
University of Massachusetts Medical School University of Massachusetts Medical School 

eScholarship@UMMS eScholarship@UMMS 

COVID-19 Publications by UMMS Authors 

2021-01-25 

Crystal Structure of SARS-CoV-2 Main Protease in Complex with Crystal Structure of SARS-CoV-2 Main Protease in Complex with 

the Non-Covalent Inhibitor ML188 the Non-Covalent Inhibitor ML188 

Gordon J. Lockbaum 
University of Massachusetts Medical School 

Et al. 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/covid19 

 Part of the Enzymes and Coenzymes Commons, Medicinal Chemistry and Pharmaceutics Commons, 

Medicinal-Pharmaceutical Chemistry Commons, Pharmaceutics and Drug Design Commons, Structural 

Biology Commons, Virology Commons, and the Virus Diseases Commons 

Repository Citation Repository Citation 
Lockbaum GJ, Reyes AC, Lee JM, Tilvawala R, Nalivaika EA, Ali A, Yilmaz NK, Thompson PR, Schiffer CA. 
(2021). Crystal Structure of SARS-CoV-2 Main Protease in Complex with the Non-Covalent Inhibitor 
ML188. COVID-19 Publications by UMMS Authors. https://doi.org/10.3390/v13020174. Retrieved from 
https://escholarship.umassmed.edu/covid19/177 

Creative Commons License 

This work is licensed under a Creative Commons Attribution 4.0 License. 
This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in COVID-19 
Publications by UMMS Authors by an authorized administrator of eScholarship@UMMS. For more information, 
please contact Lisa.Palmer@umassmed.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by eScholarship@UMMS

https://core.ac.uk/display/390733204?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/covid19
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/covid19?utm_source=escholarship.umassmed.edu%2Fcovid19%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1009?utm_source=escholarship.umassmed.edu%2Fcovid19%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/65?utm_source=escholarship.umassmed.edu%2Fcovid19%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/136?utm_source=escholarship.umassmed.edu%2Fcovid19%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/733?utm_source=escholarship.umassmed.edu%2Fcovid19%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/6?utm_source=escholarship.umassmed.edu%2Fcovid19%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/6?utm_source=escholarship.umassmed.edu%2Fcovid19%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/53?utm_source=escholarship.umassmed.edu%2Fcovid19%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/998?utm_source=escholarship.umassmed.edu%2Fcovid19%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.3390/v13020174
https://escholarship.umassmed.edu/covid19/177?utm_source=escholarship.umassmed.edu%2Fcovid19%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:Lisa.Palmer@umassmed.edu


viruses

Article

Crystal Structure of SARS-CoV-2 Main Protease in Complex
with the Non-Covalent Inhibitor ML188

Gordon J. Lockbaum, Archie C. Reyes , Jeong Min Lee, Ronak Tilvawala, Ellen A. Nalivaika, Akbar Ali,
Nese Kurt Yilmaz, Paul R. Thompson and Celia A. Schiffer *

����������
�������

Citation: Lockbaum, G.J.; Reyes,

A.C.; Lee, J.M.; Tilvawala, R.;

Nalivaika, E.A.; Ali, A.; Kurt Yilmaz,

N.; Thompson, P.R.; Schiffer, C.A.

Crystal Structure of SARS-CoV-2

Main Protease in Complex with the

Non-Covalent Inhibitor ML188.

Viruses 2021, 13, 174. https://

doi.org/doi:10.3390/v13020174

Academic Editor: Alan Rein

Received: 24 December 2020

Accepted: 17 January 2021

Published: 25 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School,
Worcester, MA 01605, USA; gordon.lockbaum@umassmed.edu (G.J.L.); archie.reyes@umassmed.edu (A.C.R.);
JeongMin.Lee@umassmed.edu (J.M.L.); ronak.tilvawala@ku.edu (R.T.); ellen.Nalivaika@umassmed.edu (E.A.N.);
Akbar.Ali@umassmed.edu (A.A.); Nese.KurtYilmaz@umassmed.edu (N.K.Y.);
Paul.Thompson@umassmed.edu (P.R.T.)
* Correspondence: Celia.Schiffer@umassmed.edu

