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 25 

ABSTRACT 26 

Previously, we reported potent activity of a novel spiropyrimidinetrione, zoliflodacin, 27 

against N. gonorrhoeae isolates from symptomatic men in Nanjing, China, collected 28 

in 2013. Here, we investigated trends of susceptibilities of zoliflodacin in 986  29 

isolates collected from men between 2014 and 2018.  N. gonorrhoeae isolates were 30 

tested for susceptibility to zoliflodacin and seven other antibiotics. Mutations in gyrA, 31 

gyrB, parC, parE and mtrR genes were determined by PCR and sequencing. The MICs 32 

of zoliflodacin ranged from ≤0.002 to 0.25 mg/L; the overall MIC50s and MIC90s were 33 

0.06 mg/L and 0.125mg/L in 2018, increasing two-fold from 2014. However, the 34 

percent of isolates with lower zoliflodacin MICs declined in each year sequentially 35 

while the percent with higher MICs increased yearly (P≤0.00001). All isolates were 36 

susceptible to spectinomycin but resistant to ciprofloxacin (MIC ≥1 mg/L); 21.2% 37 

(209/986) were resistant to azithromycin (≥1 mg/L), 43.4% (428/986) were 38 

penicillinase-producing (PPNG), 26.9% (265/986) tetracycline-resistant (TRNG) and 39 
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 3 

19.4% (191/986) were multi-drug resistant (MDR) isolates. Among 202 isolates tested, 40 

all were quinolone resistant with double or triple mutations in gyrA; One hundred 41 

ninety three (193/202; 95.5%) also had mutations in parC. There were no D429N/A 42 

and/or K450T mutations in GyrB identified in the 143 isolates with higher zoliflodacin 43 

MICs; a S467N mutation in GyrB was identified in one isolate. We report that 44 

zoliflodacin continues to have excellent in vitro activity against clinical gonococcal 45 

isolates, including those with high-level resistance to ciprofloxacin, azithromycin and 46 

extended spectrum cephalosporins.  47 

 48 

INTRODUCTION 49 

Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection 50 

gonorrhea, has developed resistance to all previously recommended antimicrobial 51 

agents for treatment, including sulfonamides, penicillins, tetracyclines and 52 

fluoroquinolones[1]. Currently, dual antimicrobial therapy with ceftriaxone 250 mg or 53 

cefixime 400 mg plus azithromycin 1g is recommended as first-line treatment of 54 

uncomplicated gonorrhea by the World Health Organization (WHO)[2] and ceftriaxone 55 

plus azithromycin by the U. S. Centers for Disease Control and Prevention (CDC)[3].  56 

Resistance to extended-spectrum cephalosporin (ESCs) and azithromycin is increasing 57 

worldwide. Gonococcal isolates with decreased susceptibility to cefixime and/or 58 

ceftriaxone have been reported in China[4], Japan[5], Australia[6], European countries[7] 59 

and the United States[8] and isolates with high-level resistance to ceftriaxone have 60 
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 4 

been identified in Japan, Australia, France, Spain, Denmark, Canada Ireland and 61 

China [9,10,11].  The reported prevalence of azithromycin-resistant N. gonorrhoeae 62 

isolates is 18.6% in China[4], 14.5% in Japan[5], 6.2% in Australia [6], 7.5% in 25 63 

European countries [7], 4.6% in the United States [8], and 6.1% in Western Africa[12]. 64 

The first documented case that failed treatment with the recommended dual therapy 65 

was reported from the UK in 2016 [13] and the first gonococcal isolates (the A2543 66 

clone) with combined ceftriaxone plus high-level azithromycin resistance were 67 

identified in the UK[14] and Australia[15] in 2018. 68 

Increased antimicrobial resistance (AMR) in N. gonorrhoeae poses an emerging 69 

global public health threat of untreatable gonococcal infections. New oral 70 

antimicrobial agents with activity against N. gonorrhoeae are needed urgently.  71 

