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REVIEW

Toll‑like receptor‑mediated innate immunity 
against herpesviridae infection: a current 
perspective on viral infection signaling 
pathways
Wenjin Zheng1†, Qing Xu2†, Yiyuan Zhang1, Xiaofei E3, Wei Gao4, Mogen Zhang1, Weijie Zhai1, 
Ronaldjit Singh Rajkumar1 and Zhijun Liu5* 

Abstract 

Background:  In the past decades, researchers have demonstrated the critical role of Toll-like receptors (TLRs) in the 
innate immune system. They recognize viral components and trigger immune signal cascades to subsequently pro-
mote the activation of the immune system.

Main body:  Herpesviridae family members trigger TLRs to elicit cytokines in the process of infection to activate anti-
viral innate immune responses in host cells. This review aims to clarify the role of TLRs in the innate immunity defense 
against herpesviridae, and systematically describes the processes of TLR actions and herpesviridae recognition as well 
as the signal transduction pathways involved.

Conclusions:  Future studies of the interactions between TLRs and herpesviridae infections, especially the subse-
quent signaling pathways, will not only contribute to the planning of effective antiviral therapies but also provide 
new molecular targets for the development of antiviral drugs.
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Background
Toll-like receptors (TLRs) are a group of single, mem-
brane-spanning, non-catalytic proteins in the immune 
system that are critical for recognizing structurally-con-
served molecules derived from pathogenic microbes. 
To date, thirteen members have been identified in the 
TLR family. TLRs 1–10 are found in the human genome, 
and TLRs 11–13 occur in mice [1–6]. The structures 
of TLRs and other TLR-ligand complexes have been 

described  [7–15]. Leucine-rich repeats have been 
described in the variable N-terminal extracellular part of 
TLRs, and have been shown to bind pathogen-associated 
molecular patterns, which are broadly shared by patho-
gens but not the host. This interaction allows the host 
to discriminate autologous from xenogenous substances 
[16].

TLRs are mainly expressed on the membranes of 
immune cells including macrophages, dendritic cells, T 
cells, and B cells [17–22]. Moreover, TLRs are also found 
in non-immune cells, such as endothelial and epithelial 
cells, adipocytes, and cardiomyocytes [23–27]. TLRs pre-
dominantly occur on the cell surface, while TLRs 3, 7, 8, 
and 9 are expressed inside cells [3]. These four TLRs are 
primarily involved in the identification of xenogenous 
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nucleic acids from invaders. The cellular localizations 
and ligands of human TLRs 1–9 are listed in Table 1.

The herpesviridae family comprises a large group of 
enveloped DNA viruses characterized by latent infec-
tion in their hosts. Currently, eight family members are 
known to be associated with widespread human infection 
(Table 2). Upon detecting members of this family, TLRs 
recruit adaptor proteins, including myeloid differentia-
tion factor 88 (MyD88), TIR-domain-containing adaptor-
inducing interferon-β (TRIF), TIR-domain-containing 
adaptor protein (TIRAP), and TRIF-related adapter mol-
ecule (TRAM). This is followed by signal transmission 
to activate transcription factors including nuclear factor 
kappa B (NF-κB), activator protein-1 (AP-1), and inter-
feron regulatory factors (IRF3/7). These factors enter 
the nucleus, stimulating transcription to promote pro-
inflammatory cytokines and interferon (IFN) expres-
sion [5, 6, 28]. The inflammatory cascades defend against 
viruses while also injuring the host. Under physiological 
conditions, regulatory systems function in the host to 
inhibit excessive activation of the TLR signaling path-
ways to maintain homeostasis; these include Annexin A2, 
the ubiquitin ligase TRIAD3A, RP105, and acetylation of 

lysine residues [29–32]. Here, we clarify the mechanism 
underlying the human TLR-mediated innate immune 
response against herpesviridae in the activation and reac-
tivation of virus infection.

Main text
Herpes simplex virus
Herpes Simplex Virus (HSV) infection is a worldwide 
cause of severe medical conditions such as encephalitis, 
keratitis, and neonatal herpes [94, 95]. It has two sero-
types, HSV-1 and HSV-2, which primarily infect indi-
viduals through epithelial cells. After initial infection, it 
forms a latent infection in ganglia and latency-associated 
transcripts are expressed [96]. HSV US3 protein inhib-
its TLR3 responses in cultured human monocytes [97]. 
Similarly, HSV immediate-early ICP0 protein suppresses 
the TLR2-mediated innate immune response and NF-κB 
signaling [98]. HSV downregulates TLR2 and TLR4 in 
a THP-1 monocyte cell line [99]. These findings reveal 
the evasion mechanism of HSV. When host immunity is 
weak, HSVs begin to reactive to establish infection.

