University of Massachusetts Medical School eScholarship@UMMS

Open Access Publications by UMMS Authors

2020-12-14

Susceptibility trends of zoliflodacin against multidrug-resistant Neisseria gonorrhoeae clinical isolates in Nanjing, China (2014-2018)

Wenjing Le Peking Union Medical College

Et al.

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/oapubs

🔮 Part of the Bacterial Infections and Mycoses Commons, and the Microbiology Commons

Repository Citation

Le W, Su X, Lou X, Li X, Gong X, Wang B, Genco CA, Mueller JP, Rice PA. (2020). Susceptibility trends of zoliflodacin against multidrug-resistant Neisseria gonorrhoeae clinical isolates in Nanjing, China (2014-2018). Open Access Publications by UMMS Authors. https://doi.org/10.1128/AAC.00863-20. Retrieved from https://escholarship.umassmed.edu/oapubs/4488

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Publications by UMMS Authors by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.

AAC Accepted Manuscript Posted Online 14 December 2020 Antimicrob Agents Chemother doi:10.1128/AAC.00863-20 Copyright © 2020 Le et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

1 Susceptibility trends of zoliflodacin against multidrug-resistant Neisseria

- 2 gonorrhoeae clinical isolates in Nanjing, China (2014-2018)
- 3 Wenjing Le¹, Xiaohong Su^{1#}, Xiangdi Lou¹, Xuechun Li¹, Xiangdong Gong¹, Baoxi
- 4 Wang^{1,2}, Caroline A. Genco³, John P. Mueller⁴ and Peter A. Rice⁵
- ¹ STD clinic, Institute of Dermatology, Chinese Academy of Medical Sciences and
- 6 Peking Union Medical College, Nanjing, China
- 7 ²Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical
- 8 Sciences and Peking Union Medical College, Beijing, China
- ³Department of Immunology, School of Medicine, Tufts University, Boston, MA, USA.
- 10 ⁴Entasis Therapeutics, Waltham, Massachusetts, USA
- ⁵Division of Infectious Diseases and Immunology, University of Massachusetts
- 12 Medical School, Worcester, MA, USA
- 13
- 14 Running Title: zoliflodacin against multidrug-resistant gonococci
- 15 Keywords: N. gonorrhoeae, DNA gyrase, zoliflodacin, susceptibility
- 16 #Corresponding author:
- 17 Xiaohong Su, MD, PhD.
- 18 Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
- 19 Medical College,

Downloaded from http://aac.asm.org/ on February 1, 2021 at UNIV OF MASS MED SCH

AAC

Antimicrobial Agents and Chemotherapy

- 20 No. 12, Jiangwangmiao Road,
- 21 Nanjing 210042, Jiangsu Province, China
- 22 Tel: (86) 25-85478090
- 23 Fax: (86) 25-85414477
- 24 Email: suxh@ncstdlc.org
- 25

26 ABSTRACT

27	Previously, we reported potent activity of a novel spiropyrimidinetrione, zoliflodacin,	
28	against N. gonorrhoeae isolates from symptomatic men in Nanjing, China, collected	
29	in 2013. Here, we investigated trends of susceptibilities of zoliflodacin in 986	
30	isolates collected from men between 2014 and 2018. N. gonorrhoeae isolates were	
31	tested for susceptibility to zoliflodacin and seven other antibiotics. Mutations in gyrA,	
32	gyrB, parC, parE and mtrR genes were determined by PCR and sequencing. The MICs	
33	of zoliflodacin ranged from \leq 0.002 to 0.25 mg/L; the overall MIC ₅₀ s and MIC ₉₀ s were	
34	0.06 mg/L and 0.125mg/L in 2018, increasing two-fold from 2014. However, the	
35	percent of isolates with lower zoliflodacin MICs declined in each year sequentially	
36	while the percent with higher MICs increased yearly (P \leq 0.00001). All isolates were	
37	susceptible to spectinomycin but resistant to ciprofloxacin (MIC \geq 1 mg/L); 21.2%	
38	(209/986) were resistant to azithromycin (\geq 1 mg/L), 43.4% (428/986) were	
39	penicillinase-producing (PPNG), 26.9% (265/986) tetracycline-resistant (TRNG) and	

AAC

40

41	all were quinolone resistant with double or triple mutations in gyrA; One hundred
42	ninety three (193/202; 95.5%) also had mutations in <i>parC</i> . There were no D429N/A
43	and/or K450T mutations in GyrB identified in the 143 isolates with higher zoliflodacin
44	MICs; a S467N mutation in GyrB was identified in one isolate. We report that
45	zoliflodacin continues to have excellent in vitro activity against clinical gonococcal
46	isolates, including those with high-level resistance to ciprofloxacin, azithromycin and
47	extended spectrum cephalosporins.
48	
49	INTRODUCTION
-	
50	Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection
51	gonorrhea, has developed resistance to all previously recommended antimicrobial
52	agents for treatment, including sulfonamides, penicillins, tetracyclines and
53	fluoroquinolones $^{[1]}$. Currently, dual antimicrobial therapy with ceftriaxone 250 mg or
54	cefixime 400 mg plus azithromycin 1g is recommended as first-line treatment of
55	uncomplicated gonorrhea by the World Health Organization (WHO) ^[2] and ceftriaxone
56	plus azithromycin by the U. S. Centers for Disease Control and Prevention (CDC) ^[3] .
57	Resistance to extended-spectrum cephalosporin (ESCs) and azithromycin is increasing
58	worldwide. Gonococcal isolates with decreased susceptibility to cefixime and/or
59	ceftriaxone have been reported in China ^[4] , Japan ^[5] , Australia ^[6] , European countries ^[7]
60	and the United States ^[8] and isolates with high-level resistance to ceftriaxone have

19.4% (191/986) were multi-drug resistant (MDR) isolates. Among 202 isolates tested,