WHO includes N. gonorrhoeae on its list of  “priority pathogens” that require new 72 

antibiotics for treatment[16] and the U.S. CDC has designated drug-resistant N. 73 

gonorrhoeae as an urgent threat [17].  Zoliflodacin (also known as AZD0914 and 74 

ETX0914) is a novel spiropyrimidinetrione bacterial DNA gyrase /topoisomerase 75 

inhibitor with broad-spectrum in vitro activity against gram-positive and fastidious 76 

gram-negative organisms, including N. gonorrhoeae.[18,19]. A recent multicenter, 77 

randomized, phase 2 clinical trial demonstrated that zoliflodacin was effective in 78 

treating gonococcal urogenital and rectal infections and supports a larger, more 79 

definitive study of zoliflodacin for the treatment of uncomplicated gonorrhea. [20]  80 

We showed previously that zoliflodacin was highly effective against clinical isolates of 81 

N. gonorrhoeae in vitro, including high-level ciprofloxacin-resistant and multidrug 82 
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 5 

resistant isolates, collected in 2013 in Nanjing, China[21]. Here, in vitro activities and 83 

trends of zoliflodacin susceptibilities were determined for clinical gonococcal isolates 84 

(including multidrug resistant isolates), collected between 2014 and 2018 in Nanjing.  85 

Mutations in the quinolone-resistance-determinant regions (QRDRs) of gyrA, parC, 86 

gyrB , parE and mtrR genes in were also determined for isolates across the 87 

zoliflodacin MIC distribution range. 88 

 89 

RESULTS 90 

Susceptibilities to zoliflodacin and other antimicrobials 91 

Susceptibilities (MICs) of N. gonorrhoeae to zoliflodacin and seven antimicrobials 92 

previously or currently used for the treatment of gonorrhea are summarized for the 93 

986 clinical isolates in Table 1. All isolates except one were inhibited by ≤0.125 mg/L 94 

of zoliflodacin (the remaining isolate had an MIC of 0.25mg/L).  MICs to zoliflodacin 95 

ranged from ≤0.002 to 0.25mg/L overall, with an MIC50 and MIC90 of  0.06 mg/L and 96 

0.125 mg/L, respectively. One hundred forty three (14.5%) isolates had zoliflodacin 97 

MICs at the upper end of the distribution range ( 0.125-0.25 mg/L) and 59 (6%) 98 

isolates had MICs in the lower end of the  MIC distribution range (≤0.002 99 

-0.015mg/L). The percent of isolates with an MIC of 0.03 mg/L to zoliflodacin 100 

declined in each year sequentially (χ2= 82.237, P=0.000) while the percent with MICs 101 

of 0.06 and 0.125 mg/L increased correspondingly (χ2= 20.739 and 41.717, 102 

respectively; P≤0.00001; Chi square test for linear trend), shown in Figure 1. Overall, 103 
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the proportion of isolates with zoliflodacin MICs 0.125-0.25 mg/L increased from 3.1% 104 

(6/197) in 2014 to 23.0% (47/204) in 2018 (χ2= 43.112, P<0.0001).  105 

All 986 isolates were resistant to ciprofloxacin; 777 (78.8%) showed high level 106 

resistance (≥16 mg/L)[22].  During the five year study period, the annual percentage 107 

of ciprofloxacin resistant isolates at each MIC point (from 1 mg/L to ≥16mg/L) did 108 

not shift in either direction in the 5-year period. MICs of gonococcal isolates for 109 

zoliflodacin were lower than ciprofloxacin (P<0.0001), with a median difference of at 110 

least 267-fold. Four hundred and twenty eight isolates (43.4%) were PPNG and 265 111 

(26.9%) were TRNG. The percent of penicillin-resistant isolates increased from 70% to 112 

86.3% over the five years (χ2= 17.641, P< 0.0001). Although all isolates were 113 

susceptible to spectinomycin, the percent of isolates with lower spectinomycin MICs 114 

