in subpopulations under
oxidative stress
Three of the five samples (LCL 461 B95-8, GM12878, and GM18502) contain clusters that exhibit

metabolic transcriptional profiles in stark contrast with typical expression in each population (Fig-

ure 4). Cells within these clusters account for 1–4% of the three samples after QC (Figure 4A) and

are most notable for their low expression of mitochondrial genes (Figure 4B). In the case of LCL 461

Figure 4. Lymphoblastoid cell line (LCL) subpopulations exhibiting reduced mitochondrial gene expression and elevated metabolic and oxidative stress

genes. (A) Clustering of dimensionally reduced data sets for LCL 461 B95-8, GM12878, and GM18502. (B) Distinct clusters within each of these samples

are defined by uncharacteristically low mitochondrial gene expression. (C) Grouping of cell clusters to partition ‘mito-low’ cells (cyan) for differential

expression comparison. (D) Mito-low cells exhibit reduced expression of cytochrome oxidase (MT-CO1 and MT-CO2), NADH-ubiquinone

oxidoreductase (MT-ND1 and MT-ND2), MALAT1, and numerous lymphoid and B-cell lineage markers (CD19, MS4A1/CD20, PTPRC/CD45, CD74, and

HLA-A). Mito-low cells exhibit increased expression of genes associated with cytoskeletal rearrangements (ACTB and TUBB), metabolic stress (PKM,

ENO1, and LDHA), protein folding/degradation (HSP90AB1, PSMA1, and PPIA), and oxidative stress (TXN and PRDX1).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Clustering resolution screens for LCL 777 B95-8.

Figure supplement 2. Clustering resolution screens for LCL 777 M81.

Figure supplement 3. Clustering resolution screens for LCL 461 B95-8.

Figure supplement 4. Clustering resolution screens for GM12878.

Figure supplement 5. Clustering resolution screens for GM18502.

Figure supplement 6. Expression of MHC class I genes HLA-A, HLA-B, and HLA-C.

Figure supplement 7. Total RNA counts, unique feature, and mitochondrial percentage distributions across lymphoblastoid cell line (LCL) samples.
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B95-8 and GM18502, these cells are the first to partition from the rest of the sample at low cluster-

ing resolution (Figure 4—figure supplements 1–5).

Compared to the rest of each sample, these atypical cells exhibit significantly depleted levels of

cytochrome c oxidase (MT-CO1 and 2, complex IV) and NADH-ubiquinone oxidoreductase subunits

(MT-ND1 and 2, complex I) as well as a lack of canonical markers of lymphoid (e.g., PTPRC/CD45,

CD74), B cell-specific lineage (e.g., CD19, MS4A1/CD20), and in some cases, MHC class I and II anti-

gen presentation (e.g., HLA-A, HLA-B, HLA-C, and HLA-DR; Figure 4C and D, Figure 1—figure

supplements 7 and 9, Figure 4—figure supplement 6).

Expression of genes involved in oxidative stress (TXN and PRDX1), unfolded protein responses

(PPIA and HSP90AB1), metabolic shunt pathways (PKM, ENO1, and LDHA), and cytoskeletal rear-

rangements (ACTB and TUBB) is enriched consistently in this subset relative to the bulk population

in each of the three LCLs (Figure 4D, Figure 2—figure supplement 2). Ig heavy chain transcripts

are notably absent from these subpopulations, although some degree of light-chain expression is

observed (Figure 1—figure supplements 7–9). While these cells are on the low end of the popula-

tion distribution with respect to total RNA counts and unique feature RNAs (Figure 4—figure sup-

plement 7), the measured values are consistent with intact, viable cells.

A stochastic model for LCL phenotypic heterogeneity
A simple stochastic simulation based on a discrete-time Markov chain model (Škulj, 2006) was devel-

oped to understand better the factors that may influence phenotypic heterogeneity observed in

LCLs, using Ig isotype frequencies as an example (Figure 5). In principle, the simulation may be

adapted to any set of phenotypes within a sample. For additional details regarding model parame-

ters and assumptions, please see the Materials and methods (Stochastic simulations) and refer to the

source code (Source code 2).

In the present implementation, changes in Ig isotype frequency can be simulated in discrete steps

(rounds of cell division) as a function of initial phenotype frequencies, population sampling (with

replacement), and potential differences in phenotypic fitness captured as fixed, (un)equal isotype-

specific proliferation probabilities. The model assumes a fixed cell death rate across all isotypes in

any given division round. The number of simulated trials can be adjusted to capture individual sto-

chastic realizations or probabilistic outcome distributions. Each parameter and assumption can be

adjusted by the user for tailored applications.

Three randomly selected realizations and averaged outcomes (trials = 100) of the model for a

fixed sample size (n = 1000 cells) demonstrate the effects of intrinsic stochasticity on the evolution

of phenotype proportions over many rounds of cell division (rounds = 300), even when each pheno-

type confers equivalent fitness (Figure 5A). In the case of equal fitness and sufficient sample size, ini-

tial phenotype frequencies are a key determinant of whether the most prevalent phenotype will

change over time because of stochasticity.

The effect of sample size on inter-trial variance can be substantial, even when cell populations are

sampled with replacement to maintain phenotype proportions in each round (Figure 5B). Mean phe-

notype proportions are generally conserved, whereas trial standard deviation decreases as the sam-

ple size increases (trials = 25, rounds = 300, n = 100, 500, 1000, or 5000 cells). This is generally

expected, since undersampling increases the likelihood that phenotype frequencies in the drawn

sample will deviate from those of the population, even in the case of replacement.