61	been identified in Japan, Australia, France, Spain, Denmark, Canada Ireland and
62	China ^[9,10,11] . The reported prevalence of azithromycin-resistant <i>N. gonorrhoeae</i>
63	isolates is 18.6% in China ^[4] , 14.5% in Japan ^[5] , 6.2% in Australia ^[6] , 7.5% in 25
64	European countries ^[7] , 4.6% in the United States ^[8] , and 6.1% in Western Africa ^[12] .
65	The first documented case that failed treatment with the recommended dual therapy
66	was reported from the UK in 2016 $^{\left[13 ight] }$ and the first gonococcal isolates (the A2543
67	clone) with combined ceftriaxone plus high-level azithromycin resistance were
68	identified in the UK ^[14] and Australia ^[15] in 2018.
69	Increased antimicrobial resistance (AMR) in <i>N. gonorrhoeae</i> poses an emerging
70	global public health threat of untreatable gonococcal infections. New oral
71	antimicrobial agents with activity against <i>N. gonorrhoeae</i> are needed urgently.
72	WHO includes <i>N. gonorrhoeae</i> on its list of "priority pathogens" that require new
73	antibiotics for treatment ^[16] and the U.S. CDC has designated drug-resistant <i>N</i> .
74	gonorrhoeae as an urgent threat ^[17] . Zoliflodacin (also known as AZD0914 and
75	ETX0914) is a novel spiropyrimidinetrione bacterial DNA gyrase /topoisomerase
76	inhibitor with broad-spectrum in vitro activity against gram-positive and fastidious
77	gram-negative organisms, including <i>N. gonorrhoeae</i> . ^[18,19] . A recent multicenter,
78	randomized, phase 2 clinical trial demonstrated that zoliflodacin was effective in
79	treating gonococcal urogenital and rectal infections and supports a larger, more
80	definitive study of zoliflodacin for the treatment of uncomplicated gonorrhea. $^{\left[20 ight] }$
81	We showed previously that zoliflodacin was highly effective against clinical isolates of
82	N. gonorrhoeae in vitro, including high-level ciprofloxacin-resistant and multidrug
	4

Downloaded from http://aac.asm.org/ on February 1, 2021 at UNIV OF MASS MED SCH

83

Downloaded from http://aac.asm.org/ on February 1, 2021 at UNIV OF MASS MED SCH

84	trends of zoliflodacin susceptibilities were determined for clinical gonococcal isolates
85	(including multidrug resistant isolates), collected between 2014 and 2018 in Nanjing.
86	Mutations in the quinolone-resistance-determinant regions (QRDRs) of gyrA, parC,
87	gyrB , parE and mtrR genes in were also determined for isolates across the
88	zoliflodacin MIC distribution range.
89	
90	RESULTS
91	Susceptibilities to zoliflodacin and other antimicrobials
92	Susceptibilities (MICs) of <i>N. gonorrhoeae</i> to zoliflodacin and seven antimicrobials
93	previously or currently used for the treatment of gonorrhea are summarized for the
94	986 clinical isolates in Table 1. All isolates except one were inhibited by \leq 0.125 mg/L
95	of zoliflodacin (the remaining isolate had an MIC of 0.25mg/L). MICs to zoliflodacin
96	ranged from ≤ 0.002 to 0.25mg/L overall, with an MIC ₅₀ and MIC ₉₀ of 0.06 mg/L and
97	0.125 mg/L, respectively. One hundred forty three (14.5%) isolates had zoliflodacin
98	MICs at the upper end of the distribution range (0.125-0.25 mg/L) and 59 (6%)
99	isolates had MICs in the lower end of the MIC distribution range (≤ 0.002
100	-0.015mg/L). The percent of isolates with an MIC of 0.03 mg/L to zoliflodacin
101	declined in each year sequentially (χ^2 = 82.237, P=0.000) while the percent with MICs
102	of 0.06 and 0.125 mg/L increased correspondingly (χ^2 = 20.739 and 41.717,
103	respectively; $P \le 0.00001$; Chi square test for linear trend), shown in Figure 1. Overall,
	5

resistant isolates, collected in 2013 in Nanjing, China^[21]. Here, *in vitro* activities and

AAC

AAC

105	(6/197) in 2014 to 23.0% (47/204) in 2018 (χ^2 = 43.112, P<0.0001).
106	All 986 isolates were resistant to ciprofloxacin; 777 (78.8%) showed high level
107	resistance (\geq 16 mg/L) ^[22] . During the five year study period, the annual percentage
108	of ciprofloxacin resistant isolates at each MIC point (from 1 mg/L to \geq 16mg/L) did
109	not shift in either direction in the 5-year period. MICs of gonococcal isolates for
110	zoliflodacin were lower than ciprofloxacin (P<0.0001), with a median difference of at
111	least 267-fold. Four hundred and twenty eight isolates (43.4%) were PPNG and 265
112	(26.9%) were TRNG. The percent of penicillin-resistant isolates increased from 70% to
113	86.3% over the five years (χ^2 = 17.641, P< 0.0001). Although all isolates were
114	susceptible to spectinomycin, the percent of isolates with lower spectinomycin MICs
115	(8 mg/L and 16 mg/L) declined (χ^2 = 16.35 and 93.71, P=0.0001 and P< 0.0001,
116	respectively) while the percent with higher MICs (32mg/L) increased over the five
117	years (χ ² = 112.514 , P<0.0001).
118	Two hundred and nine (21.2%) isolates were resistant to azithromycin (MIC \geq
119	1mg/L), and 62 (6.3%) displayed high-level resistance (MIC≥256 mg/L). The percent
120	of isolates with lower azithromycin MICs (0.06 mg/L and 0.125mg/L) increased over
121	the five years(χ^2 = 16.916 and 22.099, respectively; P< 0.0001) while the percent with
122	higher MICs (0.5mg/L and \geq 1024 mg/L) declined yearly (χ^2 = 15.403 and 12.268,
123	respectively; P<0.001). Overall, the percent of azithromycin-resistant isolates (MIC \geq
124	1mg/L) decreased from 27.9% to 15.2% over the five years and the percent of
125	azithromycin-susceptible isolates increased from 72.1% to 84.8% (χ 2 = 14.618, P< 6

the proportion of isolates with zoliflodacin MICs 0.125-0.25 mg/L increased from 3.1%