Abstract: Viral proteases are critical enzymes for the maturation of many human pathogenic viruses
and thus are key targets for direct acting antivirals (DAAs). The current viral pandemic caused by
SARS-CoV-2 is in dire need of DAAs. The Main protease (Mpro) is the focus of extensive structure-
based drug design efforts which are mostly covalent inhibitors targeting the catalytic cysteine. ML188
is a non-covalent inhibitor designed to target SARS-CoV-1 Mpro, and provides an initial scaffold for
the creation of effective pan-coronavirus inhibitors. In the current study, we found that ML188 inhibits
SARS-CoV-2 Mpro at 2.5 µM, which is more potent than against SAR-CoV-1 Mpro. We determined
the crystal structure of ML188 in complex with SARS-CoV-2 Mpro to 2.39 Å resolution. Sharing
96% sequence identity, structural comparison of the two complexes only shows subtle differences.
Non-covalent protease inhibitors complement the design of covalent inhibitors against SARS-CoV-2
main protease and are critical initial steps in the design of DAAs to treat CoVID 19.

Keywords: SARS-CoV-2; Covid-19; main protease; Mpro; ML188; protease inhibitor; crystal structure;
structure-based drug design; direct-acting antivirals

1. Introduction

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) [1]. Zoonotic transmissions of coronaviruses to humans have
caused at least three major outbreaks during the past two decades; SARS in 2002 [2,3],
MERS in 2012 [4], and SARS-2 in 2019–2020 [5,6]. The previous outbreaks were con-
tained with rigorous public health interventions, and basic research and vaccine/drug
developments had largely been suspended. As is now evident from the current global
pandemic [7], coronaviruses pose a major threat to human health, and treatment options
need to be developed not only for the current pandemic but also for future coronavirus
outbreaks. In addition to the major efforts for developing vaccines around the world,
direct acting antivirals (DAAs) are critical to treat vulnerable patients to decrease morbidity
and mortality.

Coronaviruses are non-segmented positive-sense single-stranded RNA viruses [8].
The viral genome encodes multiple open reading frames (ORF), including ORF1a and
ORF1b, which are translated by the host machinery to generate two polyproteins (pp):
pp1a and pp1ab [9]. These polyproteins are cleaved by two viral proteases, Main protease
(Mpro) and the Papain-Like protease (PLpro), liberating 16 individual proteins (nsp1–16).
These proteolysis events are essential for the SARS-CoV-2 viral life cycle [10]. Thus, these
two proteases represent excellent targets for the development of DAAs. Consistent with this
notion, viral proteases are well-established targets for DAAs, with FDA-approved inhibitors
as part of the mainstay of treatment for both HIV-1 and Hepatitis C virus infections. Given
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that the entire genomes of SARS-CoV-1 and SARS-CoV-2 are 79% identical [11], as well
as the fact that SARS-CoV-2 Mpro (SARS2-Mpro) and SARS-CoV-2 PLpro are 96% and 83%
identical to their SARS-CoV-1 orthologs, respectively (Figure S1) [12], indicates that DAAs
targeting either of these two proteases will likely show efficacy for a range of coronaviruses.

The current study focuses on SARS2-Mpro, a chymotrypsin-like cysteine protease
that resides in the viral non-structural protein 5 (nsp5) [13]. Mpro cleaves 11 sites in
pp1a and pp1ab, including autoproteolysis. The 4% difference in sequence with SARS1
corresponds to 12 changes in the 306-residue enzyme. Whereas most changes occur
distal to the active site, we previously established that distal mutations can significantly
affect inhibitor potency [14–18]. Potent, selective inhibition of SARS2-Mpro could be a
successful therapeutic for Covid-19 and future coronaviruses. Structure-based drug design
is already playing a pivotal role in targeting this viral enzyme. Fragment screens have
placed hundreds of small fragments around SARS2-Mpro, in the active site and allosteric
sites [19]. Continuing this quest, several publications include crystal structures of covalent
inhibitors that target the catalytic cysteine [20–22], including one that has entered into
clinical trials [23].