It is notable that minor differences in relative fitness (1–2%) can lead to dramatic changes in iso-

type distributions over time (Figure 5C). The rate of such change is proportional to the magnitude(s)

of fitness differences (n = 1000 cells, rounds = 300). Four randomly selected clonal evolution trajec-

tories realized with a modest fitness advantage (2%) for class-switched cells (IgA, IgE, and IgG)

reveal the potential for drastic variations when multiple rare phenotypes with a fitness advantage

exist (n = 2500 cells, trials = 10, rounds = 1000). Thus, rare cells may become prevalent or even

dominant over time if they exhibit only slightly greater fitness relative to other cells in some environ-

mental context (e.g., cell culture). In such cases, observed phenotype frequencies can deviate wildly

from expectations of equal fitness over time (Figure 5D).

Cluster simulation was implemented by random sampling from four arbitrary, isotype-specific 2D

normal distributions based on empirical observations that Ig isotypes yield distinct clusters in dimen-

sionally reduced single-cell RNA-seq data (Figure 5E–G). Simulated clusters were generated from

randomly selected trials initiated from the same initial phenotype distribution (IgM = 89%; IgA = 5%;
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Figure 5. Stochastic simulation of heterogeneous lymphoblastoid cell line (LCL) evolution. (A) Stochastic immunoglobulin isotype frequency evolution.

Three random single-trial simulations initiated from the same starting class frequencies are presented, assuming equal likelihood of proliferation across

isotype classes (n = 1000 cells). The last panel shows mean and standard deviation for outcomes from 100 trials simulated from the same parameters.

(B) Simulation of a founder effect. Population under-sampling (modeled by comparing results from 25 trials using n = 100, 500, 1000, and 5000 cells,

Figure 5 continued on next page
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IgG = 5%; IgE = 1%) at three different relative fitness advantages (0%, 1%, and 2%) for class-

switched isotypes. In all cases, the proportion of observed cells in each cluster fluctuates over time.

As expected, the presence or absence of observed phenotypic heterogeneity (in this example, iso-

type polyclonality) in a cell population is a complex function of relative frequency, fitness, sampling

(i.e., bottlenecks), stochasticity, and time (Ewens, 2012; Nowak, 2006).

Discussion

Ig isotype heterogeneity in LCLs
LCL clonality is known to change over time, although the factors involved in this evolution are not

fully characterized (Ryan et al., 2006). PBMC derivation from multiple donors is an obvious source

of cellular heterogeneity in the analyzed samples presented herein. B cells from peripheral blood

( »5–10% of all lymphocytes) comprise wide ranges of naı̈ve ( »50–80%, mean » 65%) and memory

( »15–45%, mean » 30%) cells, with immature/transitional and plasmablasts accounting for smaller

proportions ( »1–10%, mean » 5% and » 0.5–4.5%, mean » 2%, respectively; Perez-Andres et al.,

2010). Within the memory cell compartment, proportions of non-switched (IgM) and switched mem-

ory (IgA, IgG, and technically, IgE) are also likely donor-specific. The negligible number of IgE+ cells

present across the samples can be explained by the isotype’s low frequency in the peripheral blood

(He et al., 2017). A notable limitation of this study is the lack of access to (GM12878 and GM18502)

or retention of (LCL_461 and LCL_777) original donor primary B cells and longitudinal sampling,

which would have provided direct insights into donor-dependent cellular heterogeneity.

It is evident from LCL 777 B95-8 and LCL 777 M81 samples that inter-donor differences cannot

fully explain the observed isotype heterogeneity in LCLs. While it may be tempting to attribute the

observed differences to infection with different viral strains, there is ample experimental evidence

that EBV infection does not induce class-switching (Miyawaki et al., 1991). The disparity in isotype

frequencies is notable since these samples were transformed, cultured, prepared, and sequenced in

parallel (i.e., under equivalent conditions and within the same interval).

The polyclonality exhibited within LCL 777 B95-8 and LCL 777 M81 contrast with the dominance

of a single isotype in LCL 461 B95-8 and GM18502 samples (in each case, IgG). The only notable dif-

ference between LCL 461 B95-8 and LCL 777 B95-8 is that the former sample was in culture substan-

tially longer prior to single-cell library preparation. Given that the GM18502 line was derived more

than a decade ago, these observations implicate the influence of culture period in significantly alter-

ing the isotype proportions present within LCLs, which is altogether consistent with known (and pro-

found) challenges associated with cell culture (Hughes et al., 2007; Briske-Anderson et al., 1997;

O’Driscoll et al., 2006). In this regard, the data from GM12878 merit remark. The finding of poly-

clonality in this sample is surprising, given that GM12878 has been in culture over a timescale com-

parable to GM18502 (Anders and Huber, 2010). Forgoing the possibility of errors in sample

handling or procurement, the persistence of genetic heterogeneity in this line is both intriguing and

potentially confounding. Whether or to what extent cellular diversity may influence observed results

will inevitably vary on a study-specific basis, but sample-intrinsic variance should be considered even

when homogeneity is presumed (Choy et al., 2008; Morley et al., 2004).

Multiple isotypes within an LCL sample guarantee clonal diversity, but the presence of a single

isotype does not necessarily ensure the inverse (intra-sample homogeneity). While not in the scope

of the present study, B cell receptor (BCR) 5’ single cell sequencing of LCL samples could provide

Figure 5 continued

left-to-right panels) increases outcome variance and accelerates convergence to a single isotype. (C) Effect of phenotype-specific fitness advantages.