Downloaded from http://aac.asm.org/ on February 1, 2021 at UNIV OF MASS MED SCH

126	0.001). One hundred and fifty eight isolates (15.2%) exhibited decreased
127	susceptibility (MIC 0.125-0.25 mg/L, n=156) or resistance (MIC = 1mg/L, n=2) to
128	ceftriaxone, and 102 isolates (10.1%) displayed decreased susceptibility (MIC
129	0.25mg/L, n=64) or resistance (MIC 0.5mg/ L, n=36; MIC>2mg/L, n=2) to cefixime.
130	The percent of isolates with lower ceftriaxone MICs (\leq 0.03mg/L) declined in each
131	year sequentially(χ^{2} = 10.512, P< 0.01) while the percent with higher MICs (0.06mg/L
132	and 0.125 mg/L) increased yearly (χ^2 = 10.18 and 4.231, P<0.01 and P<0.05,
133	respectively). The percent of isolates with lower cefixime MICs (0.015 mg/L and 0.03
134	mg/L) declined (χ^{2} = 23.324 and 10.734, P<0.001 and P<0.01, respectively) while the
135	percent with higher MICs (0.06-0.5mg/L) increased over the five years ($\chi^{2}\text{=}$ 10.734,
136	8.68, 14.683 and 20.056, P<0.05, ~P<0.0001, respectively). One hundred ninety
137	one (19.4%) isolates showed multidrug resistance (MDR). The proportion of MDR
138	isolates increased from 7.1% in 2014 to 27% in 2016, then decreased to 21.1% in
139	2018 (χ^2 = 12.82, P=0.00034). The two MDR isolates with high level resistance to
140	ceftriaxone (MIC 1.0 mg/L), cefixime (MIC \geq 2.0 mg / L) , ciprofloxacin (MIC \geq
141	16mg/L) , penicillin (MIC 4 mg/L) and tetracycline (MIC 4mg/L) had low zoliflodacin
142	MIC values (0.03 and 0.06 mg/L, respectively).
143	

Characterization of amino acid substitutions in GyrA, GyrB, ParC and ParE 144

All 202 isolates tested were ciprofloxacin-resistant (MICs 2 to \geq 16 mg/L). All 145

isolates had double or triple mutations in the gyrA gene. Both S91F and D95A/G/N/Y 146

AAC

147	amino acid substitutions in GyrA were identified in the 202 isolates. 16 (11.2%) of
148	isolates in the higher zoliflodacin MIC distribution group and 2 (3.4%) in the lower
149	MIC group also had an additional A92P amino acid substitution in GyrA. ParC
150	substitutions were observed in 97.2% of the isolates in the higher zoliflodacin MIC
151	distribution group and 91.5% in the lower MIC group. Single, double and triple ParC
152	substitutions were identified in 114 (79.7%), 22 (15.4%) and 3 (2.1%) of the isolates
153	in higher MIC distribution group and 66.1%, 25.4% and 0 in the lower MIC group,
154	respectively. The amino acid substitution at position S87 in the ParC, including S87C,
155	S87I, S87N and S87R was present in 79.7% isolates in the higher MIC distribution
156	group and 81.4% in the lower MIC group, respectively. The most common double
157	substitutions in ParC were S87R plus S88P (10.7%) in the higher MIC group, and S87R
158	plus G85D(15.3%) in the lower MIC group. The three isolates in higher MIC group
159	had the same triple substitutions (S87R, A123V and A129V). A89T, G120R, A123V and
160	A129V mutations in ParC are newly described here. GyrB substitutions/insertions
161	were identified in four isolates (two with V470I substitutions, one with a S467N
162	substitution and one with an arginine (A) insertion at 480 [480A]) in the upper end of
163	the MIC distribution group but none in low MIC group. All four isolates with a GyrB
164	mutation had MIC values of 0.125 mg/L for zoliflodacin and 4 mg/L or greater for
165	ciprofloxacin. Amino acid substitutions in ParE were identified in 57 isolates (39.9%)
166	in the high zoliflodacin MIC distribution group. The most common single substitution
167	in ParE was D437N, which was greater in isolates with MICs in the upper end of the
168	zoliflodacin MIC distribution range (23.1%) than in the lower end of the range (6.78%)

Downloaded from http://aac.asm.org/ on February 1, 2021 at UNIV OF MASS MED SCH

- IT3 including an adenosine (A) 174 the *mtrR* coding region that 175 G45D, F62L, D79N, T86A, H 176 (Supplemental Table 2). A 177 (81.4%) in the low zoliflod 178 (P=0.2346). There were not 179 (singly or combined) in Mt 180 region, except for an H105 181 which accounted for 62.7 9 182 (59/143) in the high zoliflo 183
 - We determined susceptibility trends in *in vitro* antibacterial activity of zoliflodacin and seven other antimicrobial agents against 986 clinical gonococcal isolates collected over a five-year period (2014-2018). The 986 gonococcal isolates were susceptible to zoliflodacin and all were resistant to ciprofloxacin. Nearly a quarter were resistant to azithromycin or were TRNG isolates. Greater than 40% were PPNG

170 ParE was no different across the MIC distribution range (Table 2).

171 Mutations in *mtrR*

- 172 A number of single or multiple mutations were identified in the 202 isolates,
- including an adenosine (A) deletion in the *mtrR* promoter region, and mutations in
- the *mtrR* coding region that resulted in amino acid changes in MtrR: A39T, A40D,
- 175 G45D, F62L, D79N, T86A, H105Y, and E117K mutations, singly or in combination
- (Supplemental Table 2). A total of 175 (86.6%) isolates carried the A deletion, 48
- 177 (81.4%) in the low zoliflodacin MIC group and 127 (88.8%) in the high group
- 178 (P=0.2346). There were no significant differences in the rates of individual mutations
- 179 (singly or combined) in MtrR accompanied (or not) by an A deletion in the promoter
- 180 region, except for an H105Y mutation accompanied by an A deletion in the promoter,
- 181 which accounted for 62.7 % (37/59) of isolates with low zoliflodacin MICs and 41.3%

182 (59/143) in the high zoliflodacin MIC group (P<0.01) (Supplemental Table 2).