Studies have revealed that TLR2, TLR3, TLR4, and 
TLR9 are capable of recognizing specific components of 
HSV such as glycoprotein B (gB), glycoprotein H (gH), 
glycoprotein K (gK), glycoprotein L (gL), and US2 protein 
in the activation and reactivation of HSV [100–105]. TLR 
signaling activates the transcription of immune response 
genes by inducing the secretion of intracellular protein 
signaling molecules such as interleukins (ILs) and inter-
ferons (IFNs) to protect the host. Furthermore, TLR2 
and TLR9 have been shown to synergistically fuel innate 
immunity to defend against HSV-1 and -2, showing a 
protective effect [102, 106].

Table 1  Properties of toll-like receptors

TLRs Localization Ligands

TLR1/2 [33–35] Cell surface Triacylated lipopeptides

TLR2/6 [36–41] Cell surface Diacylated lipopeptides (Mycoplasma), Lipoteichoic acid (Streptococcus), Zymosan (Saccharomyces cerevisiae)

TLR2 [38, 42–48] Cell surface Peptidoglycan (Gram-positive bacteria), Lipoarabinomannan (Mycobacteria), Hemagglutinin (measles virus), phos-
phatidylinositol mannoside 6 (Mycobacteria), Glycosylphosphatidylinositol (Trypanosoma)

TLR3 [49–52] Endosome ssRNA virus (West Nile virus), dsRNA virus (Respiratory syncytial virus, murine cytomegalovirus)

TLR4 [43, 53–59] Cell surface Lipopolysaccharide (Gram-negative bacteria), Mannan-binding lectin (Candida albicans), glycoinositol- phospholipids 
(Trypanosoma cruzi), Envelope proteins (respiratory syncytial virus, mouse mammary tumor)

TLR5 [60, 61] Cell surface Flagellin (flagellated bacteria)

TLR7 [62, 63] Endosome ssRNA viruses (vesicular stomatitis virus, influenza virus)

TLR8 [64–66] Endosome ssRNA from RNA viruses

TLR9 [67–71] Endosome dsRNA viruses (herpes simplex virus, murine cytomegalovirus), CpG motifs from bacteria and viruses, Hemozoin 
(Plasmodium)

Table 2  Properties of the herpesviridae family

Herpesviridae family members Corresponding TLRs

Herpes simplex virus type 1 (HSV-1) [72–75] TLR2, TLR3, TLR4, TLR9

HSV-2 [76, 77] TLR2, TLR3, TLR4, TLR9

Varicella zoster virus [78, 79] TLR2, TLR3, TLR9

Epstein-Barr virus [80–83] TLR2, TLR3, TLR7, TLR9

Cytomegalovirus [84, 85] TLR2, TLR3, TLR4, TLR5, TLR9

Human herpesvirus 6 (HHV-6) [86–89] TLR4

HHV-7 [86] TLR2, TLR4

Kaposi’s sarcoma-associated herpesvirus 
[90–93]

TLR3, TLR4, TLR9
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Interactions of HSV with TLR2 and TLR4
Upon invasion of HSV-1 and -2, viral glycoproteins 
including gH and gL are recognized by TLR2 [107]. 
TLR2 is located on the dendritic cell surface and het-
ero-dimerizes with TLR6 or TLR1 to recognize viral 
glycoproteins [108]. Once HSV-2 has invaded the 
host, TLR4 recognizes the short-hairpin DNA from 
HSV on the cell surface [109]. Villalba et  al. reported 
that TLR2 and TLR4 expression occurs as early as 1 h 
after HSV-1 infection and increase the levels of IRF3, 
IRF7, INF-β, and IL-6 [110]. The activation of TLR2 or 
TLR4 launches the MyD88-dependent signaling cas-
cades and assembles macrophages and natural killer 
cells [109, 111]. MyD88 recruits IL-1 receptor-associ-
ated kinase 1 (IRAK1), then activates tumor necrosis 
factor receptor-associated factor (TRAF6) [112–115]. 
Subsequently, transforming growth factor-β-activated 
protein kinase-1-binding protein-2 (TAB2) and trans-
forming growth factor-β-activated kinase-1 (TAK1) are 
recruited to stimulate the inhibitor of nuclear factor κB 
kinase (IKK) complex which comprises IκB kinase α 
(IKKα), IKKβ, and IKKγ (NEMO) [113, 116, 117]. IKKα 
serves as a stimulator of NF-κB in the IKK complex. In 
contrast, IKKβ phosphorylates and degrades the inhibi-
tor of NF-κB (IκB) to release NF-κB [118, 119]. Alterna-
tively, mitogen-activated protein kinases (MAPKs) are 
triggered by TAK1 to allow AP-1 into the nucleus [120–
124]. NF-κB and AP-1 enable immune cells to secrete 
IL-15, TNF-α, and IFN to defend against HSV and 
counteract viral absorption. In addition, studies have 
demonstrated that the expression of chemokines, such 
as chemokine (C–C motif ) ligands 7, 8, and 9, as well as 
chemokine (C-X-C motif ) ligands 1, 2, 4, and 5, which 
play important roles in the innate immune response 
against HSV [125, 126]. Surprisingly, when activated via 
the TLR4-MyD88 axis, AP-1 upregulates TLR4 expres-
sion by feedback in genital epithelial cells to enhance 
immunity in humans [127]. A study has also shown that 
Sp1 has a significant effect as a major transcription fac-
tor involved in TLR2 promoter activity [107, 128].