(8 mg/L and 16 mg/L）declined (χ2= 16.35 and 93.71, P=0.0001 and P< 0.0001, 115 

respectively) while the percent with higher MICs (32mg/L) increased over the five 116 

years (χ2= 112.514 , P<0.0001). 117 

Two hundred and nine (21.2%) isolates were resistant to azithromycin (MIC≥118 

1mg/L), and 62 (6.3%) displayed high-level resistance (MIC≥256 mg/L). The percent 119 

of isolates with lower azithromycin MICs (0.06 mg/L and 0.125mg/L）increased over 120 

the five years（χ2= 16.916 and 22.099, respectively; P< 0.0001) while the percent with 121 

higher MICs (0.5mg/L and ≥1024 mg/L) declined yearly (χ2= 15.403 and 12.268, 122 

respectively; P<0.001). Overall, the percent of azithromycin-resistant isolates (MIC ≥123 

1mg/L) decreased from 27.9% to 15.2% over the five years and the percent of 124 

azithromycin-susceptible isolates increased from 72.1% to 84.8%  (χ2 = 14.618, P< 125 
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0.001).  One hundred and fifty eight isolates (15.2%) exhibited decreased 126 

susceptibility (MIC 0.125-0.25 mg/L, n=156) or resistance (MIC = 1mg/L, n=2) to 127 

ceftriaxone, and 102 isolates (10.1%) displayed decreased susceptibility (MIC 128 

0.25mg/L, n=64) or resistance (MIC 0.5mg/ L, n=36; MIC>2mg/L, n=2 ) to cefixime. 129 

The percent of isolates with lower ceftriaxone MICs (≤ 0.03mg/L）declined in each 130 

year sequentially（χ2= 10.512, P< 0.01) while the percent with higher MICs (0.06mg/L 131 

and 0.125 mg/L) increased yearly (χ2= 10.18 and 4.231, P<0.01 and P<0.05, 132 

respectively). The percent of isolates with lower cefixime MICs (0.015 mg/L and 0.03 133 

mg/L）declined (χ2= 23.324 and 10.734, P<0.001 and P<0.01, respectively) while the 134 

percent with higher MICs (0.06-0.5mg/L ) increased over the five years (χ2= 10.734, 135 

8.68, 14.683 and 20.056, P<0.05, ~P<0.0001, respectively).  One hundred ninety 136 

one (19.4%) isolates showed multidrug resistance (MDR).  The proportion of MDR 137 

isolates increased from 7.1% in 2014 to 27% in 2016, then decreased to 21.1% in 138 

2018 (χ2= 12.82, P=0.00034). The two MDR isolates with high level resistance to 139 

ceftriaxone (MIC 1.0 mg/L), cefixime (MIC ≥ 2.0 mg / L) , ciprofloxacin (MIC ≥ 140 

16mg/L) , penicillin (MIC 4 mg/L) and tetracycline (MIC 4mg/L) had low zoliflodacin 141 

MIC values (0.03 and 0.06 mg/L, respectively). 142 

  143 

Characterization of amino acid substitutions in GyrA, GyrB, ParC and ParE  144 

All 202 isolates tested were ciprofloxacin-resistant (MICs 2 to ≥ 16 mg/L).  All 145 

isolates had double or triple mutations in the gyrA gene. Both S91F and D95A/G/N/Y 146 
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 8 

amino acid substitutions in GyrA were identified in the 202 isolates. 16 (11.2%) of 147 

isolates in the higher zoliflodacin MIC distribution group and 2 (3.4%) in the lower 148 

MIC group also had an additional A92P amino acid substitution in GyrA.  ParC 149 

substitutions were observed in 97.2% of the isolates in the higher zoliflodacin MIC 150 

distribution group and 91.5% in the lower MIC group. Single, double and triple ParC 151 

substitutions were identified in 114 (79.7%), 22 (15.4%) and 3 (2.1%) of the isolates 152 

in higher MIC distribution group and 66.1%, 25.4% and 0 in the lower MIC group, 153 

respectively. The amino acid substitution at position S87 in the ParC, including S87C, 154 