184 **DISCUSSION**

AAC

190	isolates and just under 20% were MDR isolates. All 986 isolates had zoliflodacin MICs	
191	below the breakpoint (MIC \geq 0.5mg/L) that have been proposed, guided by clinical	
192	efficacy ^[20] . Similar to other reports ^[19,23] , zoliflodacin exhibited an MIC range of	
193	0.002 to 0.25 mg/L and there was no correlation between zoliflodacin MICs at the	
194	upper end of the MIC range and ciprofloxacin-resistance ^[19, 24,25] . Furthermore,	
195	zoliflodacin exhibited low MICs (0.03 and 0.06mg/L) in two isolates that were fully	
196	resistant to ceftriaxone and cefixime. A modest temporal shift in the MICs to	
197	zoliflodacin was observed over the five year period.	
198	Zoliflodacin is a novel spiropyrimidinetrione bacterial DNA gyrase/ topoisomerase	
199	inhibitor, which prevents bacterial DNA biosynthesis and results in accumulation of	
200	double-strand cleavages through a mechanism distinct from that in fluoroquinolones	
201	^[18,24,26] . In our study, all the ciprofloxacin-resistant zoliflodacin-sensitive isolates	
202	tested , displayed double or triple mutations in GyrA; greater than 90% had	
203	additional amino acid substitutions in ParC.	
204	In contrast to fluoroquinolones, zoliflodacin inhibits the GyrB subunit of type II	
205	topoisomerase; specific mutations in GyrB can result in increased resistance to	
206	zoliflodacin ^[24,25] . We did not find mutations such as D429N, D429A or K450T	
207	alterations in GyrB, which have been identified in vitro and select for resistant	
208	mutants that result in zoliflodacin MICs of 0.5–8 mg/L ^{$[24,25]$} . However, we found	
209	that 4/143 (2.8%) of gonococcal isolates at the upper end of the MIC distribution	
210	range MICs (0.125 and 0.25 mg/L) harbored a GyrB mutation, however the amino	
211	acid substitutions/insertions (S467N, V470I or 480A) were not associated with	

Downloaded from http://aac.asm.org/ on February 1, 2021 at UNIV OF MASS MED SCH

AAC

212

213	susceptibility to zoliflodacin, has been reported in a clinical gonococcal isolate ^[19] .
214	Mutations of V470I or 480A have not been reported previously in clinical isolates or
215	in <i>in vitro</i> selected resistant mutants.
216	Mutations in <i>mtrR</i> , which result in overexpression of the MtrCDE efflux pump, can
217	increase efflux of antimicrobials and reduce the susceptibility to numerous
218	antimicrobials ^[26,27] . The MtrCDE efflux pump can also influence susceptibility to
219	zoliflodacin ^[25] . Inactivation of the MtrCDE efflux pump has been shown to
220	decrease the MIC of zoliflodacin in <i>N. gonorrhoeae</i> strain H041 strain from 0.125 to
221	0.004 mg/L ^[25] . In our study, an adenine (A) deletion in the <i>mtrR</i> promoter and a
222	number of mutations in MtrR (or both), were identified in isolates that possessed
223	either lower or higher zoliflodacin MICs. A single H105Y amino acid substitution
224	was the most common substitution present in MtrR; this change was identified in 50%
225	of the isolates. The single H105Y amino acid substitution, which lies outside the
226	known DNA binding domain of MtrR, is generally thought not to be involved with
227	active repressor function of MtrR; it has also been shown to be associated with N.
228	gonorrhoeae isolates that are fully sensitive to ceftriaxone ^[28] . One possibility is that
229	the H105Y mutation may interfere with MtrR dimerization resulting in a reduction of
230	MtrR binding to target sequences ^[29]
231	Few studies have examined the impact of <i>parE</i> mutations on quinolone
232	resistance in <i>N. gonorrhoeae</i> ^[30,31] . Clinical gonococcal isolates with P439S amino acid
233	substitutions in ParE did not result in a significant increase in MIC to
200	11

resistance. An S467N amino acid substitution in GyrB, which did not result in reduced

Antimicrobial Agents and

Chemotherapy

234

235 is unclear. In conclusion, zoliflodacin demonstrated potent in vitro antibacterial activity 236 against a recent collection of clinical gonococcal isolates from China (2014 to 2018), 237 238 including isolates with high-level resistance to ciprofloxacin, azithromycin and 239 extended spectrum cephalosporins. Zoliflodacin MICs shifted upward temporally in 240 the five-year period in the absence of clinical use. These results confirm the lack of pre-existing clinical resistance to zoliflodacin. Continued monitoring of antimicrobial 241 susceptibility of zoliflodacin, a promising new oral antibacterial agent, for the 242 treatment of uncomplicated gonorrhea is warranted . 243 244 **MATERIALS AND METHODS** 245 Bacterial isolates From January 2014 to December 2018, a total of 986 gonococcal 246 247 isolates were collected from male patients with symptomatic urethritis (urethral discharge and/or dysuria) attending the STD clinic at the Institute of Dermatology, 248

ciprofloxacin^[31,32]. The clinical relevance of the ParE mutations identified in our study

249 Chinese Academy of Medical Sciences, Nanjing, China. All men except one reported

250 that they were heterosexual. Urethral exudates were collected with cotton swabs,

251 then immediately inoculated onto Thayer-Martin medium (Zhuhai DL Biotech, China)

and cultured in candle jars at 36 $^\circ C$ for 24–48 h. Gonococcal isolates were identified

253 by colonial morphology, Gram's stain and oxidase testing and growth on GC

254 chocolate agar base (Difco, Detroit, MI) supplemented with 1% IsovitaleXTM (Oxoid,

255

256 (-70°C) until used for antimicrobial testing.
257 Antimicrobial susceptibility testing Zoliflodacin powder was provided by Entasis,
258 Therapeutics, Waltham, MA. The minimum inhibitory concentrations (MICs; mg/L) of