Moreover, Kurt-Jones et  al. demonstrated that neo-
nates produce more pro-inflammatory cytokines than 
adults, which may explain the sepsis syndrome that is 
seen with HSV-1 and -2 [129]. This result is in accord 
with the finding that TLR2-deficient mice are more 
likely to survive HSV-1 than wild-type mice [105]. 
Besides the cytokine response, TLR2 signaling gen-
erates reactive oxygen species and induces oxidative 
stress, which cause damage in wild-type microglial cell 
cultures; but this does not occur in cells from TLR2-
deficient mice. The consequences of oxidative stress 
are associated with reduced activation of the MAPK 
pathway [130]. These results suggest that the immune 

response mediated by TLR-2 can be not only benefi-
cial but also detrimental to the host [105]. Surprisingly, 
TLR2 and TLR9 synergistically activate the innate anti-
viral response defense against HSV-1 and -2, showing 
a protective effect [106]. Compared to TLR2, TLR3 
seems to have a protective effect [131, 132].

Interactions between HSV and TLR3
Upon identification of invasive HSV-1 and -2, the host 
cells form endosomes that spontaneously wrap up the 
virus. Unc-93 homolog B1 (UNC-93B) is a transmem-
brane protein localized on the endoplasmic reticulum 
(ER) that transfers TLR3, 7, 8, and 9 from the ER to the 
endosome [133–136]. Upon HSV-1 and -2 stimula-
tion, TLR3 interacts with UNC-93B1 and shifts from 
the ER to endosome [134, 135]. In the endosome, TLR3 
is phosphorylated by tyrosine kinase c-Src, epidermal 
growth factor receptor (EGFR), and phosphatidylinosi-
tol 3-kinase (PI3K) to form dimeric TLR3, which initi-
ates a downstream signaling pathway. Although a mutual 
action between HSV RNA and TLR3 has not yet been 
demonstrated, it is likely that HSV-1 and -2 produce 
dsRNA that serves as a ligand for TLR3 [137–147]. The 
activation of TLR3 recruits TRIF and TRAF [148, 149]. 
TLR3 is the only member of the TLR family that can 
recruit TRIF and TRAF as the signal transduction fac-
tor, instead of MyD88. Upon TRIF recruitment, TANK-
binding kinase-1 (TBK1), inhibitor of nuclear factor κB 
kinase ε (IKKε), NAK-associated protein 1 (NAP1), and 
TRAF3 constitute a signaling complex that leads to the 
activation of IRF3/IRF7 and NF-κB [150–157]. The acti-
vation of IRF3 and NF-κB induces the production of IFN-
β, TNF-α, and IL-6 [158, 159]. Meanwhile, TRAF recruits 
the downstream protein receptor interacting protein 1 
(RIP1), which subsequently recruits TAB2 and TAK1 to 
form a complex to trigger IKKα and IKKβ [160–162]. 
These two kinases with the IKK receptor protein IKKγ 
(NEMO) constitute the IKK complex [163]. IKKα acti-
vates downstream NF-κB, while IKKβ phosphorylates the 
inhibitor of NF-κB (IκB) leading to the degradation of IκB 
[119, 161]. The complex formed by TAB2 and TAK1 also 
activates AP-1 via MAPKs [164]. Subsequently, NF-κB, 
AP-1, and IRF3/IRF7 enter the nucleus and facilitate the 
release of IFN-β, TNF-α, and IL-6 to defend against HSV 
[165, 166] (Fig. 1).