Simulation results are presented for scenarios in which class-switched isotypes (IgA, IgG, and IgE) have a 1% (left panel) or 2% (right panel) fitness

advantage over IgM cells. (D) Four random single-trial simulations over long periods of time (1000 division rounds) with a 1% fitness advantage for

class-switched cells (left panels) compared to 10 trials over the same period with equal fitness across classes. (E) Single-trial isotype frequency evolution

and corresponding simulated clustering (see Materials and methods) in the case of equal proliferation probability. Starting frequencies of IgM, IgA,

IgG, and IgE cells are 89%, 5%, 5%, and 1%, respectively. (F) As in E, with a 1% fitness advantage for class-switched cells. (G) As in E, with a 2%

advantage for class-switched cells.
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insights into variable regions and whether subpopulations of a given isotype are the progeny of one

or multiple founder cells (and whether this changes over time).

Viral origins of LCL phenotypic variance
NFkB pathway signaling is constitutively activated by viral LMP-1 in EBV-transformed B cells

(Devergne et al., 1996). LMP-1 induction of the NFkB pathway is necessary for LCL survival (Cahir-

McFarland et al., 2000; Kaye et al., 1993; Dirmeier et al., 2003); however, the observed intra- and

inter-LCL variance in transcript levels of NFkB and several of its transcriptional targets add nuance to

this picture. Similar profiles of NFkB pathway transcript levels across samples may constitute a snap-

shot of the most probable distribution arising from stochastic NFkB target expression induced by

EBV infection. This may arise from a transcriptional bursting mechanism in which mRNA transcript

levels in each cell fluctuate over time (as a Poisson process) while the proportion of cells containing

n transcripts in a population at any given time is roughly constant (Raj et al., 2006; Raj and van

Oudenaarden, 2008; Weinberger et al., 2005; Behar and Hoffmann, 2010; O’Dea et al., 2007).

Alternatively, or perhaps additionally, variation in NFkB pathway activity may be a manifestation of

the different viral latency states present within each sample, as indicated by correlation with host

markers of latency IIb and III.

The distinct anticorrelation between NFkB/viral latency program and B lymphocyte differentiation

genes is noteworthy. While a mechanism imparting causality to this relationship is not yet fully clear,

recent time-resolved bulk transcriptomic data revealed that EBV-induced plasma cell phenotypes

(including upregulation of XBP1) developed as early as the pre-latent phase of infection (1–14

days; Mrozek-Gorska et al., 2019). Correlated expression of MZB1 with XBP1, TNFRSF17, CD27,

and CD38 support the model that the development of plasma cell characteristics is reminiscent of

germinal center differentiation. Single-cell data adds complexity to this finding and its consequences

for LCL heterogeneity even after long-term outgrowth. Specifically, EBV transformation in vitro

appears to maintain B cells along a continuum of differentiation states, each with varying degrees of

similarity to phenotypes observed in vivo (Price and Luftig, 2015). In the case of LCL generation,

the multiple transcriptional programs of the transformant likely constitute an inescapable source of

phenotypic heterogeneity.

The low number of observed lytic cells is likely a consequence of EBV’s predominant latency and

the fact that lytic reactivation is by nature somewhat incompatible with single-cell RNA-seq methods.

However, these small subpopulations provide an interesting case for examination. The spatial prox-

imity of lytic clusters in LCL 777 B95-8 and LCL 777 M81 to plasma-like clusters resulting from tSNE

dimensional reduction implied phenotypic similarity; however, we found that this is likely an artifact

of the tSNE algorithm since UMAP dimensional reduction did not preserve this proximity. Notwith-

standing, XBP1 upregulation in plasma cells has been shown to transactivate the viral BZLF1 pro-

moter and induce lytic reactivation (Sun and Thorley-Lawson, 2007; Laichalk and Thorley-Lawson,

2005). Lytic cells also display relatively high and polyclonal Ig heavy chain expression in addition to

other shared characteristics with plasma-like cells (reduced expression of NFkB subunits and its tar-

gets). By contrast, lytic cells exhibit notably reduced levels of B cell differentiation transcripts. Thus,

viral transcription changes in dynamic response to host cell programs (and vice versa) contribute to

the observed LCL diversity. Prior work has shown that the viral proteins EBNA3A and EBNA3C sup-

press plasma-like phenotypes during EBV latency establishment (Styles et al., 2017). The possibility

that EBV may undergo lytic reactivation in response to plasma cell differentiation as a means of

maintaining persistent latent infection is a topic of future interest.

Host genes upregulated within lytic cluster cells (e.g., NFATC1, MIER2, SFN, and SGK1) represent

a limited subset of transcription factors associated with B (and T) lymphocyte activation (Peng et al.,

2001; Tsitsikov et al., 2001), several of which have been recently identified at various degrees of

enrichment within lytic cells (Frey et al., 2020). The presence of NFATC1 is particularly notable con-

sidering the recent report of this factor contributing to the spontaneous lytic phenotype of type 2

EBV by upregulating expression of BZLF1 to promote the lytic gene expression cascade (Romero-

Masters et al., 2020).

Although PC loadings reveal substantial upregulation of more than a dozen EBV lytic genes, cells

within the lytic clusters curiously lack expression of BZLF1, which plays a role in the latent-to-lytic

transition (Bhende et al., 2004). The absence of BZLF1 reads (and low mRNA counts generally)

ostensibly may result from factors including naturally low transcript abundance, reduced transcript
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capture efficiency, and/or reduced efficiency of reverse transcription to cDNA owing to RNA second-

ary structural motifs (Ozsolak and Milos, 2011).