S87I, S87N and S87R was present in 79.7% isolates in the higher MIC distribution 155 

group and 81.4% in the lower MIC group, respectively. The most common double 156 

substitutions in ParC were S87R plus S88P (10.7%) in the higher MIC group, and S87R 157 

plus G85D( 15.3%) in the lower MIC group. The three isolates in higher MIC group 158 

had the same triple substitutions (S87R, A123V and A129V). A89T, G120R, A123V and 159 

A129V mutations in ParC are newly described here. GyrB substitutions/insertions 160 

were identified in four isolates (two with V470I substitutions, one with a S467N 161 

substitution and one with an arginine (A) insertion at 480 [480A]) in the upper end of 162 

the MIC distribution group but none in low MIC group. All four isolates with a GyrB 163 

mutation had MIC values of 0.125 mg/L for zoliflodacin and 4 mg/L or greater for 164 

ciprofloxacin. Amino acid substitutions in ParE were identified in 57 isolates (39.9%) 165 

in the high zoliflodacin MIC distribution group. The most common single substitution 166 

in ParE was D437N, which was greater in isolates with MICs in the upper end of the 167 

zoliflodacin MIC distribution range (23.1%) than in the lower end of the range (6.78%) 168 
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 9 

(P<0.01). The overall frequency of amino acid substitutions in GyrA, GyrB, ParC and 169 

ParE was no different across the MIC distribution range (Table 2). 170 

Mutations in mtrR  171 

A number of single or multiple mutations were identified in the 202 isolates, 172 

including an adenosine (A) deletion in the mtrR promoter region, and mutations in 173 

the mtrR coding region that resulted in amino acid changes in MtrR: A39T, A40D, 174 

G45D, F62L, D79N, T86A, H105Y, and E117K mutations, singly or in combination 175 

(Supplemental Table 2). A total of 175 (86.6%) isolates carried the A deletion, 48 176 

(81.4%) in the low zoliflodacin MIC group and 127 (88.8%) in the high group 177 

(P=0.2346). There were no significant differences in the rates of individual mutations 178 

(singly or combined) in MtrR accompanied (or not) by an A deletion in the promoter 179 

region, except for an H105Y mutation accompanied by an A deletion in the promoter, 180 

which accounted for 62.7 % (37/59) of isolates with low zoliflodacin MICs and 41.3% 181 

(59/143) in the high zoliflodacin MIC group (P<0.01) (Supplemental Table 2). 182 

 183 

DISCUSSION  184 

We determined susceptibility trends in in vitro antibacterial activity of zoliflodacin 185 

and seven other antimicrobial agents against 986 clinical gonococcal isolates 186 

collected over a five-year period (2014-2018). The 986 gonococcal isolates were 187 

susceptible to zoliflodacin and all were resistant to ciprofloxacin. Nearly a quarter 188 

were resistant to azithromycin or were TRNG isolates. Greater than 40% were PPNG 189 
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 10 

isolates and just under 20% were MDR isolates. All 986 isolates had zoliflodacin MICs 190 

below the breakpoint (MIC ≥ 0.5mg/L) that have been proposed, guided by clinical 191 

efficacy [20].  Similar to other reports [19,23], zoliflodacin exhibited an MIC range of 192 

0.002 to 0.25 mg/L and there was no correlation between zoliflodacin MICs at the 193 

upper end of the MIC range and ciprofloxacin-resistance [19, 24,25].  Furthermore, 194 

zoliflodacin exhibited low MICs (0.03 and 0.06mg/L) in two isolates that were fully 195 

resistant to ceftriaxone and cefixime. A modest temporal shift in the MICs to 196 

zoliflodacin was observed over the five year period. 197 

Zoliflodacin is a novel spiropyrimidinetrione bacterial DNA gyrase/ topoisomerase 198 

inhibitor, which prevents bacterial DNA biosynthesis and results in accumulation of 199 

double-strand cleavages through a mechanism distinct from that in fluoroquinolones 200 