Interactions between HSV and TLR9
TLR9 is one of the crucial components in the defense 
against HSV-1 and -2. Similar to TLR3, TLR9 is sta-
bilized by UNC-93B1 through preventing its degrada-
tion and transporting it from the ER to the endosome 
[136]. This redistribution of TLR9 is associated with 
cytosine-phosphate-guanine DNA (CpG DNA). Both 
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HSV DNA and CpG oligonucleotides contain abun-
dant CpG motifs [167, 168]. CpG DNA drives TLR9 to 
shift into early endosomes and CpG oligonucleotides 
access the endosome. Subsequently, the oligonucleo-
tides assemble and form a secondary structure near the 
core CpG motif to activate TLR9 [3, 169, 170]. Guano-
sine triphosphatases (Rab GTPases) mediate the matu-
ration of endosomes. Upon maturation, endosomes 
that contain CpG DNA combine with lysosomes. The 
hallmark of the maturation of endosomes involves the 
formation of endolysosomes [171–173]. On the endo-
somal membrane, Rab5 mediates class III phosphati-
dylinositol-3 kinase to produce phosphatidylinositol-3 
phosphate that interacts with Rab5 to regulate and 

promote the maturation of early endosomes [174–
176]. Furthermore, MyD88 activates IRAK1/4 to trig-
ger the protein TRAF6. Subsequently, TRAF6 recruits 
and activates TAK1 (transforming growth factor-β-
activated kinase 1) through the K-63-linked poly-
ubiquitination of TAK1 and TRAF6 [177–179]. TAK1 
initiates downstream cascades, including MAPKs and 
the NF-κB-inducing kinase (NIK)-IKK-IκB signaling 
pathway [180, 181]. In this pathway, NF-κB is isolated 
and inactivated in the cytoplasm primarily by IκB. The 
proteolysis of IκB is regulated by the activation of IKKs 
including IKKα, IKKβ, and IKKγ [182, 183]. Activated 
IKKβ leads to the phosphorylation and proteolysis of 
IκB [182]. NF-κB is unlocked and subsequently enters 
the nucleus. These processes induce the activation of 

Fig. 1  TLR-mediated signaling pathways in response to HSV. Upon HSV ligand stimulation, TLR2, TLR4, and TLR9 recruit the adaptor MyD88. Once 
recruited, MyD88 binds the protein complex composed of IRAK and TRAF6. TRAF6 results in the phosphorylation of TAK1, which then activates 
the IKK complex that results in the phosphorylation and degradation of IκB. The degradation of IκB allows NF-κB to translocate into the nucleus. 
Alternatively, TAK1 activates the MAPK pathway, triggering the activation of AP-1. Under HSV stimulation, TLR3 is localized and phosphorylated by 
tyrosine kinase c-Src, EGFR, and PI3K in the endosome. Moreover, TLR3 triggers TRIF to enable TBK1, IKKε, NAP1, and TRAF3 to generate a complex. 
Furthermore, this complex leads to the activation of IRF3/IRF7 and NF-κB. TLR3 recruits TRAF and RIP1 to phosphorylate TAB2 and TAK1. The complex 
formed by TAB2 and TAK1 activates AP-1 via the MAPK pathway and NF-κB via the IKK complex-IκB pathway. Together, NF-κB, IRF3/IRF7 and AP-1 
induce the expression of inflammatory cytokines to protect the host by innate immunity



Page 5 of 15Zheng et al. Virol J          (2020) 17:192 	

transcription factors such as AP-l and NF-κB, directly 
facilitating the downstream gene expression of IL-10, 
IL-12, TNF-α, and IFN-β [180, 184–186] (Fig. 1).

Varicella zoster virus
Varicella zoster virus (VZV) causes chicken-pox in the 
primary infection. In elderly or immunosuppressed 
patients, reactive VZV can cause herpes zoster after 
latency [187]. During the latency, VZV downregulates 
the surface expression of the NKG2D ligands of ULBP2 
and ULBP3, which reduce the activation of natural 
killer cells in the presence of VZV [188].

Studies have reported that TLR2, TLR3, and TLR9 
play crucial roles in the activation and reactivation of 
VZV [189–191]. TLR9 induces plasmacytoid dendritic 
cells (pDCs) to secrete IFN-α via the MyD88 signaling 
pathway involved in infection by VZV [191]. In addi-
tion, VZV triggers monocytes and macrophages to 
produce NF-κB via TLR2 and allows the secretion of 
the antiviral factor IL-6, but TLR2, TLR3, and TLR4 
are not involved in the IFN-α production induced by 
VZV infection [189, 192]. Besides, studies have demon-
strated that TLR3 is involved in the recognition of VZV 
[193]. There is no evidence that the expression of TLRs 
on non-immune cells react to infection with VZV. 
However, unlike other herpesviruses, the cytokine 
response to VZV is species-specific. VZV does not 
induce cytokines in mouse embryonic fibroblasts or in 
a mouse cell line, but it does trigger NF-κB in a human 
cell line expressing a mouse TLR2 construct [189].