‘Marker-less’ subpopulations
The small populations of cells in LCL 461 B95-8, GM12878, and GM18502 characterized by low mito-

chondrial gene expression and a dearth of canonical B cell markers are curiosities. These cells share

similarities with exhausted plasma cells, most notably an apparent loss of Ig heavy chain expression

while retaining moderate kappa and light chain expression (Köhler, 1980; Haas and Wabl, 1984),

and hallmarks of oxidative stress including upregulated thioredoxin expression (Fernando et al.,

1992; Lu and Holmgren, 2014; Muri et al., 2018; Muri et al., 2020). Low levels of NFkB pathway

transcripts in these clusters most closely resemble expression profiles of cells with a plasma-like phe-

notype in the same samples. It is unlikely that these cells are immature, naı̈ve, or transitional B cells,

given that neither IGHM nor IGHD expression is observed. Loss of lineage marker expression is sug-

gestive of a tumor-like phenotype (Schwering et al., 2003).

Factors in the evolution of subclonal heterogeneity
Cellular diversity abounds even within presumptive clonal lines. For LCLs generated from EBV-trans-

formed primary B cells, the list of parameters affecting the cell population’s phenotypic profile

includes donor-specific frequencies of non-switched and switched memory B cells, heterogeneous

states of viral infection, phenotype-specific differential fitness in culture, stochasticity, and time. By

definition, some degree of differential fitness exists among cells in each sample as a consequence of

the variability in pro-survival, proliferation, and anti-apoptotic genes. Mechanistically, a portion of

this variance is expected to arise from heritable yet transient epigenetic signatures (Shaffer et al.,

2020). Indeed, epigenetic diversity affecting chromatic architecture across LCL subclones from a sin-

gle donor was recently demonstrated through ChIP-Seq analysis (Ozgyin et al., 2019). Lastly, as a

principle of evolution, phenotypic differences do not necessarily have to be selected directly; they

may simply be carried over in cells possessing other selected features. With respect to the stochastic

model presented herein, the simulated phenotype advantage of class-switched memory vs. non-

switched memory cells need not be construed as originating from heavy chain isotype expression.

Experimental procedures including cell passaging and the initial transformation itself may contrib-

ute to variance among LCLs. As an illustration, consider that 1 million PBMC has around 25,000 B

cells, of which 7500 (30%) on average are memory cells of various classes. If the rate of transforma-

tion leading to LCL outgrowth is 10%, then »750 memory cells out of 1 million PBMCs define the

initial isotype frequency of the eventual LCL. This sample size is small relative to the donor’s total

memory B cell compartment and may lead to founder cell effects. Consequently, B cell population

undersampling may be a foregone conclusion in the context of LCL preparation.

Additional studies that utilize time-resolved single-cell sampling from original B cells through

early infection and long-term LCL outgrowth in culture will be essential to explore further the factors

contributing to longitudinal stability and variation in transcriptional profiles of B cells immortalized

by EBV infection. Moreover, while the transcriptomic profiles we report provide a valuable resource,

additional molecular layers must be interrogated through parallel -omics techniques (e.g., ATAC-

seq and DNA methylation) across individual cells to understand deeply the mechanistic underpin-

nings of transcriptional heterogeneity.

Conclusion
Single-cell RNA sequencing reveals that LCLs including widely used commercial lines exhibit substan-

tial phenotypic diversity. During the early stages of LCL generation, EBV infection drives cell prolifer-

ation by mimicking the process of B cell activation. After successful LCL outgrowth, infected B cells

occupy a range of phenotypic states along a continuum between activation and plasma cell differen-

tiation and, in some cases, exhibit signs of lytic reactivation. The diversity observed within LCLs (and

cultured lines generally) can originate from intrinsic heterogeneity within primary cells, transcriptional

programs of the viral transformant, and the realization of inherently stochastic processes (including

certain gene expression programs) over time. The data reported herein enable extensive hypothesis

generation and interrogation of aspects of B cell biology, EBV pathogenesis, and host–virus
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interactions. Moreover, this work highlights the importance of considering the possible sources and

experimental consequences of cell population heterogeneity when using cultured cell lines.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Biological
sample (Homo
sapiens)

Whole blood Gulf Coast
Regional Blood
Center

Multiple donors;
sources of
PBMCs for
LCL_461 and
LCL_777
preparation

Cell line
(Homo sapiens)

B95-8 Z-HT This paper;
Price et al.,
2017

Stimulated to
obtain B95-8
strain (Type 1
EBV) viral
supernatants

Cell line
(Homo sapiens)

M81 This paper;
Tsai et al., 2013

Stimulated to
obtain M81
strain (Type 2
EBV) viral
supernatants

Cell line
(Homo sapiens)

LCL_461 This paper;
Price et al.,
2017

Prepared from
donor PBMCs

Cell line
(Homo sapiens)

LCL_777 This paper Prepared from
donor PBMCs

Cell line
(Homo sapiens)

GM12878 Coriell Institute RRID:CVCL_7526 White female
donor

Cell line
(Homo sapiens)

GM18502 Coriell Institute RRID:CVCL_P459 Yoruba female
donor

Antibody Anti-human CD54
(ICAM-1), PE-
conjugated
(mouse monoclonal)

