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Abstract: In this note we consider certain elliptic curves defined over real quadratic
fields isogenous to their Galois conjugate. We give a construction of algebraic points

on these curves defined over almost totally real number fields. The main ingredient

is the system of Heegner points arising from Shimura curve uniformizations. In
addition, we provide an explicit p-adic analytic formula which allows for the effective,

algorithmic calculation of such points.
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1. Introduction

At the beginning of the 2000’s Darmon introduced two constructions
of local points on modular elliptic curves over number fields: the Stark–
Heegner points [D1] and the ATR points [D2, Chapter 8]. Both types
of points are expected to be algebraic and to behave in many aspects as
the more classical Heegner points. Although the two constructions bear
some formal resemblances, a crucial difference lies in the nature of the
local field involved: while the former is p-adic, the later is archimedean.
In order to explain the importance of this distinction, let us briefly recall
the constructions and some of the features that are currently known
about them.

Let E be an elliptic curve defined over Q of conductor N , and let
K be a real quadratic field such that the sign of the functional equation
of L(E/K, s) is −1. Let p be a prime that exactly divides N and which
is inert in K. Under an additional Heegner-type hypothesis, Stark–
Heegner points in E(Kp) are constructed in [D1] by means of certain
p-adic line integrals, and they are conjectured to be global and defined
over narrow ring class fields of K. This construction was generalized by
Greenberg [G2] to the much broader setting in which E is defined over a
totally real number field F of narrow class number 1, the extension K/F
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is any non-CM quadratic extension in which some prime divisor of the
conductor of E is inert, and L(E/K, s) has sign −1.

There is extensive numerical evidence in support of the rationality
of such p-adic points (cf. [DG], [DP], [GM1], [GM2]), but the actual
proof in general seems to be still far out of reach. In spite of this, in
some very special cases Stark–Heegner points are known to be global. In
these particular settings they coexist with Heegner points, and they can
actually be seen to be related to them (cf. [BD2], [LV], [GSS]). The
p-adic nature of the points seems to play a key role in these arguments,
by means of the connection between the formal logarithm of the Stark–
Heegner points and the special values of suitable p-adic L-functions (see
also [BDP], [DR1], [DR2], and [BDR]).

The archimedean counterparts to these points, as introduced in [D2,
Chapter 8] and later generalized by Gärtner [Gär], seem to be even
more mysterious. The simplest and original setting is that of an elliptic
curve E defined over a totally real number field F , and M/F a quadratic
Almost Totally Real (ATR) extension (i.e., M has exactly one complex
place). In this case the points are constructed by means of complex
integrals and thus they lie in E(C). They are also expected to be global,
and there is some numerical evidence of it [DL], [GM1].

However, in the archimedean constructions it is not (the logarithm of)
the points which is expected to be related to special values of complex
L-functions, but their heights, very much in the spirit of Gross–Zagier
formulas. It is this crucial difference with the p-adic case what seems to
prevent the success of any attempt of showing their rationality, even in
the very particular instances in which they coexist with Heegner points.
It could be arguably said that complex ATR points are much more diffi-
cult to handle than their p-adic counterparts. Thus, even in the simplest
situations in which one wants to compare them with Heegner points in
order to show their rationality, it is desiderable to have p-adic construc-
tions of such points at one’s disposals.

In light of the above discussion, the goal of the present paper is to
present a p-adic construction of algebraic points defined over ATR fields.
To be more precise, we consider a real quadratic field F and a non-CM
elliptic curve E/F that is F -isogenous to its Galois conjugate (this is
sometimes referred to as a Q-curve in the literature). Suppose that
M/F is a quadratic ATR extension such that the sign of the functional
equation of L(E/M, s) is −1. We describe a p-adic construction of al-
gebraic points in E(M), which are manufactured by means of suitable
Heegner points in a certain Shimura curve parametrizing E.
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The points that we construct are algebraic (for they essentially come
from Heegner points in certain modular abelian varieties) and given
in terms of p-adic line integrals. Observe that in this set up one can
also consider p-adic Stark–Heegner points, e.g., the ones constructed by
Greenberg [G2], and it would be very interesting to investigate the pos-
sible relationship between these two types of points. Of course, it would
also be of interest to compare them with the ATR points constructed
by Darmon and Gärtner, although as explained before in this case only
information about the heights of the points seems to be directly available
from the involved L-functions.

The fact that our construction is given in terms of p-adic line inte-
grals also has another consequence, which constitutes in fact one of the
remarkable features of the construction: it gives rise to a completely
explicit and efficient algorithm for computing the points.