While covalent inhibitors have demonstrated high potency and efficacy, there is a lack
of potent non-covalent inhibitors of coronavirus proteases. One potential scaffold is ML188
(Figure 1a), a non-covalent inhibitor designed to inhibit SARS1-Mpro [24]. ML188 was
reported to bind SARS1-Mpro with an IC50 of 1.5 ± 0.3 µM and an EC50 of 12.9 ± 0.7 µM
in cellular assays [24]. Pure ML188 has not been tested against SARS2-Mpro, but racemic
ML188 inhibits with an IC50 of 3.14 µM [25], which is comparable to racemic ML188 against
SARS1-Mpro (4.8 ± 0.8 µM) [24]. Showing this scaffold’s versatility, ML188 was also found
to inhibit Mpro from porcine epidemic diarrhea virus (PEDV) with only 17-fold less potency
(IC50 of 25.4 ± 1.4 µM), despite SARS1-Mpro and PEDV-Mpro sharing only 45.4% sequence
identity [26]. This indicates that ML188 may provide a scaffold for a robust non-covalent
pan-coronavirus inhibitor.
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Figure 1. (a) Chemical structure of ML188. (b) Dose-response curves and IC50 values of compound ML188 against
SARS2-MPro and SARS1-MPro.

In this study, we characterize the complex of SARS-CoV-2 Mpro with the noncovalent
inhibitor ML188. We determine that ML188 has enhanced binding potency to SARS-CoV-2
compared with SARS-CoV-1 and solved the cocrystal structure of ML188 in complex with
SARS2-Mpro to 2.39 Å resolution. Overall, the complexes of Mpro with ML188 are very
similar in both proteases, but subtle differences likely contribute to the higher potency of
ML188 against SARS2-Mpro.
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2. Materials and Methods
2.1. Protein Expression and Purification of SARS2-Mpro

The SARS2-Mpro plasmid, kindly provided by Rolf Hilgenfeld [21], was transformed
into Escherichia coli strain HI-Control™ BL21(DE3) (Lucigen, Middleton, WI, USA). The
transformed cells were pre-cultured at 37 ◦C in LB medium with ampicillin (100 µg/mL)
overnight, and the cell culture was inoculated into TB medium containing 50 mM sodium
phosphate (pH 7.0) and ampicillin (100 µg/mL). When OD600 value reached ~2.0, 0.5 mM
IPTG was added to induce SARS2-Mpro expression and the cell culture was further incu-
bated overnight at 20 ◦C. Cells were harvested by centrifugation at 5000 rpm for 20 min,
resuspended in lysis buffer (50 mM Tris–HCl (pH 8.0), 400 mM NaCl, 1 mM TCEP) and
lysed by a cell disruptor. The lysate was clarified by ultracentrifugation at 18,000 rpm for
50 min. The supernatant was loaded onto a HisTrap FF column (Cytiva, Marlborough,
MA, USA) equilibrated with lysis buffer, washed with lysis buffer and followed by elution
using elution buffer (50 mM Tris–HCl pH 8.0, 400 mM NaCl, 500 mM imidazole, 1 mM
TCEP) with a linear gradient of imidazole ranging from 0 mM to 500 mM. The fractions
of Mpro-His tag were mixed with GST-PreScission protease-His-tag at a molar ratio of 5:1
to remove the C-terminal His tag. The PreScission-treated Mpro was applied to nickel
column to remove the GST-PreScission protease-His-tag and protein with uncleaved His-
tag. The His-tag cleaved Mpro in the flow-through was further purified by size-exclusion
chromatography (HiLoad™ 16/60 Superdex 75 (Cytiva, Marlborough, MA, USA)) and
stored in 20 mM HEPES pH 7.5, 150 mM NaCl, 1 mM TCEP.

2.2. MPro Inhibition Assay

The MPro peptide substrate Dabcyl-KTSAVLQSGFRKM-E(Edans)-NH2, was pur-
chased from GenScript (Piscataway, NJ, USA). His-tagged SARS1-MPro was purchased
from Sino Biological Inc. (Wayne, PA, USA). All assays were done in a 96-well half area
plate (Corning, Corning, NY, USA). Peptide cleavage was measured using 50 nM enzyme.
Assays were done in 50 mM HEPES pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM DTT.
SARS1-Mpro and SARS2-Mpro were incubated with either buffer or 0–50 µM of ML188 for
20 min. ML188 was purchased from MedChemExpress (Monmouth Junction, NJ, USA,
CAT# HY-136259) with 98.35% purity. The reaction was initiated by adding 25 µM peptide
substrate, followed by 30 min incubation at 25 ◦C. Fluorescence was measured at 485 nm
with excitation at 340 nm with EnVision 2105 plate reader (Perkin Elmer, Waltham, MA,
USA). Experiment was performed in duplicate and the error from global fit with variable
hill slope to obtain IC50 value is reported.