Biolegend Cat #353106 Clone #HA58

Sequence-based
reagent

5’ L-VH 1 This paper;
Tiller et al.,
2008

PCR primers ACAGG
TGCCCAC
TCCCAGG
TGCAG

Sequence-based
reagent

5’ L-VH 3 This paper;
Tiller et al.,
2008

PCR primers AAGGTG
TCCAGTGTGA
TGTGCAG

Sequence-based
reagent

5’ L-VH 4/6 This paper;
Tiller et al.,
2008

PCR primers CCCAGATGGG
TCCTG
TCCCAGG
TGCAG

Sequence-based
reagent

5’ L-VH 5 This paper;
Tiller et al.,
2008

PCR primers CAAGGAGTC
TGTTCCGAGG
TGCAG

Sequence-based
reagent

5’ L-Vk 1/2 This paper;
Tiller et al.,
2008

PCR primers ATGAGGA
TCCCTGC
TCAGCTGC
TGG

Sequence-based
reagent

5’ L-Vk 3 This paper;
Tiller et al.,
2008

PCR primers CTCTTCCTCC
TGCTACTC
TGGCTCCCAG

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Sequence-based
reagent

5’ L-Vk 4 This paper;
Tiller et al.,
2008

PCR primers ATTTCTCTG
TTGCTCTGGA
TCTCTG

Sequence-based
reagent

5’ L-Vl 1 This paper;
Tiller et al.,
2008

PCR primers GGTCC
TGGGCCCAG
TCTGTGCTG

Sequence-based
reagent

5’ L-Vl 2 This paper;
Tiller et al.,
2008

PCR primers GGTCC
TGGGCCCAG
TCTGCCCTG

Sequence-based
reagent

5’ L-Vl 3 This paper;
Tiller et al.,
2008

PCR primers GCTCTG
TGACCTCCTA
TGAGCTG

Sequence-based
reagent

5’ L-Vl 4/5 This paper;
Tiller et al.,
2008

PCR primers GGTCTCTC
TCACAGCTTG
TGCTG

Sequence-based
reagent

5’ L-Vl 6 This paper;
Tiller et al.,
2008

PCR primers GTTC
TTGGGCCAA
TTTTATGCTG

Sequence-based
reagent

5’ L-Vl 7 This paper;
Tiller et al.,
2008

PCR primers GGTCCAATTC
TCAGGCTG
TGGTG

Sequence-based
reagent

5’ L-Vl 8 This paper;
Tiller et al.,
2008

PCR primers GAGTGGATTC
TCAGACTG
TGGTG

Sequence-based
reagent

30 Cg CH1 (IgG) This paper;
Tiller et al.,
2008

PCR primers GGAAGGTG
TGCACGCCGC
TGGTC

Sequence-based
reagent

30 Cm CH1 (IgM) This paper;
Tiller et al.,
2008

PCR primers GGGAATTC

TCACAGGAGACGA Sequence-based
reagent

30Ca CH1 (IgA) This paper;
Tiller et al.,
2008

PCR primers TGGGAAGTTTC
TGGCGGTCACG

Sequence-based
reagent

30 Ck 543
(Kappa Light Chain)

This paper;
Tiller et al.,
2008

PCR primers GTTTCTCGTAG
TCTGCTTTGC
TCA

Sequence-based
reagent

30 Cl
(Lambda Light Chain)

This paper;
Tiller et al.,
2008

PCR primers CACCAGTG
TGGCCTTG
TTGGCTTG

Commercial
assay or kit

SV96 Total
RNA Isolation Kit

Promega Cat #Z3500

Commercial
assay or kit

High-Capacity cDNA
Reverse Transcription Kit

Thermo Cat #4368814

Commercial
assay or kit

Single Cell 3’ Reagent
Kit Protocol,
v2 chemistry

10� Genomics Cat #CG00052

Commercial
assay or kit

iMag Negative
Isolation Kit

BD Biosciences Cat #558007 CD19+ B cell
isolation
from PBMCs

Software,
algorithm

CellRanger 10� Genomics v.2.0.0

Software,
algorithm

Seurat (R package) Satija et al.,
2015;
Stuart et al.,
2019

v.3.1.5
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PBMC isolation and transformation with EBV
Whole blood samples from two normal donors (777 and 461) were obtained from the Gulf Coast

Regional Blood Center. PBMCs were isolated from each sample by Ficoll gradient (Sigma, # H8889).

CD19+ B cells were extracted from each PBMC sample through magnetic separation (BD iMag Neg-

ative Isolation Kit, BD, # 558007). Purified B cells were cultured in RPMI 1640 media supplemented

with 15% fetal calf serum (FCS, vol./vol., Corning), 2 mM L-glutamine, penicillin (100 units/mL), strep-

tomycin (100 mg/mL, Invitrogen), and cyclosporine A (0.5 mg/mL).

B95-8 and M81 strains of EBV were generated from the B95-8 Z-HT and M81 cell lines, respec-

tively, as described previously (Johannsen et al., 2004). Separate bulk infections of B cells were per-

formed by incubating donor B cells with B95-8 Z-HT or M81 supernatants for 1 hr at 37˚C, 5% CO2

to produce the following cultures: 777_B95-8, 777_M81, and 461_B95-8. After virus incubation, cells

were rinsed in 1� PBS and resuspended in R15 media. LCL outgrowth was achieved from each of

these three samples, resulting in LCL_777_B95-8, LCL_777_M81, and LCL_461_B95-8.

Cell lines and culture
LCL 777_B95-8, 777_M81, and 461_B95-8 were generated in our laboratory by infection of primary

human B cells obtained from the Gulf Coast Regional Blood Center with EBV strains B95-8 and M81.

These lines were confirmed to be mycoplasma negative using the Sigma Lookout PCR kit.

All three in-house LCL samples were cultured in supplemented RPMI media as described above,

substituting 10% FCS instead of 15% FCS. Prior to single-cell sample preparation, LCL_777_B95-8

and LCL_777_M81 were maintained in culture for approximately 1 month, whereas LCL_461_B95-8

was cultured for longer than 6 months. Immediately prior to single-cell sample preparation, LCLs

were resuspended and disaggregated.