Epstein‑Barr virus
Interactions of EBV with TLR2
Epstein-Barr virus (EBV/HHV-4) is primarily trans-
mitted via saliva. It proliferates in oropharyngeal epi-
thelial cells, infects B lymphocytes, and enters the 
bloodstream to cause systemic infection. During the 
latency, the EBV lytic protein BGLF5 targets TLR9 
mRNA for degradation in EBV-infected B cells, reduc-
ing the function of TLR9 [194]. Moreover, BGLF5 also 
targets TLR2 in infected cells [195]. In addition, a late 
lytic tegument protein, BPLF1, prevents TLR-mediated 
IFN production [196]. Besides, EBV-encoded miRNAs 
inhibit the TLR signaling pathway [197].

In the activation and reactivation of EBV, a mem-
brane receptor expressed on the surface of B lym-
phocytes, TLR2 unites with TLR1 or TLR6 to form a 
hetero-dimer, which combines with lipoproteins or 
lipopeptides to serve as an active signaling complex. 
The TLR heterodimer (TLR2/TLRx) is the key to recog-
nizing EBV. Eric Gaudreault et al. found that infectious 
and UV-inactivated EBV induce NF-κB activation and 

the secretion of primary monocyte chemotactic pro-
tein in a TLR2-dependent manner [198]. TLR2 activa-
tion initiates the MyD88-dependent signaling cascades. 
MyD88 recruits IRAKs, including IRAK1 and IRAK4, 
which stimulate TRAF6 and phosphorylate IKK, IκB, 
and NF-κB [199].

Interactions of EBV with TLR3
When EBV penetrates a cell, it transcribes small non-
coding RNAs called EBERs by using the host RNA pol-
ymerase III, and TLR3 is activated in the ER. EBERs 
induce inflammatory responses through TLR3 and neu-
ral precursor cells, resulting in high levels of cytokines 
such as TNF-α and IL-6. In addition to acting as an 
inflammatory mediator, NF-κB is capable of upregulating 
the expression of EBERs and LMP1 (EBV latent mem-
brane protein 1), thereby triggering moderate inflam-
mation [200, 201]. EBERs promote LMP1 transcription 
through NF-κB. Conversely, MP1 also stimulates NF-κB 
to increase the expression of EBERs. This positive regu-
latory loop becomes a necessary driving force for the 
inflammatory–carcinogenic transformation of EBV-
infected epithelial cells.

Interactions of EBV with TLR7
Furthermore, the EBV genome encodes two membrane 
proteins, LMP1 and LMP2, that act as natural signals of 
B-cell activation. LMP1 and LMP2 are required for the 
interaction of the ligand with the CD40 receptor and 
B-cell receptor. Martin et al. found that the TLR signal-
ing pathway is a third pathway for activated B lympho-
cytes [202]. They reported that, after EBV infection of B 
lymphocytes, EBV gene expression transcribes ssRNA 
that stimulates TLR7 signaling, resulting in up-regu-
lation of the TLR7 and MyD88 genes to activate IRF-5 
and IRF-7 [203]. IRF-5 and NF-κB synergistically trigger 
cytokine promoters to induce the production of inflam-
matory cytokines. Moreover, they also provide a signal 
equivalent to the CD40 ligand to promote B cell activa-
tion and expansion in the initial phase of EBV infection. 
Therefore, it has been suggested that, in the early stage 
of infection, EBV stimulates TLR7 signaling to promote 
the initial stage of B cell activation and expansion. Sub-
sequently, EBV induces negative-regulatory factors of the 
TLR7 pathway, which are necessary for the establishment 
of latency.

Interactions of EBV with TLR9
In the primary infection, EBV initiates progressive lytic 
infection by expressing BZLF-1, which is the immedi-
ate-early lytic EBV gene and regulates the productive 
replication of EBV [204]. CpG oligodeoxynucleotide 
2006 triggers innate immunity via the TLR9 of B cells to 
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substantially inhibit BZLF-1 mRNA expression in acute 
EBV infection ex  vivo and in Akata Burkitt lymphoma 
cells with latent EBV infection stimulated by anti-IgG. 
This reaction is mediated by IL-12 and IFN-γ [205]. 
When triggering TLR9, B cells infected with EBV ex vivo 
efficiently transform by reducing the initiation of lytic 
EBV infection, and thereby reinforcing the maintenance 
of EBV latency [206].