2.3. Protein Crystallization

All crystallization screens tested provided conditions that produced Mpro cocrystals.
A condition producing large crystals was discovered using the PACT Premier crystal screen
(Molecular Dimensions, Maumee, OH, USA), Well E9, containing 20% (w/v) PEG 3350 and
0.2 M Potassium Sodium Tartrate Tetrahydrate. The SARS2-Mpro-ML188 cocrystal was
grown at room temperature by hanging drop vapor diffusion method in a 24-well VDX
hanging-drop tray (Hampton Research, Journey Aliso Viejo, CA, USA) with a protease con-
centration of 6.0 mg/mL with 6-fold molar excess of ML188 (10% DMSO) and mixed with
the precipitant solution at a 1:1 ratio (1 µL:1 µL) and micro-seeded (1:100–1:10,000 dilution)
with a cat whisker. Crystals appeared overnight and grew to diffraction quality after 3 days.
As data was collected at 100 K, cryogenic conditions consisted of the precipitant solution
supplemented with 25% glycerol.

2.4. Data Collection and Structure Determination

Diffraction quality crystals were flash frozen under a cryostream when mounted on
our in-house Rigaku_Saturn944 X-ray system (Rigaku, The Woodlands, TX, USA). Co-
crystal diffraction intensities were indexed, integrated, and scaled using HKL3000 [27].
The structure was solved using molecular replacement with PHASER [28] using an Mpro
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monomer (PDB: 6M03 by Zhang et al. DOI: 10.2210/pdb6M03/pdb). Model building and
refinement was performed using Coot [29] and Phenix [30]. During refinement, optimized
stereochemical weights were utilized. The ML188 ligand was designed in Maestro and
the output SDF file was used in the Phenix program eLBOW [31] to generate the CIF file
containing atomic positions and constraints necessary for ligand refinement. Iterative
rounds of crystallographic refinement were carried out until convergence was achieved.
To limit bias throughout the refinement process, five percent of the data was reserved
for the free R-value calculation [32]. MolProbity [33] was applied to evaluate the final
structure before deposition in the PDB [34,35]. Structure analysis, superposition and
figure generation was done using PyMOL [36]. X-ray data collection and crystallographic
refinement statistics are presented in the Supporting Information (Table S1).

2.5. Intermolecular vdW Contact Analysis of Crystal Structures

To calculate the intermolecular vdW interaction energies, the crystal structures were
prepared using the Schrödinger Protein Preparation Wizard [37]. Hydrogen atoms were
added, protonation states were determined, and the structures were minimized. Subse-
quently, force field parameters were assigned using the OPLS3 force field [38]. Interaction
energies between the inhibitor and protease were estimated using a simplified Lennard-
Jones potential, as previously described in detail [39]. Briefly, the vdW energy was calcu-
lated for pairwise interactions depending on the types of atoms interacting and the distance
between them.

3. Results

To compare the potency of ML188, we purchased SARS1-Mpro and expressed and
purified SARS2-Mpro for enzyme inhibition assays. Using a FRET-based enzymatic assay,
ML188 inhibits SARS1-Mpro with an IC50 of 4.5 ± 0.5 µM and inhibits SARS2-Mpro with
an IC50 of 2.5 ± 0.3 µM. Therefore, ML188 is approximately twice as potent in SARS2
compared to SARS1 (Figure 1b).

The SARS-Mpro is a functional homodimer (Figure 2A) that binds and cleaves 11 dif-
ferent substrates. The protease has well defined subsites at P1 and P2, which recognize
glutamine and large hydrophobic residues, respectively. To elucidate structural differences
in ML188 binding, the cocrystal structure of ML188 in complex with SARS2-Mpro was
determined to 2.39 Å resolution (Table S1; Figure 2). The SARS2-Mpro-ML188 complex was
solved in the same space group (C2) as the SARS1-Mpro-ML188 complex (PDB: 3V3M).
Both structures contain one Mpro subunit in the asymmetric unit, but the complexes had
different cell dimensions with vastly different crystal packing (Figure S2). The electron
density permitted ML188 to be modeled unambiguously in the same orientation as found
in the SARS1-Mpro-ML188 complex (Figure 2D). Overall, ML188 binds similarly in both
complexes and makes all the same interactions (Figure 2E), with subtle differences.