LCL samples and data
LCL_777_B95-8, LCL_777_M81, and LCL_461_B95-8 were created as described above. LCLs

GM_12878 and GM_18502 were obtained, prepared, sequenced, and aligned as described by

Osorio and colleagues (Osorio et al., 2019). Briefly, these samples were obtained from the Coriell

Institute for Medical Research, cultured for several days, and then prepared as single-cell GEMs (Gel

bead in Emulsions) with the 10� Genomics Chromium system using version 2 chemistry for total

RNA. Single-cell sequencing libraries were generated using established 10� Genomics protocols,

and sequencing was performed with a Novaseq 6000 (Illumina, San Diego). Unique Molecular Identi-

fier (UMI) count matrices were generated from these samples by using CellRanger v.2.1.0 with align-

ment to the hg38 version of the human reference genome. Additional information about the

experimental handling and acquisition of data for GM12878 and GM18502 is provided in the original

reference (Osorio et al., 2019). Gene-barcode matrix files for each sample were downloaded from

the Gene Expression Omnibus (accession ID: GSE126321) and subsequently analyzed along with

data from LCL_777_B95-8, LCL_777_M81, and LCL_461_B95-8 samples, while the LCL_461_B95-8

sample was run in a separate experimental batch.

Single-cell RNA sample preparation and sequencing
Single-cell RNA samples for LCL_777_B95-8, LCL_777_M81, and LCL_461_B95-8 were prepared

using the General Sample Preparation demonstrated protocol from 10� Genomics (10�, Manual

Part #CG00053) adapted from the original published methods (Zheng et al., 2017). Briefly, disag-

gregated LCLs were resuspended in fresh 1� PBS supplemented with 0.04% BSA, stained with try-

pan blue to assess viability, and counted using a hemocytometer for preparation to target

concentration.

Single-cell libraries for sequencing were prepared from each sample using the methods described

in the 10� Genomics Single Cell 3’ Reagent Kit Protocol (v2 chemistry, Manual Part #CG00052). In

brief, GEMs were prepared using the 10� Chromium Controller, after which cDNA synthesis and

feature barcoding were performed and sequencing libraries for each sample were constructed.

Sequencing runs were performed on an Illumina HiSeq 3000/4000 (Illumina, San Diego). Samples for

LCL_777_B95-8 and LCL_777_M81 were sequenced in a pooled run in a single HiSeq lane.

SoRelle et al. eLife 2021;10:e62586. DOI: https://doi.org/10.7554/eLife.62586 16 of 24

Research article Immunology and Inflammation Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.62586


Raw base call files (*bcl.gz) from sequencing runs were processed using CellRanger v.2.0.0 to

generate fastq files (*fastq.gz) via CellRanger’s ‘mkfastq’ command. CellRanger’s ‘count’ command

was then used to align reads from the three in-house LCL samples to the human reference genome

(hg38) with the Type 1 EBV reference genome (NC_007605) concatenated as an extra chromosome

(reflecting the episomal nature of the EBV genome within infected B cells). This process yielded

gene-barcode matrices (UMI count matrices) for subsequent analysis.

Sample QC, analysis, and visualization
UMI count matrices for all five LCL samples were analyzed using the Seurat single-cell analysis pack-

age for R (Seurat v.3.1.5; Satija et al., 2015; Stuart et al., 2019). Filtered barcode matrices were

loaded into Seurat, after which genes present in fewer than three cells and cells expressing fewer

than 200 unique RNA molecules (features) and more than 65,000 unique features were filtered out.

Additionally, cells in which mitochondrial genes accounted for greater than 5% of all transcripts were

excluded from analysis. Beyond the uniform application of QC steps, we did not investigate the

potential for batch-specific effects across the five samples run in four experiments. After QC thresh-

olding, feature data were normalized and scored for cell cycle markers. Cell cycle scoring was used

to regress out S and G2M gene features to remove variance (and unwanted effects on clustering) in

the data sets arising from cell cycle phase. Cell cycle-corrected data were then scaled, and selection

was performed to find the highest-variance features. PCA was performed on selected (n = 2000) var-

iable features, and PCs were subsequently used to define distinct subpopulations within each of the

five samples. For visualization, PCs were used to generate clusters at various resolutions and dimen-

sionally reduced using tSNE. The R code used to process data and produce figures presented in this

manuscript is provided as a supporting file (Source code 1), and the Python code used for simula-

tions is provided as a supporting file (Source code 2) and is also available on GitHub (https://github.

com/esorelle/ig-evo-sim; copy archived at https://archive.softwareheritage.org/swh:1:dir:8c47b2-

c0202aa8f255380c742a3cda3ff777abc7/).

PCR validation experiments
Cell pellets were collected for each of the five LCLs, and total mRNA was extracted from each pellet

using the Promega SV96 Total RNA Isolation Kit (Promega, cat # Z3500) and quantified using a

NanoDrop 2000 spectrophotometer (Thermo). Total mRNA was then used to create cDNA pools for

each sample using a High-Capacity cDNA Reverse Transcription Kit (Thermo, cat # 4368814). Previ-

ously reported primer sequences flanking each heavy (IgM, IgA, and IgG) and light chain (Ig

kappa and Ig lambda) gene of interest (Tiller et al., 2008; listed below) were purchased from Inte-

grated DNA Technologies (IDT) and used to amplify each cDNA pool using standard procedures

across a temperature gradient. PCR products and loading dye (Gel Loading Dye, Purple [6�], NEB,

cat # B7025) were run on 2% agarose gels with SYBR Safe at 120 V for 45 min with a 100 base pair

ladder (NEB, N3231S) and subsequently visualized using a LI-COR Odyssey Fc Imaging System (LI-

COR Biosciences). For LCL_777_B95-8 and GM12878, PCR products were sequenced (GeneWiz) and

aligned to assess clonality (imgt.org).