USA). Gonococcal colonies were suspended in tryptone-based soy broth and frozen

259 *N. gonorrhoeae* isolates to zoliflodacin, penicillin, tetracycline, ciprofloxacin,

spectinomycin, azithromycin, cefixime and ceftriaxone were determined by the agar

261 dilution method in accordance with the Clinical and Laboratory Standards Institute

262 (CLSI) guidelines^[33]. ATCC 49226, WHO reference strains F, G, L, O, and P were used

as quality controls. The MIC ranges of zoliflodacin for quality control (QC) strain ATCC

49226 were 0.125-0.25mg/L in each antimicrobial susceptibility testing run in this

study in accordance with the defined MIC QC ranges (0.06-0.5mg/L) for

266 zoliflodacin^[34]. Criteria for decreased susceptibility to ceftriaxone (MIC \geq 0.125

267 mg/L) and cefixime (MIC \ge 0.25 mg/L) were defined by WHO^[35]. Using CLSI^[33] and

268 EUCAST^[36] (for azithromycin only) criteria, the following MIC breakpoints were used

to ascertain resistance: \geq 128 mg/L, spectinomycin; \geq 2 mg/L, penicillin and

270 tetracycline and \geq 1 mg/L, ciprofloxacin and azithromycin. The breakpoint for

271 zoliflodacin of \geq 0.5 mg/L was utilized as previously described ^[20]. Multi-drug

resistant (MDR) *N. gonorrhoeae* was defined as decreased susceptibility or resistance

273 to extended spectrum cephalosporins (ESCs), plus resistance to at least two of the

following antimicrobials: penicillin; ciprofloxacin and azithromycin^[37,38].

275 Identification of gene mutations that resulted in amino acid substitutions in GyrA,

276 GyrB, ParC and ParE

277

278	0.25mg/L) at the upper end of the MIC distribution range and 59 isolates with lower
279	zoliflodacin MICs (≤0.002-0.015mg/L) were selected for genetic resistance
280	determinants study. Mutations in the quinolone-resistance-determining regions
281	(QRDR) of gyrA, gyrB, parC and parE genes were determined by PCR and DNA
282	sequencing using primers described previously ^[39-41] (supplemental Table 1). Genomic
283	DNA was extracted from gonococcal isolates using the Rapid Bacterial Genomic DNA
284	Isolation Kit (DNA-EZ Reagents V All-DNA-Fast-Out, Sangon Biotech Co. Ltd, Shanghai).
285	PCR amplification and sequencing of the genes were carried out by Nanjing Qingke
286	Biotech Co. Ltd.
287	Evaluation of mutations in the <i>mtrR</i> gene
288	To identify mutations that potentially could cause enhanced expression of the
289	MtrCDE-encoded efflux pump, mutations in the <i>mtrR</i> gene and promoter region
290	were identified by PCR. Sequencing of <i>mtr</i> genes from 202 isolates was performed as
291	described previously ^[28] .
292	
293	Data Analysis
294	Chi-square (χ^2) testing was used to compare the rate of resistance in different years
295	and Chi-square test for linear trends was used to assess the change in the MICs and
296	the proportion of isolates resistant to antibiotics. SPSS version 19.0 was used for

One hundred forty three gonococcal isolates with zoliflodacin MICs (0.125mg/L and

statistical analysis; P<0.05 was considered statistically significant. 297

AAC

and	
ŝ	
eD	ŝ
ò	5
₹.	_
σ	ţ
9	2
Ĕ	<u>_</u>
Ĕ	C

298

299 ACKNOWLEDGEMENTS

- 300 We thank Dr. Unemo Magnus for providing WHO reference strains. This work was
- 301 supported by the grants from the Chinese Academy of Medical Sciences Initiative for
- Innovative Medicine (2016- I 2M-3-021) and the U.S. National Institutes of Health 302
- (AI084048 and AI116969). 303

304

305 **CONFLICTS OF INTEREST**

- 306 One author is employed by the manufacturer of zoliflodacin but was not involved in
- 307 the design or the execution of the study but rather in the writing/preparation of the
- manuscript. Other authors declare no conflicts. 308

309

310 REFERENCES

- 1. Unemo M, Shafer WM.2014. Antimicrobial resistance in Neisseria gonorrhoeae in 311
- the 21st Century: Past, evolution, and future. Clin Microbiol Rev 312
- 313 27:587-613.<u>https://</u>doi: 10.1128/CMR.00010-14.
- 314 2. World Health Organization (WHO). 2016.WHO guidelines for the treatment of
- 315 Neisseria gonorrhoeae. WHO: Geneva, Switzerland, 2016; Available from:
- 316 https://www.who.int/reproductivehealth/publications/rtis/gonorrhoea-treatment-gu
- idelines/en/ Accessed January 6, 2020. 317

AAC

Antimicrobial Agents and Chemotherapy

318	3. Workowski KA, and Bolan GA. Centers for Disease Control and Prevention. 2015.
319	Sexually transmitted diseases treatment guidelines, 2015. MMWR Recomm Rep. 64
320	(RR-03):1-137.
321	4. Yin YP, Han Y, Dai XQ, Zheng HP, Chen SC, Zhu BY, Yong G, Zhong N, Hu LH, Cao WL,
322	Zheng ZJ, Wang F, Zhi Q, Zhu XY, and Chen XS.2018.Susceptibility of Neisseria
323	gonorrhoeae to azithromycin and ceftriaxone in China: A retrospective study of
324	national surveillance data from 2013 to 2016. PLoS Med. 15:e1002499. <u>https://</u> doi:
325	10.1371/journal.pmed.
326	5. Tanaka M, Furuya R, Kobayashi I, Kanesaka I, Ohno A, Katsuse AK.2018.
327	Antimicrobial resistance and molecular characterization of Neisseria gonorrhoeae
328	isolates in Fukuoka, Japan, from 1996 to 2016.J Glob Antimicrob Resist. pii:
329	S2213-7165(18)30227-3. <u>https://</u> doi: 10.1016/j.jgar.2018.11.011
330	6. Lahra MM, Enriquez R, George CRR. 2020. Australian gonococcal surveillance
331	programme annual report, 2018.Commun Dis Intell (2018). 44. https://doi:
332	10.33321/cdi.2020.44.4.
333	7. Day MJ, Spiteri G, Jacobsson S, Woodford N, Amato-Gauci AJ, Cole MJ, Unemo
334	M; Euro-GASP network.2018. Stably high azithromycin resistance and decreasing
335	ceftriaxone susceptibility in Neisseria gonorrhoeae in 25 European countries,
336	2016.BMC Infect Dis.18:609. <u>https://</u> doi: 10.1186/s12879-018-3528-4.
337	8. Sexually Transmitted Disease Surveillance, 2018, Gonorrhea. Centers for Disease
338	Control and Prevention. https://www.cdc.gov/std/stats18/gonorrhea.htm
	16