The newly-formed EBV DNA in virus-infected cells 
contains an unmethylated CpG dinucleotide sequence. 
When the newly-formed virion is subsequently released, 
this dinucleotide is considered to be the main trigger of 
TLR9 [207]. After TLR9 recognizes EBV DNA, IRAK-1 
and TRAF6 are activated by phosphorylation, thereby 
eliciting the IKK complex, resulting in NF-κB expression 
[180]. Subsequently, NF-κB promotes the production of 
inflammatory cytokines such as TGF-β, IL-6, IL-1, IL-23, 

and IL-21 [207]. These cytokines induce Th17 cells to 
secrete IL-17A, causing the recruitment of neutrophils 
and macrophages to infected sites and triggering the 
secretion of various pro-inflammatory mediators by vari-
ous cell types. Salloum et  al. treated mouse peripheral 
blood mononuclear cells with EBV DNA in the presence 
or absence of the TLR9 inhibitor oligodeoxynucleotide 
2088, and showed that TLR9 inhibitors significantly 
decrease IL-17A production and play a crucial role in 
promoting IL-17A secretion [208] (Fig. 2).

Human cytomegalovirus
Interactions of HCMV with TLR2
Human cytomegalovirus (HCMV) is an important 
cause of disease in the immunodeficient host and the 
most common intrauterine infection in humans [209]. 
Acquired during early life, HCMV persists in a latent 

Fig. 2  Mechanism of responses of TLRs to EBV and HCMV. EBV activates the MyD88 pathway or the MyD88-independent pathway via the viral 
envelope and products. Upon EBV stimulation, TLR2, TLR3, TLR7, and TLR9 inside and outside the cells induce NF-κB or IRF-5/7 by a series of protein 
kinases to produce cyto-inflammatory factors. MyD88 recruits TRAF6 and IRAKs to activate the IKK complex composed of IKKα, IKKβ, and NEMO. 
Besides acting as an inflammatory mediator, NF-κB also upregulates the expression of LMP1 to trigger moderate inflammation. Similarly, HCMV 
reacts with TLRs, including TLR2, TLR3, TLR4, and TLR9, through the viral envelope or products. MyD88-NF-κB is the main pathway. However, dsRNA 
from CMV also activates IRF-3 and TLR3 to promote the expression of inflammatory factors. Meanwhile, the CMV-encoded miR-UL112-3p inhibits 
activation of the TLR2/NF-κB pathway, as well as the expression of various cytokines
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state for the life of the individual. Inflammatory cytokines 
can cause an innate immune response in the host. 
Through different effector cells (such as antigen-pre-
senting cells [APCs], natural killer [NK] cells and phago-
cytes), anti-inflammatory cytokines, and IFNs respond to 
act against HCMV infection. The early release of IFN-I 
and other pro-inflammatory cytokines limits the spread 
of infection by establishing an “antiviral state” that trig-
gers an efficient adaptive immune response to achieve 
latency and persistence [210]. To achieve latency, the 
HCMV-encoded US7 and US8 proteins impair the acti-
vation of TLR3 and TLR4 [211]. Similarly, the HCMV-
encoded US9 protein reduces stimulator of interferon 
genes (STING) signaling and the production of IFN 
[212]. In addition, the HCMV tegument protein UL82 
inhibits STING-mediated signaling to evade the antiviral 
immune response [213].

Generally, researchers have shown that TLRs 2–5 and 
TLR9 play crucial roles in the immune response to the 
activation of HCMV [50, 67, 214–217]. TLR2 recognizes 
the viral envelope glycoproteins gB and gH. Together 
with TLR1 or TLR6, TLR2 activates the MyD88-depend-
ent and downstream transcription factor NF-κB sign-
aling pathway to induce a series of pro-inflammatory 
cytokines, chemokines, and adhesion molecules, such 
as IL-6 and IL-8 [218–220]. MyD88 recruits TRAF6 and 
IRAKs to activate IKKα and IKKβ, together with NEMO, 
to form the IKK complex. IKKα triggers downstream 
NF-κB, while IKKβ phosphorylates the NF-κB inhibitor 
IκB, leading to its degradation [160, 161, 163]. This pro-
cess results in the production of inflammatory cytokines. 
For example, IFN-γ stimulates a variety of innate immune 
cells and immune effector cells to develop the adaptive 
immune response and exert an antiviral effect [221]. 
MicroRNAs are small non-coding RNAs that cooper-
ate with viral proteins to regulate the expression of viral 
and/or host genes, and they are involved in the immune 
evasion of infected cells, as well as the latency and reac-
tivation of HCMV [222]. CMV-encoded microRNAs 
have also been shown to downregulate TLR2 expression 
[217]. Using an in-silico method, this study postulated 
that HCMV microRNAs trigger the TLR innate immune 
pathway; specifically, TLR2 might be a target for HCMV 
miR-UL112-3p. Because miR-UL112-3p is expressed 
after virus entry, downregulation of TLR2 occurs in 
the late stage of lytic infection. Immunoblot analysis of 
miR-UL112-3p-transfected cells revealed that it induces 
the  reduction  of  endogenous TLR2 expression. The 
microRNA-mediated downregulation of TLR2 affects 
innate signal transduction, significantly inhibiting the 
activation of the IRAK1 and NF-κB pathways located in 
the TLR2/NF-κB signaling axis of the upstream kinase, as 
well as the expression of various cytokines such as IL-1β, 