ICAM-1 cell sorting, proliferation, and metabolic assays
LCLs were stained with CD54 (ICAM-1) antibody (PE, Biolegend #HA58) according to the supplier’s

manual. Then, cells were sorted on a Beckman Coulter Astrios cell sorter by anti-CD54 fluorescence,

with ICAM-1-high and ICAM-1-low being defined as the top 15% and bottom 15%, respectively. 24

hr after sorting of ICAM-1-high and ICAM-1-low LCLs, extracellular acidification rate (ECAR) and oxy-

gen consumption rate (OCR) were measured using the Seahorse XF24 extracellular flux analyzer

(Agilent Technologies) Cell Energy Phenotype Test. Suspension LCLs were attached to culture plates

by using Cell-Tak (BD Bioscience). ECAR and OCR were measured in Seahorse XF Base Medium sup-

plemented with 1 mM pyruvate, 2 mM glutamine, and 10 mM glucose (Sigma Aldrich). ECAR and

OCR values were normalized to cell number. For stress measurements, ECAR and OCR were mea-

sured over time after injection of oligomycin and FCCP. Metabolic potential measures the ability of

cells to meet energetic demands under conditions of stress and is the percentage increase of

stressed over baseline ECAR or OCR.
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Stochastic simulations
The concept of a discrete-time Markov chain was adapted to simulate the evolution of phenotype

frequencies, using immunoglobulin heavy chain isotype distributions within LCLs as an example.

Briefly, the simulation takes as input a cell population of size n comprising B cells of different Ig

heavy chain isotype classes at user-defined initial frequencies, fixed probabilities of proliferation in

synchronous rounds of cell division, and a constant cell death rate assumption (also user-defined).

Within the scope of computational feasibility, users can specify the number of rounds of cell division

to simulate and the number of simulation trials to run. Additionally, users may choose to generate

simulated cluster data modeled from distinct 2D normal distributions for each isotype for a specified

number of trials at fixed intervals (i.e., every nth cell division round). The simulation was implemented

in Python, and the code used to generate the simulated data is provided as a supporting file. The

code is also available at (add as public GitHub repo) and may be freely implemented and modified.

Source data files
Raw sequencing data for the three previously unpublished samples (LCL_777_B95-8, LCL_777_M81,

and LCL_461_B95-8) are deposited in the NCBI Sequence Read Archive (SRA) and can be accessed

along with processed data from the NCBI Gene Expression Omnibus (GEO, Series Accession:

GSE158275).
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Köhler G. 1980. Immunoglobulin chain loss in hybridoma lines. PNAS 77:2197–2199. DOI: https://doi.org/10.
1073/pnas.77.4.2197, PMID: 6769123

Laichalk LL, Thorley-Lawson DA. 2005. Terminal differentiation into plasma cells initiates the replicative cycle of
Epstein-Barr virus in vivo. Journal of Virology 79:1296–1307. DOI: https://doi.org/10.1128/JVI.79.2.1296-1307.
2005, PMID: 15613356

Lam N, Sandberg ML, Sugden B. 2004. High physiological levels of LMP1 result in phosphorylation of eIF2 alpha
in Epstein-Barr virus-infected cells. Journal of Virology 78:1657–1664. DOI: https://doi.org/10.1128/JVI.78.4.
1657-1664.2004, PMID: 14747531

Lee DY, Sugden B. 2008. The LMP1 oncogene of EBV activates PERK and the unfolded protein response to drive
its own synthesis. Blood 111:2280–2289. DOI: https://doi.org/10.1182/blood-2007-07-100032, PMID: 180427
99

Lindahl T, Adams A, Bjursell G, Bornkamm GW, Kaschka-Dierich C, Jehn U. 1976. Covalently closed circular
duplex DNA of Epstein-Barr virus in a human lymphoid cell line. Journal of Molecular Biology 102:511–530.
DOI: https://doi.org/10.1016/0022-2836(76)90331-4, PMID: 178878

Longnecker RM, Kieff E, Cohen J. 2013. Fields Virology: Sixth Edition. Wolters Kluwer Health Adis (ESP).
Lu J, Holmgren A. 2014. The thioredoxin antioxidant system. Free Radical Biology and Medicine 66:75–87.
DOI: https://doi.org/10.1016/j.freeradbiomed.2013.07.036, PMID: 23899494

Markasz L, Vanherberghen B, Flaberg E, Otvös R, Stuber G, Gustafsson Jernberg A, Olah E, Skribek H, Szekely
L. 2009. NK cell-mediated lysis is essential to kill Epstein-Barr virus transformed lymphoblastoid B cells when
using rituximab. Biomedicine & Pharmacotherapy 63:413–420. DOI: https://doi.org/10.1016/j.biopha.2008.08.
009, PMID: 18834693

McClellan MJ, Wood CD, Ojeniyi O, Cooper TJ, Kanhere A, Arvey A, Webb HM, Palermo RD, Harth-Hertle ML,
Kempkes B, Jenner RG, West MJ. 2013. Modulation of enhancer looping and differential gene targeting by
Epstein-Barr virus transcription factors directs cellular reprogramming. PLOS Pathogens 9:e1003636.
DOI: https://doi.org/10.1371/journal.ppat.1003636, PMID: 24068937

Messinger JE, Dai J, Stanland LJ, Price AM, Luftig MA. 2019. Identification of host biomarkers of Epstein-Barr
virus latency IIb and latency III. mBio 10:e01006-01019. DOI: https://doi.org/10.1128/mBio.01006-19

Miller G, Lipman M. 1973. Release of infectious Epstein-Barr virus by transformed marmoset leukocytes. PNAS
70:190–194. DOI: https://doi.org/10.1073/pnas.70.1.190, PMID: 4346033