339

340	of penA Gene Associated with Ceftriaxone-Resistant Neisseria gonorrhoeae FC428
341	Strain by Using PCR.Emerg Infect Dis. 24:1573-1575. <u>https://</u> doi:
342	10.3201/eid2408.180295.
343	10.Golparian D, Rose L, Lynam A, Mohamed A, Bercot B, Ohnishi M, Crowley
344	B, Unemo M.2018. Multidrug-resistant Neisseria gonorrhoeae isolate, belonging to
345	the internationally spreading Japanese FC428 clone, with ceftriaxone resistance and
346	intermediate resistance to azithromycin, Ireland, August 2018. Euro
347	Surveill. 23. <u>https://</u> doi: 10.2807/1560-7917.ES.2018.23.47.1800617.
348	11.Chen SC, Han Y, Yuan LF, Zhu XY, Yin YP. 2019. Identification of internationally
349	disseminated ceftriaxone-resistant Neisseria gonorrhoeae strain FC428, China. Emerg
350	Infect Dis.25:1427-1429. <u>https://</u> doi: 10.3201/eid2507.190172.
351	12.Yéo A, Kouamé-Blavo B, Kouamé CE, Ouattara A, Yao AC, Gbedé BD, Bazan
352	F, Faye-Ketté H, Dosso M, Wi T, Unemo M.2019. Establishment of a gonococcal
353	antimicrobial surveillance programme, in accordance with World Health
354	Organization standards, in Côte d'Ivoire, Western Africa, 2014-2017.Sex Transm
355	Dis. 46:179-184. <u>https://</u> doi: 10.1097/OLQ.000000000000943.
356	13. Fifer H, Natarajan U, Jones L, Alexander S, Hughes G, Golparian D, Unemo M. 2016.
357	Failure of dual antimicrobial therapy in treatment of gonorrhea. N Engl J Med.
358	374:2504-2506. <u>https://</u> doi: 10.1056/NEJMc1512757.
359	14.Eyre DW, Sanderson ND, Lord E, Regisford-Reimmer N, Chau K, Barker L, Morgan

9. Whiley DM, Mhango L, Jennison AV, Nimmo G, Lahra MM. 2018.Direct Detection

AAC

Antimicrobial Agents and Chemotherapy Antimicrobial Agents and

Chemotherapy

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

M, Newnham R, Golparian D, Unemo M, Crook DW, Peto TE, Hughes G6, Cole
MJ, Fifer H, Edwards A, Andersson MI.2018.Gonorrhoea treatment failure caused by
a Neisseria gonorrhoeae strain with combined ceftriaxone and high-level
azithromycin resistance, England, February 2018.Euro Surveill. 23. <u>https://</u> doi:
10.2807/1560-7917.
15. Whiley DM, Jennison A, Pearson J, Lahra MM. 2018. Genetic characterisation of
Neisseria gonorrhoeae resistant to both ceftriaxone and azithromycin. Lancet Infect
Dis. 18:717-718. <u>https://</u> doi: 10.1016/S1473-3099(18)30340-2.
16. World Health Organization (WHO). Global priority list of antibiotic-resistant
bacteria to guide research, discovery, and development of new antibiotics; WHO:
Geneva, Switzerland, 2017; Available from:
https://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-
bacteria/en/_Accessed January 6, 2020
17. The Centers for Disease Control and Prevention. The national action plan for
combating antibiotic-resistant bacteria.2015. Available from :https://www.cdc.gov/
drugresistance/pdf/national_action_plan_for_combating_antibotic-resistant_bacteri
a.pdf. Accessed February 10,2020.
18. Huband MD, Bradford PA, Otterson LG, Basarab GS, Kutschke AC, Giacobbe RA,
Patey SA, Alm RA, Johnstone MR, Potter ME, Miller PF, Mueller JP. 2015. In vitro
antibacterial activity of AZD0914, a new spiropyrimidinetrione DNA

gyrase/topoisomerase inhibitor with potent activity against Gram-positive, fastidious 380

AAC

Antimicrobial Agents and Chemotherapy

381	Gram-Negative, and atypical bacteria. Antimicrob Agents Chemother 59:467-474.	
382	<u>htt</u> ps://doi: 10.1128/AAC.04124-14.	
383	19. Jacobsson S, Golparian D, Alm RA, Huband M, Mueller J, Jensen JS, Ohnishi M,	
384	Unemo M.2014. High in vitro activity of the novel spiropyrimidinetrione AZD0914, a	
385	DNA gyrase inhibitor, against multidrug-resistant Neisseria gonorrhoeae isolates	
386	suggests a new effective option for oral treatment of gonorrhea. Antimicrob Agents	
387	Chemother 58:5585-5588.https://doi: 10.1128/AAC.03090-14.	
388	20. Taylor SN, Marrazzo J, Batteiger BE, Hook EW 3rd, Seña AC, Long J, Wierzbicki M	R,
389	Kwak H, Johnson SM, Lawrence K, Mueller J. 2018.Single-dose zoliflodacin (ETX0914)
390	for treatment of urogenital gonorrhea. N Engl J Med.379:1835-1845. <u>https://</u> doi:	
391	10.1056/NEJMoa1706988.	
392	21.Su XH, Wang BX, Le WJ, Liu YR, Wan C, Li S, Alm RA, Mueller JP, Rice PA. 2016.	
393	Multidrug resistant Neisseria gonorrhoeae from Nanjing are sensitive to killing by a	
394	novel DNA gyrase inhibitor, ETX0914 (AZD0914). Antimicrob Agents Chemother.	
395	60:621-623.https://doi: 10.1128/AAC.01211-15.	
396	22.Sethi S, Sharma D, Mehta SD, Singh B, Smriti M, Kumar B, Sharma M. 2006.	
397	Emergence of ciprofloxacin resistant Neisseria gonorrhoeae in north India. Indian J	
398	Med Res. 123(5):707-10.	
399	23. Unemo M, Ringlander J, Wiggins C, Fredlund H, Jacobsson S, Cole M. 2015. High	
400	in vitro susceptibility to the novel spiropyrimidinetrione ETX0914 (AZD0914) among	
401	873 contemporary clinical Neisseria gonorrhoeae isolates from 21 European	
	1	19