[18,24,26].  In our study, all the ciprofloxacin-resistant zoliflodacin-sensitive isolates 201 

tested , displayed double or triple mutations in GyrA; greater than 90% had 202 

additional amino acid substitutions in ParC.   203 

    In contrast to fluoroquinolones, zoliflodacin inhibits the GyrB subunit of type II 204 

topoisomerase; specific mutations in GyrB can result in increased resistance to 205 

zoliflodacin [24,25].  We did not find mutations such as D429N, D429A or K450T 206 

alterations in GyrB, which have  been identified in vitro and select for resistant 207 

mutants that result in zoliflodacin MICs of 0.5–8 mg/L[24,25].  However, we found 208 

that 4/143 (2.8%) of gonococcal isolates at the upper end of the MIC distribution 209 

range MICs (0.125 and 0.25 mg/L) harbored a GyrB mutation, however the amino 210 

acid substitutions/insertions (S467N, V470I or 480A)  were not associated with 211 
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resistance. An S467N amino acid substitution in GyrB, which did not result in reduced 212 

susceptibility to zoliflodacin, has been reported in a clinical gonococcal isolate[19]. 213 

Mutations of V470I or 480A have not been reported previously in clinical isolates or 214 

in in vitro selected resistant mutants.  215 

  Mutations in mtrR , which result in overexpression of the MtrCDE efflux pump, can 216 

increase efflux of antimicrobials and reduce the susceptibility to numerous 217 

antimicrobials [26,27 ].  The MtrCDE efflux pump can also influence susceptibility to 218 

zoliflodacin[25].  Inactivation of the MtrCDE efflux pump has been shown to 219 

decrease the MIC of zoliflodacin in N. gonorrhoeae strain H041 strain from 0.125 to 220 

0.004 mg/L[25].  In our study, an adenine (A) deletion in the mtrR promoter and a 221 

number of mutations in MtrR (or both), were identified in isolates that possessed 222 

either lower or higher zoliflodacin MICs.  A single H105Y amino acid substitution 223 

was the most common substitution present in MtrR; this change was identified in 50% 224 

of the isolates. The single H105Y amino acid substitution, which lies outside the 225 

known DNA binding domain of MtrR, is generally thought not to be involved with 226 

active repressor function of MtrR; it has also been shown to be associated with N. 227 

gonorrhoeae isolates that are fully sensitive to ceftriaxone[28]. One possibility is that 228 

the H105Y mutation may interfere with MtrR dimerization resulting in a reduction of 229 

MtrR binding to target sequences[29]   230 

   Few studies have examined the impact of parE mutations on quinolone 231 

resistance in N. gonorrhoeae[30,31]. Clinical gonococcal isolates with P439S amino acid 232 

substitutions in ParE did not result in a significant increase in MIC to 233 
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ciprofloxacin[31,32] . The clinical relevance of the ParE mutations identified in our study 234 

is unclear . 235 

In conclusion, zoliflodacin demonstrated potent in vitro antibacterial activity 236 

against a recent collection of clinical gonococcal isolates from China (2014 to 2018), 237 

including isolates with high-level resistance to ciprofloxacin, azithromycin and 238 

extended spectrum cephalosporins.  Zoliflodacin MICs shifted upward temporally in 239 

the five-year period in the absence of clinical use. These results confirm the lack of   240 

pre-existing clinical resistance to zoliflodacin. Continued monitoring of antimicrobial 241 

susceptibility of zoliflodacin, a promising new oral antibacterial agent, for the 242 

treatment of uncomplicated gonorrhea is warranted .   243 

 244 

MATERIALS AND METHODS 245 

Bacterial isolates  From January 2014 to December 2018, a total of 986 gonococcal 246 

isolates were collected from male patients with symptomatic urethritis (urethral 247 

discharge and/or dysuria) attending the STD clinic at the Institute of Dermatology, 248 