Miyawaki T, Butler JL, Radbruch A, Gartland GL, Cooper MD. 1991. Isotype commitment of human B cells that
are transformed by Epstein-Barr virus. European Journal of Immunology 21:215–220. DOI: https://doi.org/10.
1002/eji.1830210132, PMID: 1846818

Morbach H, Eichhorn EM, Liese JG, Girschick HJ. 2010. Reference values for B cell subpopulations from infancy
to adulthood. Clinical & Experimental Immunology 162:271–279. DOI: https://doi.org/10.1111/j.1365-2249.
2010.04206.x, PMID: 20854328

SoRelle et al. eLife 2021;10:e62586. DOI: https://doi.org/10.7554/eLife.62586 21 of 24

Research article Immunology and Inflammation Microbiology and Infectious Disease

https://doi.org/10.1073/pnas.81.22.7185
http://www.ncbi.nlm.nih.gov/pubmed/6438634
https://doi.org/10.1371/journal.ppat.1003638
https://doi.org/10.1371/journal.ppat.1003638
http://www.ncbi.nlm.nih.gov/pubmed/24068939
https://doi.org/10.4049/jimmunol.165.3.1322
http://www.ncbi.nlm.nih.gov/pubmed/10903733
http://www.ncbi.nlm.nih.gov/pubmed/10903733
https://doi.org/10.1038/s41467-017-00723-0
https://doi.org/10.1038/s41467-017-00723-0
http://www.ncbi.nlm.nih.gov/pubmed/28935935
https://doi.org/10.2144/000112598
http://www.ncbi.nlm.nih.gov/pubmed/18072586
https://doi.org/10.1073/pnas.98.4.1865
http://www.ncbi.nlm.nih.gov/pubmed/11172042
https://doi.org/10.1002/j.1460-2075.1996.tb00367.x
https://doi.org/10.1002/j.1460-2075.1996.tb00367.x
http://www.ncbi.nlm.nih.gov/pubmed/8617212
https://doi.org/10.1073/pnas.0407320101
http://www.ncbi.nlm.nih.gov/pubmed/15534216
https://doi.org/10.1073/pnas.90.19.9150
http://www.ncbi.nlm.nih.gov/pubmed/8415670
https://doi.org/10.1073/pnas.77.4.2197
https://doi.org/10.1073/pnas.77.4.2197
http://www.ncbi.nlm.nih.gov/pubmed/6769123
https://doi.org/10.1128/JVI.79.2.1296-1307.2005
https://doi.org/10.1128/JVI.79.2.1296-1307.2005
http://www.ncbi.nlm.nih.gov/pubmed/15613356
https://doi.org/10.1128/JVI.78.4.1657-1664.2004
https://doi.org/10.1128/JVI.78.4.1657-1664.2004
http://www.ncbi.nlm.nih.gov/pubmed/14747531
https://doi.org/10.1182/blood-2007-07-100032
http://www.ncbi.nlm.nih.gov/pubmed/18042799
http://www.ncbi.nlm.nih.gov/pubmed/18042799
https://doi.org/10.1016/0022-2836(76)90331-4
http://www.ncbi.nlm.nih.gov/pubmed/178878
https://doi.org/10.1016/j.freeradbiomed.2013.07.036
http://www.ncbi.nlm.nih.gov/pubmed/23899494
https://doi.org/10.1016/j.biopha.2008.08.009
https://doi.org/10.1016/j.biopha.2008.08.009
http://www.ncbi.nlm.nih.gov/pubmed/18834693
https://doi.org/10.1371/journal.ppat.1003636
http://www.ncbi.nlm.nih.gov/pubmed/24068937
https://doi.org/10.1128/mBio.01006-19
https://doi.org/10.1073/pnas.70.1.190
http://www.ncbi.nlm.nih.gov/pubmed/4346033
https://doi.org/10.1002/eji.1830210132
https://doi.org/10.1002/eji.1830210132
http://www.ncbi.nlm.nih.gov/pubmed/1846818
https://doi.org/10.1111/j.1365-2249.2010.04206.x
https://doi.org/10.1111/j.1365-2249.2010.04206.x
http://www.ncbi.nlm.nih.gov/pubmed/20854328
https://doi.org/10.7554/eLife.62586


Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS, Cheung VG. 2004. Genetic analysis of
genome-wide variation in human gene expression. Nature 430:743–747. DOI: https://doi.org/10.1038/
nature02797

Mosialos G, Birkenbach M, Yalamanchili R, VanArsdale T, Ware C, Kieff E. 1995. The Epstein-Barr virus
transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 80:
389–399. DOI: https://doi.org/10.1016/0092-8674(95)90489-1, PMID: 7859281

Mrozek-Gorska P, Buschle A, Pich D, Schwarzmayr T, Fechtner R, Scialdone A, Hammerschmidt W. 2019.
Epstein-Barr virus reprograms human B lymphocytes immediately in the prelatent phase of infection. PNAS
116:16046–16055. DOI: https://doi.org/10.1073/pnas.1901314116, PMID: 31341086

Muri J, Heer S, Matsushita M, Pohlmeier L, Tortola L, Fuhrer T, Conrad M, Zamboni N, Kisielow J, Kopf M. 2018.
The thioredoxin-1 system is essential for fueling DNA synthesis during T-cell metabolic reprogramming and
proliferation. Nature Communications 9:1851. DOI: https://doi.org/10.1038/s41467-018-04274-w, PMID: 2974
9372

Muri J, Thut H, Feng Q, Kopf M. 2020. Thioredoxin-1 distinctly promotes NF-kB target DNA binding and NLRP3
inflammasome activation independently of txnip. eLife 9:e53627. DOI: https://doi.org/10.7554/eLife.53627,
PMID: 32096759
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