Our construction is inspired by the work of Darmon, Rotger, and
Zhao [DRZ]. Since it builds on this work, the next section is devoted to
recalling the points introduced in [DRZ], as well as to giving an overview
of the rest of the paper.

Acknowledgments. We thank Victor Rotger for suggesting the prob-
lem and Jordi Quer for providing the equation of the Q-curve used in §7.
We also thank the anonymous referee, whose many detailed and helpful
comments allowed us to significantly improve both the content and the
clarity of this article. Guitart was financially supported by SFB/TR 45.

2. Background and outline of the construction

Our construction can be seen as a generalization of that of [DRZ].
In order to put it in context, it is illustrative to examine first the case
of elliptic curves over Q. So let us (temporarily) denote by E an elliptic
curve over Q of conductor N . The Modularity Theorem [Wil], [TW],
[BCDT] provides a non-constant map

(2.1) πE : X0(N) −→ E,

where X0(N) denotes the modular curve parametrizing cyclic isogenies
C → C ′ of degree N . This moduli interpretation endows X0(N) with a
canonical set of algebraic points known as CM or Heegner points which
give rise, when projected under πE , to a systematic construction of al-
gebraic points on E.

To be more precise, suppose that K is a quadratic imaginary field
and O ⊂ K is an order of discriminant coprime with N . In addition,
suppose that K satisfies the Heegner condition:
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(H) All the primes dividing N are split in K.

Under this assumption, there exist elliptic curves C and C ′ with com-
plex multiplication by O, together with a cyclic isogeny C → C ′ of
degree N . The theory of complex multiplication implies that the point
in X0(N) corresponding to C → C ′ is, in fact, algebraic and defined over
the ring class field of O.

Moreover, the corresponding Heegner point on E can be computed by
means of the complex uniformization derived from (2.1) which, in view of
the identifications X0(N)(C) ' Γ0(N)\(H∪ P1(Q)) and E(C) ' C/ΛE ,
is of the form

(2.2) πE : Γ0(N)\(H ∪ P1(Q)) −→ C/ΛE .

The formula for computing the Heegner point corresponding to C → C ′

is then

(2.3) ΦW

(∫ i∞

τ

2πifE(z) dz

)
,

where fE(z) =
∑
n≥1 ane

2πinz denotes the weight two newform for Γ0(N)

whose L-function equals that of E, the map ΦW : C/ΛE → E(C) is the
Weierstrass uniformization, and τ ∈ H ∩K is such that C ' C/Z + τZ
and C ′ ' C/Z +NτZ.

This type of Heegner points are one of the main ingredients interven-
ing in the proof of the Birch and Swinnerton-Dyer conjecture for curves
over Q of analytic rank at most 1 [GZ], [Kol]. Moreover, and perhaps
more relevant to the purpose of the present note, the formula (2.3) is
completely explicit and computable, as the Fourier coefficients an can
be obtained by counting points on the several reductions of E (mod p).
In other words, (2.3) provides with an effective algorithm for computing
points on E over abelian extensions of K, which turn out to be of infinite
order whenever the analytic rank is 1. See, e.g., [E1] for a discussion of
this method and examples of computations.

Suppose now that K does not satisfy the Heegner condition, and
factor N as N = N+N−, where N+ contains the primes that split
in K and N− those that are inert (we assume that the discriminant
of K is coprime to N). In this case there is a generalization of the
above Heegner point construction, which works under the less restrictive
Heegner–Shimura condition:

(H’) N− is squarefree and the product of an even number of primes.
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In this set up, when N− > 1 the map (2.1) is replaced by a uni-
formization of the form

(2.4) πN
−

E : X0(N+, N−) −→ E,

where X0(N+, N−) is the Shimura curve of level N+ associated to the
indefinite quaternion algebra B/Q of discriminant N−. The moduli
interpretation of X0(N+, N−), combined with the theory of complex
multiplication, can also be used to construct Heegner points on E that
are defined over ring class fields of orders O ⊂ K of conductor coprime
to N .

There is also an analogue of formula (2.3), but in this case it seems
to be much more difficult to compute in practice. Indeed, one needs to
integrate modular forms associated to B and, since B is division, the
Shimura curve X0(N+, N−) has no cusps. Therefore the corresponding
modular forms do not admit Fourier expansions, which are the crucial
tool that allow for the explicit calculation of (2.3). Elkies developed
methods for performing such computations under some additional hy-
pothesis [E2]. More recently Voight–Willis [VW] using Taylor expan-
sions and Nelson [Nel] using the Shimizu lift have been able to compute
some of these CM points.