Chinese Academy of Medical Sciences, Nanjing, China. All men except one reported 249 

that they were heterosexual. Urethral exudates were collected with cotton swabs, 250 

then immediately inoculated onto Thayer-Martin medium (Zhuhai DL Biotech, China) 251 

and cultured in candle jars at 36°C for 24–48 h. Gonococcal isolates were identified 252 

by colonial morphology, Gram’s stain and oxidase testing and growth on GC 253 

chocolate agar base (Difco, Detroit, MI) supplemented with 1% IsovitaleX™ (Oxoid, 254 
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USA) . Gonococcal colonies were suspended in tryptone-based soy broth and frozen 255 

(−70°C) until used for antimicrobial testing. 256 

Antimicrobial susceptibility testing  Zoliflodacin powder was provided by Entasis, 257 

Therapeutics, Waltham, MA. The minimum inhibitory concentrations (MICs; mg/L) of 258 

N. gonorrhoeae isolates to zoliflodacin, penicillin, tetracycline, ciprofloxacin, 259 

spectinomycin, azithromycin, cefixime and ceftriaxone were determined by the agar 260 

dilution method in accordance with the Clinical and Laboratory Standards Institute 261 

(CLSI) guidelines[33]. ATCC 49226, WHO reference strains F, G, L, O, and P were used 262 

as quality controls.  The MIC ranges of zoliflodacin for quality control (QC) strain ATCC 263 

49226 were 0.125-0.25mg/L in each antimicrobial susceptibility testing run in this 264 

study in accordance with the defined MIC QC ranges (0.06-0.5mg/L) for 265 

zoliflodacin[34].  Criteria for decreased susceptibility to ceftriaxone (MIC≥0.125 266 

mg/L) and cefixime (MIC≥0.25 mg/L) were defined by WHO[35].  Using CLSI[33] and 267 

EUCAST [36] (for azithromycin only) criteria, the following MIC breakpoints were used 268 

to ascertain resistance: ≥128 mg/L, spectinomycin; ≥2 mg/L, penicillin and 269 

tetracycline and ≥1 mg/L, ciprofloxacin and azithromycin.  The breakpoint for 270 

zoliflodacin of ≥0.5 mg/L was utilized as previously described [20].  Multi-drug 271 

resistant (MDR) N. gonorrhoeae was defined as decreased susceptibility or resistance 272 

to extended spectrum cephalosporins (ESCs), plus resistance to at least two of the 273 

following antimicrobials: penicillin; ciprofloxacin and azithromycin [37,38]. 274 

Identification of gene mutations that resulted in amino acid substitutions in GyrA, 275 

GyrB, ParC and ParE   276 
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One hundred forty three gonococcal isolates with zoliflodacin MICs (0.125mg/L and 277 

0.25mg/L) at the upper end of the MIC distribution range and 59 isolates with lower 278 

zoliflodacin MICs (≤0.002-0.015mg/L) were selected for genetic resistance 279 

determinants study. Mutations in the quinolone-resistance-determining regions 280 

(QRDR) of gyrA, gyrB, parC and parE genes were determined by PCR and DNA 281 

sequencing using primers described previously [39-41] (supplemental Table 1). Genomic 282 

DNA was extracted from gonococcal isolates using the Rapid Bacterial Genomic DNA 283 

Isolation Kit (DNA-EZ Reagents V All-DNA-Fast-Out, Sangon Biotech Co. Ltd, Shanghai). 284 

PCR amplification and sequencing of the genes were carried out by Nanjing Qingke 285 

Biotech Co. Ltd. 286 

Evaluation of mutations in the mtrR gene 287 

To identify mutations that potentially could cause enhanced expression of the 288 