-6, and -8. TLR2 protein levels decrease in the late stage 
of HCMV infection, and this is associated with the accu-
mulation of miR-UL112-3p in fibroblasts and mononu-
clear THP1 cells.

Interactions of HCMV with TLR3, TLR4, and TLR5
TLR3 and TLR5 are also critical factors in the CMV 
infection pathway. TLR3 targets TRIF as a downstream 
adapter molecule instead of the adaptor protein MyD88 
[149]. TLR3 activates the signaling complex assembled 
by TRIF. As a factor downstream to TRIF, TBK1 forms 
NAP1 and TRAF3 to elicit phosphorylation of the tran-
scription factor IRF3, which produces inflammatory 
factors such as IFN-β [154–156, 221, 223]. CMV stimu-
lates mast cells through the TLR3/TRIF signaling path-
way to transmit effector functions. Subsequently, these 
cells release a large number of pro-inflammatory and 
antimicrobial mediators, many of which are stored in 
granules and released after degranulation, to enhance 
their protective properties and attract supplemental 
CD8 T cells to extravascular sites of viral replication 
[216]. During HCMV infection/reactivation, TLR5 
plays an atypical role, probably because of the indirect 
effects of immunomodulation and immunostimulation 
on HCMV responses.

HCMV also promotes macrophage-mediated inflam-
matory responses through TLRs. HCMV infection 
stimulates cluster differentiation antigen 14 (CD14), 
TLR2, TLR4, and TLR5 on the surface to enhance the 
intracellular expression of the adaptor protein MyD88, 
and phosphorylation of IκB and NF-κB, thereby 
increasing the response of macrophages to viral com-
ponents. The protein and mRNA levels of MyD88 are 
significantly elevated in macrophages. MyD88 com-
bines with the cytoplasmic Toll/IL-1 region and triggers 
the phosphorylation of IRAK4, followed by the recruit-
ment and phosphorylation of IRAK1, which then leads 
to the release of TNF-6 and transmission of the NF-κB 
signaling cascade [115, 224–228]. These mechanisms 
promote ligand-induced pro-inflammatory cytokine 
mRNA expression and the production of TNF-α, IL-6, 
and IL-8 proteins.

Interactions of HCMV with TLR9
TLR9, a pattern recognition receptor for HCMV in 
natural IFN-producing cells and DCs, recognizes 
unmethylated CpG motifs in viral DNA to initiate the 
transduction of intracellular signals by the adapter 
molecule MyD88, ultimately leading to the activation 
and transcription of NF-κB. Therefore, phosphoryl-
ated NF-κB encodes pro-inflammatory cytokines and 
chemokines, such as IFN-α and IL-12, to promote NK 
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cells that recognize MCMV-infected cells by activating 
the receptor Ly49H [229, 230]. Ly49H interacts with 
the MCMV-encoded protein m157 on the surface of 
infected cells, resulting in elimination of the virus by 
NK cells [67] (Fig. 2).

Human herpesvirus‑6 and ‑7
Interaction between HHV‑6 and TLRs
HHV-6 causes the exanthema subtype; it preferentially 
infects functional immune cells and elicits various immu-
nobiological changes [231–234]. Murakami et al. pointed 
out that HHV-6 infection significantly effects TLR4-
induced cytokine levels [235]. This report revealed that 
TLR4 and the adaptor molecule MyD88 are significantly 
increased in HHV-6-infected cells. On  the contrary, the 
phosphorylation levels of TAK-1, IKKα/β, and IκBα are 
reduced and affect the expression of NF-κB [236]. There-
fore, upon stimulation of the TLR4 ligand, the ability of 
HHV-6-infected DCs to produce IL-10 and IL-8 is signif-
icantly impaired. This indicates that, in HHV-6-infected 
DCs, the disruption of TLR4 signaling is caused by a 
block in the downstream signaling pathway.