AAC

Antimicrobial Agents and Chemotherapy

402 countries from 2012 to 2014. Antimicrob Agents Ch	emother. 59(9):5220-5.
403 <u>https://</u> doi: 10.1128/AAC.00786-15.	
404 24.Alm RA, Lahiri SD, Kutschke A, Otterson LG, McLa	nughlin RE, Whiteaker JD, Lewis
405 LA, Su X, Huband MD, Gardner H, Mueller JP. 2015.C	characterization of the novel DNA
406 gyrase inhibitor AZD0914: low resistance potential a	nd lack of cross-resistance
407 in Neisseria gonorrhoeae. Antimicrob Agents Chemo	other. 59(3):1478-86. <u>https:/</u> /doi:
408 10.1128/AAC.04456-14.	
409 25. Foerster S, Golparian D, Jacobsson S, Hathaway L	J, Low N, Shafer WM, Althaus CL,
410 Unemo M.2015.Genetic Resistance Determinants, Ir	n Vitro Time-Kill Curve Analysis
411 and Pharmacodynamic Functions for the Novel Topo	bisomerase II Inhibitor ETX0914
412 (AZD0914) in <i>Neisseria gonorrhoeae</i> .Front Microbio	l. 6:1377. <u>https://</u> doi:
413 10.3389/fmicb.2015.01377.	
414 26. Unemo M, Shafer WM. 2014. Antimicrobial resi	stance in <i>Neisseria gonorrhoeae</i>
415 in the 21st century: past, evolution, and future. Clin	Microbiol Rev. 27:587–
416 613. <u>https:</u> //doi: 10.1128/CMR.00010-14.	
417 27.Golparian D, Shafer W M, Ohnishi, M, and Unem	o M. 2014. Importance
418 of multi-drug efflux pumps in the antimicrobial resis	tance property of clinical
419 multi-drug resistant isolates of <i>Neisseria gonorrhoed</i>	ae. Antimicrob. Agents
420 Chemother. 58, 3556–3559. <u>https://</u> doi: 10.1128/AA	AC.00038-14
421 28. Liao M, Gu WM, Yang Y, Dillon Jo-Anne R. Ana	lysis of mutations in multiple loci
	20

Antimicrobial Agents and

Chemotherapy

١,			

423	susceptibility to ceftriaxone. J Antimicrob Chemother. 2011;66(5):1016-23. doi:

of Neisseria gonorrhoeae isolates reveals effects of PIB, PBP2 and MtrR on reduced

424 10.1093/jac/dkr021.

- 29. Shafer WM, Balthazar JT, Hagman KE, Morse SA. Missense mutations that 425
- 426 alter the DNA-binding domain of the MtrR protein occur frequently in
- rectal isolates of Neisseria gonorrhoeae that are resistant to faecal 427
- lipids. Microbiol 1995; 141: 907–11 428
- 30. Kern G, Palmer T, Ehmann DE, Shapiro AB, Andrews B, Basarab GS, Doig P, Fan J 429
- Gao N, Mills SD, Mueller J, Sriram S, Thresher J, Walkup GK. 2015. Inhibition of 430
- 431 Neisseria gonorrhoeae type II topoisomerases by the novel spiropyrimidinetrione
- 432 AZD0914. J Biol Chem 290:20984 - 20994.
- 433 http://dx.doi.org/10.1074/jbc.M115.663534.
- 434 31. Lindbäck E, Rahman M, Jalal S, Wretlind B. Mutations in gyrA, gyrB, parC, and
- 435 parE in quinolone-resistant strains of Neisseria gonorrhoeae. APMIS.
- 2002;110(9):651-7. 436
- 437 32.Soge OO, Salipante SJ, No D, Duffy E, Roberts MC.2016.In vitro activity of
- 438 delafloxacin against clinical Neisseria gonorrhoeae isolates and selection of
- 439 gonococcal delafloxacin resistance. Antimicrob Agents Chemother. 60(5):3106-11.
- 440 https://doi: 10.1128/AAC.02798-15.

and	
lents	VQD
al Ag	there
robid	ame
timic	Ù
A	

441	33. Clinical and Laboratory Standards Institute. 2018. Performance Standards for
442	Antimicrobial Susceptibility Testing: Twenty-Eighth Informational Supplement M100.
443	CLSI, Wayne, PA, USA.
444	34. Miller AA, Traczewski MM, Huband MD, Bradford PA, Mueller JP. 2019.
445	Determination of MIC Quality Control Ranges for the Novel Gyrase Inhibitor,
446	Zoliflodacin. J Clin Microbiol.57(9):1-7. <u>https://</u> doi: 10.1128/ JCM. 00567-19.
447	35.WHO. 2012. Global Action Plan to Control the Spread and Impact of Antimicrobial
448	Resistance in Neisseria gonorrhoeae. Available from:
449	https://www.who.int/antimicrobial-resistance/global-action-plan/en/ Accessed
450	January 6, 2020
451	36. The European Committee on Antimicrobial Susceptibility Testing. 2015.
452	Breakpoint tables for interpretation of MICs and zone diameters. Version 5.0, 2015.
453	Available from:
454	https://www.eucast.org/ast_of_bacteria/previous_versions_of_documents/
455	Accessed January 6, 2020
456	37. Tapsall JW1, Ndowa F, Lewis DA, Unemo M. 2009. Meeting the public health
457	challenge of multidrug- and extensively drug-resistant Neisseria gonorrhoeae. Expert
458	Rev Anti Infect Ther. 7(7):821-34. <u>https://doi: 10.1586/eri.09.63.</u>
459	38.Clifton S, Bolt H, Mohammed H, Town K, Furegato M, Cole M, Campbell O, Fifer
460	H, Hughes G.2018. Prevalence of and factors associated with MDR Neisseria
461	gonorrhoeae in England and Wales between 2004 and 2015: analysis of annual
	2:

AAC

463	<u>https://</u> doi: 10.1093/jac/dkx520.
464	39. Tanaka M, Nakayama H, Haraoka M, Saika T. 2000. Antimicrobial Resistance of
465	Neisseria gonorrhoeae and High Prevalence of Ciprofloxacin-Resistant Isolates in
466	Japan, 1993 to 1998. J Clin Microbiol 38(2): 521–525.
467	40.Deguchi T, Yasuda M, Nakano M, Ozeki S, Kanematsu E, Kawada Y, Ezaki T, Saito I.
468	1996. Uncommon Occurrence of Mutations in the gyrB Gene Associated with
469	Quinolone Resistance in Clinical Isolates of Neisseria gonorrhoeae. Antimicrob Agents
470	Chemother 40(10): 2437–2438.
471	41.Unemo M, Fasth O, Fredlund H, Limnios A, Tapsall J. 2009. Phenotypic and genetic
472	characterization of the 2008 WHO Neisseria gonorrhoeae reference strain panel
473	intended for global quality assurance and quality control of gonococcal antimicrobial
474	resistance surveillance for public health purposes. J Antimicrob Chemother 63(6):
475	1142–1151.
476	

cross-sectional surveillance surveys.J Antimicrob Chemother. 73(4):923-932.

4	7	7
	/	/

478 Table 1. Susceptibilities and MICs of zoliflodacin and seven antimicrobials previously or

479 currently used for treatment of gonorrhea against 986 clinical *N. gonorrhoeae* isolates.

	No. (%)			MIC (mg/L)		
Antimicrobial	Susceptible	Intermediate	Resistant	Range	MIC ₅₀	MIC ₉₀
zoliflodacin	986 (100)			≤0.002 to 0.25	0.06	0.125
Penicillin G	0	171 (17.3)	815 (82.7)	0.125 to ≥ 16	4	≥16
tetracycline	4 (0.4)	150 (15.2)	832 (84.4)	≤ 0.125 to ≥ 32	2	≥32
ciprofloxacin	0	0	986 (100)	1 to ≥ 16	≥16	≥16
azithromycin	551(55.9)	226 (22.9)	209 (21.2)	≤ 0.015 to ≥ 2048	0.5	4
spectinomycin	986(100)	0	0	≤ 4 to 32	32	32
cefixime	948(96.1)	-	38 (3.9)	≤ 0.002 to >2	0.03	0.25
ceftriaxone	984(99.8)	-	2 (0.2)	≤0.002 to 1	0.03	0.125

480

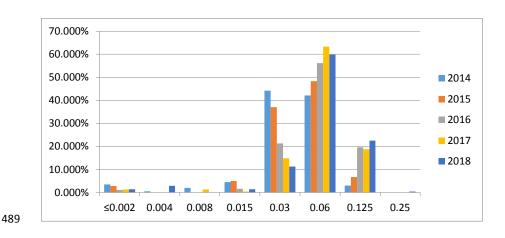
MIC: minimum inhibitory concentration

482 Table 2. Comparison of amino acid substitutions in GyrA, GyrB, ParC and ParE in isolates with

483 lower zoliflodacin MICs versus isolates with higher MICs

	No.(%) of <i>N. goi</i>			
Amino acid substitutions	lower zoliflodacin MICs group (n=59) ^a	higher zoliflodacin MICs group (n=143) ^b	– <i>P</i> -value ^c	
GyrA	59(100.00%)	143(100.00%)	NA	
S91F	59(100%)	143(100%)		
D95A/G/N/Y	59(100%)	143(100%)		
A92P	2(3.39%)	16(11.19%)	0.103	
D80N	1(1.69%)	0	0.292	
V81I	1(1.69%)	0	0.292	
ParC	54(91.53%)	139(97.20%)	0.13	
G85C/D/A	14(23.73%)	7(4.90%)	<0.001	
D86N	3(5.08%)	20(13.99%)	0.088	
S87C/I/N/R	48(81.36%)	114(79.72%)	0.943	
S88P	1(1.69%)	10(6.99%)	0.181	
A89T	1(1.69%)	1(0.70%)	0.499	
E91G	2(3.39%)	7(4.90%)	1.000	
G120R	0	2(1.40%)	1.000	
A123V	0	3(2.10%)	0.557	
A129V	0	3(2.10%)	0.557	
GyrB	0	4(2.80%)	0.32	
S467N	0	1 (0.70%)	1.000	
V470I	0	2 (1.40%)	1.000	
+480A	0	1 (0.70%)	1.000	
ParE	20(33.90%)	57(39.86%)	0.43	
D437H/N	5(8.47%)	34(23.78%)	0.01	
P456S	14(23.73%)	22(15.38%)	0.227	
P469L	0	1(0.70%)	1.000	
D425Y	1(1.69%)	0	0.292	
L4621	1(1.69%)	0	0.292	

484 ^a isolates with zoliflodacin MICs ≤0.002-0.015mg/L


485 ^b isolates with zoliflodacin MICs 0.125-0.25mg/L

486 ^c Determined by the χ^2 or fisher exact test

487

AAC

490 Figure 1. MIC distributions of zoliflodacin for 986 clinical *N. gonorrhoeae* isolates (2014-2018).