MtrCDE-encoded efflux pump, mutations in the mtrR gene and  promoter region 289 

were identified by PCR. Sequencing of mtr genes from 202 isolates was performed as 290 

described previously [28] .  291 

 292 

Data Analysis 293 

Chi-square (χ2) testing was used to compare the rate of resistance in different years 294 

and Chi-square test for linear trends was used to assess the change in the MICs and 295 

the proportion of isolates resistant to antibiotics. SPSS version 19.0 was used for 296 

statistical analysis; P<0.05 was considered statistically significant.  297 
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 477 

Table 1. Susceptibilities and MICs of zoliflodacin and seven antimicrobials previously or 478 

currently used for treatment of gonorrhea against 986 clinical N. gonorrhoeae isolates. 479 

 

Antimicrobial  

No. (%) MIC (mg/L) 

Susceptible Intermediate Resistant Range MIC50 MIC90 

zoliflodacin 986（100）   ≤0.002 to 0.25 0.06 0.125 

Penicillin G     0 171 (17.3) 815 (82.7)  0.125 to ≥16 4 ≥16 

tetracycline    4 (0.4) 150 (15.2) 832 (84.4)  ≤0.125 to ≥32   2 ≥32 

ciprofloxacin 0 0 986 (100) 1 to ≥ 16 ≥16 ≥16 

azithromycin 551(55.9) 226 (22.9) 209 (21.2) ≤0.015 to ≥2048  0.5 4 

spectinomycin 986(100) 0 0  ≤4  to 32  32 32 

cefixime 948(96.1) - 38 (3.9) ≤0.002 to >2  0.03     0.25 

ceftriaxone    984(99.8) - 2 (0.2) ≤0.002 to 1  0.03 0.125 

MIC: minimum inhibitory concentration 480 

  481 
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Table 2. Comparison of amino acid substitutions in GyrA, GyrB, ParC and ParE in isolates with 482 

lower zoliflodacin MICs versus isolates with higher MICs  483 

Amino acid substitutions  

No.(%) of N. gonorrhoeae isolates 

P-valuec 
 lower zoliflodacin MICs 

group (n=59)a 

higher zoliflodacin MICs 

group (n=143)b 

GyrA 59(100.00%) 143(100.00%) NA 

S91F 59(100%) 143(100%)  

D95A/G/N/Y 59(100%) 143(100%)  

A92P 2(3.39%) 16(11.19%) 0.103 

D80N 1(1.69%) 0 0.292 

V81I 1(1.69%) 0 0.292 

ParC  54(91.53%) 139(97.20%) 0.13 

    G85C/D/A 14(23.73%) 7(4.90%) <0.001 

    D86N 3(5.08%) 20(13.99%) 0.088 

    S87C/I/N/R 48(81.36%) 114(79.72%) 0.943 

S88P 1(1.69%) 10(6.99%) 0.181 

A89T 1(1.69%) 1(0.70%) 0.499 

E91G 2(3.39%) 7(4.90%) 1.000 

G120R 0 2(1.40%) 1.000 

A123V 0 3(2.10%) 0.557 

A129V 0 3(2.10%) 0.557 

GyrB 0 4(2.80%) 0.32 

S467N 0 1 (0.70%) 1.000 

V470I 0 2 (1.40%) 1.000 

+480A 0 1 (0.70%) 1.000 

ParE 20(33.90%) 57(39.86%) 0.43 

D437H/N 5(8.47%) 34(23.78%) 0.01 

P456S 14(23.73%) 22(15.38%) 0.227 

P469L 0 1(0.70%) 1.000 

D425Y 1(1.69%) 0 0.292 

L462I 1(1.69%) 0 0.292 
a isolates with zoliflodacin MICs ≤0.002-0.015mg/L 484 

b isolates with zoliflodacin MICs 0.125-0.25mg/L 485 

c Determined by the χ2 or fisher exact test 486 

 487 
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 488 

 489 

Figure 1. MIC distributions of zoliflodacin for 986 clinical N. gonorrhoeae isolates (2014-2018). 490 
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