Interaction between HHV‑7 and TLRs
HHV-6 and -7 participate in the pathogenesis of pity-
riasis rosea through TLRs. In HHV-7-positive cases, 
the expression levels of TLR2 and TLR4 are notably 
increased, while TLR9 and the HHV-7 viral load are 
positively correlated [237]. Interestingly, there is an inter-
action between HHV-6 and HHV-7: HHV-6 can be reac-
tivated by HHV-7 infection [238].

Kaposi’s sarcoma‑associated herpesvirus
Kaposi’s sarcoma-associated herpesvirus (KSHV), also 
named human herpesvirus-8, is well correlated with sev-
eral forms of cancer such as Kaposi’s sarcoma, primary 
effusion lymphoma, and multicentric Castleman’s disease 
[239]. Like other herpesviruses, KSHV also causes latency 
in the host. During the latency, KSHV viral interferon 
regulatory factors (vIRFs) inhibit TLR3-mediated IFN 
induction [240]. Moreover, the replication and transcrip-
tion activator (RTA) protein from KSHV triggers pro-
teasomal degradation of the TLR3 adaptor protein TRIF, 
which blocks the subsequent pathway [241]. RTA also 
prevents TLR4 signaling via the degradation of MyD88 
[242]. West et  al. first reported that KSHV upregulates 
the TLR3 pathway during infection to induce TLR3-
specific cytokines and chemokines such as IFN-1β and 
CXCL10 (IP-10) [243]. Furthermore, researchers have 
determined that TLR9 is the major receptor for KSHV. 
Once pDCs are infected, KSHV upregulates TLR9, CD83, 
and CD86, causing pDCs to produce IFN-α [244].

In addition, TLR4 plays an essential role in innate 
immunity to KSHV. KSHV microRNA clusters (particu-
larly miRNA-K1, -K3, and -K11) trigger TLR4 with its co-
receptors, CD14 and myeloid differentiation protein 2, to 
activate the MyD88-NF-κB pathway and produce IL-1β, 
IL-6, and IL-18 [245]. In addition, Lagos et al. found that 
KSHV suppression of TLR4 expression is the mechanism 
of immune escape during KSHV infection in endothelial 
cells [246]. Moreover, KSHV inhibits the TLR2 signal-
ing pathway after infection in macrophages. In addition, 
the replication of KSHV and the transcriptional activa-
tor RTA/ORF50 block the TLR2 and TLR4 signaling 
pathways via reducing the expression of functional pro-
teins. Moreover, KSHV-encoded microRNAs reduce the 
inflammatory factor expression by modulating two com-
ponents of the TLR/IL-1R pathway, IRAK1 and MyD88 
[247]. Thus, KSHV uses two mechanisms to avoid attack 
by the host immune system, leading to repeated infection 
in the host [248].

Conclusions
To date, studies have shed light on the interactions 
between TLRs and herpesviridae infections, especially 
the subsequent signaling pathways. Research contin-
ues to reveal new insights into TLR pathways and their 
roles in host defense responses, especially in innate 
immunity [249–251]. However, the detailed mechanisms 
of mutual action between HSV RNA and TLR3 remain 
unclear [138–140, 148]. Moreover, understanding the 
mechanisms of activation and regulation in detail will 
help in the design of efficient vaccines and therapeutics 
based on modulating the TLRs more precisely. In this 
context, the use of TLR antagonists and regulators such 
as MPL, topical SMIP-7.7, Annexin A2, ubiquitin ligase 
TRIAD3A, pathogenesis-related protein from Oenanthe 
javanica, and RP105 might have broader applications [29, 
31, 32, 252–254]. Although computer-assisted screen-
ing of TLR regulators is plausible, the rational design of 
selective TLR modulators still faces enormous challenges 
and studies are few. Furthermore, there are some new 
developments in anti-viral targeting of the host factors 
involved in TLR signaling. BX795, an inhibitor TBK1, 
potently suppresses multiple strains of HSV-1, includ-
ing an ACV-resistant HSV-1 strain. BX795 targets Akt 
and blocks viral protein synthesis by reducing Akt phos-
phorylation in infected cells, but a more precise antiviral 
mechanism requires further investigation [255]. There-
fore, clarifying the interaction between each TLR and the 
associated virus is critical for controlling the develop-
ment of the diseases caused by the herpesviruses.
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