Aligning the SARS1-Mpro-ML188 and SARS2-Mpro-ML188 complexes in PyMOL finds
the protease alpha carbons have a root-mean-square deviation (RMSD) of 0.53 Å. The
largest relevant C-α backbone differences occurred at residues 45–49 in the loop above
the S2 subsite (Figure S3). This may relate to the substitution in this loop and the overall
12-residue difference between SARS1 and SARS2 Mpro (Figure 3A and Figure S1). The
mutation closest to the active site is A46S (Figure 3B,C), which was found to affect the
dynamics of that pocket [12]. Changes in protease dynamics can affect the overall binding
potency of inhibitors.

The structures were used to calculate protease-inhibitor van der Waals (vdW) contacts
that showed minor differences in interactions, SARS1-Mpro-ML188 with −59.3 kcal/mol
versus SARS2-Mpro-ML188 with −62.0 kcal/mol. This difference of 2.3 kcal/mol is directly
due to the conformers modeled into the electron density of three side chains, specifically
M49, N142, and Q189 (Figure S4). The vdW calculations also show that ML188 interacts
more with the catalytic histidine H41. All other interactions are within the margin of error
for structures of this resolution, but the overall trends suggest ML188 packs deeper into
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the S2 subsite of SARS2-Mpro, but less deep into the S1 subsite compared to SARS1-Mpro

(Figure S4).
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PDB: 3V3M).



Viruses 2021, 13, 174 6 of 9

Viruses 2021, 13, x FOR PEER REVIEW 6 of 9 
 

 

 
Figure 3. (A) The twelve amino acid differences between SARS2 and SARS1-Mpro shown as a dimer, 
single subunit, and active site. SARS2 (in cyan) and SARS1 (in magenta) are shown with transparent 
surfaces and amino acid differences shown as sticks. The dimer subunits (in orange) and the cata-
lytic residues (in yellow) are included. (B) Stereo pair of SARS2-Mpro-ML188 complex active site. (C) 
Stereo pair of SARS1-Mpro-ML188 complex active site. 

4. Conclusions 
In this study, we determine that the non-covalent inhibitor ML188 has enhanced 

binding potency to SARS2-Mpro compared to SARS1-Mpro. We characterize the complex of 
SARS2-Mpro with ML188 and compare it to the SARS1-Mpro-ML188 complex. Overall, the 
complexes are very similar in both proteases, but subtle differences likely contribute to 
the higher potency of ML188 against SARS2-Mpro. This indicates ML188 may provide a 
scaffold for a robust non-covalent pan-coronavirus inhibitor. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 
Sequence alignment of SARS2-Mpro and SARS1-Mpro. Table S1: X-ray data collection and crystallo-
graphic refinement statistics. Figure S2: Comparison of crystallographic symmetry mates. Figure S3: 
C-alpha distance differences between SARS2-Mpro ML188 complex and SARS1-Mpro ML188 complex. 
Figure S4: Protease-Inhibitor vdW differences. 

Q 189

Q 189

M 49

M 49

A 46S

S46

A 46

N 142

N 142

T25

T25

C 145

C 145

H 41

H 41

C 44

C 44

L27

L27

E166

E166

Q 189

M 49

S46

N 142

T25

C 145

H 41

C 44

L27

E166

Q 189

M 49

A 46

N 142

T25

C 145

H 41

C 44

L27

E166

A

B

C

Figure 3. (A) The twelve amino acid differences between SARS2 and SARS1-Mpro shown as a
dimer, single subunit, and active site. SARS2 (in cyan) and SARS1 (in magenta) are shown with
transparent surfaces and amino acid differences shown as sticks. The dimer subunits (in orange) and
the catalytic residues (in yellow) are included. (B) Stereo pair of SARS2-Mpro-ML188 complex active
site. (C) Stereo pair of SARS1-Mpro-ML188 complex active site.

4. Conclusions

In this study, we determine that the non-covalent inhibitor ML188 has enhanced
binding potency to SARS2-Mpro compared to SARS1-Mpro. We characterize the complex
of SARS2-Mpro with ML188 and compare it to the SARS1-Mpro-ML188 complex. Overall,
the complexes are very similar in both proteases, but subtle differences likely contribute to
the higher potency of ML188 against SARS2-Mpro. This indicates ML188 may provide a
scaffold for a robust non-covalent pan-coronavirus inhibitor.
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data collection and crystallographic refinement statistics. Figure S2: Comparison of crystallographic
symmetry mates. Figure S3: C-alpha distance differences between SARS2-Mpro ML188 complex and
SARS1-Mpro ML188 complex. Figure S4: Protease-Inhibitor vdW differences.
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