In a different direction, there is an alternative method that allows for
the numerical calculation of Heegner points associated to quaternion di-
vision algebras. The key idea is to fix a prime p | N− and to use the rigid
analytic p-adic uniformization derived from (2.4), instead of the complex
one. The Čerednik–Drinfel’d theorem provides a model for X0(N+, N−)
as the quotient of the p-adic upper half plane Hp by Γ, a certain sub-
group in a definite quaternion algebra. Bertolini and Darmon [BD1],
building on previous work of Gross [Gro], give an explicit formula for
the uniformization map

Γ\Hp −→ E(Cp)

in terms of the so-called multiplicative p-adic line integrals of rigid ana-
lytic modular forms for Γ (see also [Mok] for a generalization to curves
over totally real fields). Such integrals can be very efficiently computed,
thanks to the methods of M. Greenberg [G1] (which adapt Pollack–
Stevens’ overconvergent modular symbols technique [PS]) and to the
explicit algorithms provided by Franc–Masdeu [FM].

Let us now return to the setting that we consider in the present note.
Namely, F is a real quadratic field and E/F is an elliptic curve without
complex multiplication that is F -isogenous to its Galois conjugate. As
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a consequence of Serre’s modularity conjecture [KW1], [KW2] and re-
sults of Ribet [R3], E can be parametrized by a modular curve of the
form X1(N), where the integer N is related to the conductor NE of E/F
(cf. §3.1 for more details on the precise relation). This property was ex-
ploited by Darmon–Rotger–Zhao in [DRZ] in order to construct certain
algebraic ATR points on E by means of Heegner points on X1(N) . Let
us briefly explain the structure of the construction.

Consider the uniformization mentioned above

(2.5) πE : X1(N) −→ E.

We assume, for simplicity, that N is squarefree. We remark that πE is
defined over F . Let M/F be a quadratic extension that has one com-
plex and two real places (this is what is known as an Almost Totally
Real (ATR) extension, because it has exactly one complex place). There
is a natural quadratic imaginary field K associated to M as follows: if
M = F (

√
α) for some α ∈ F , then K = Q(

√
NmF/Q(α)). Suppose that

K satisfies the following Heegner-type condition, which might be called
the Heegner–Darmon–Rotger–Zhao condition:

(DRZ) All the primes dividing N are split in K.

Under this assumption, the method presented in [DRZ] uses Heegner
points on X1(N) associated to orders in K to construct points in E(M),
which are shown to be of infinite order in situations of analytic rank
one. One of the salient features of this construction is that it is explicitly
computable. In fact, there is a formula analogous to (2.3), giving the
points as integrals of certain classical modular forms for Γ1(N).

In the first part of the paper, which consists of Sections 3 to 5, we
extend the construction of [DRZ] to the situation in which K, whose
discriminant is assumed to be coprime to N , satisfies the following, less
restrictive, Heegner–Shimura-type condition (where, as before, we write
N = N+N− with N+ containing the primes that split in K and N−

containing those that remain inert):

(DRZ’) N− is squarefree and the product of an even number of primes.

As we will see, this condition is satisfied whenever L(E/M, s) has
sign −1 (see Proposition 3.6 below). In particular, it is satisfied when
the analytic rank of E/M is 1.

The idea of our construction, inspired by the case of curves over Q
reviewed above, consists in replacing (2.5) by a uniformization of the
form

(2.6) πN
−

E : X1(N+, N−) −→ E,
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where X1(N+, N−) is a suitable Shimura curve attached to an indefi-
nite quaternion algebra B/Q of discriminant N− and level structure “of
Γ1-type”. This main construction of ATR points in E(M) is presented
in §5, after developing some preliminary results. Namely, in §3 we briefly
review Q-curves and we prove some results in Galois theory that relate
certain ring class fields of K with M , and in §4 we define the CM points
on the Shimura curves that will play a role in our construction and de-
termine their field of definition.

Just as in the classical case of curves over Q, the CM points in
X1(N+, N−) (and hence the points that we construct in E(M)) are
difficult to compute using the complex uniformization. Once again, the
absence of cusps in X1(N+, N−) and thus the lack of Fourier coefficients
makes it difficult to compute the integrals that appear in the explicit
formula (cf. (5.6) below).

The second part of the article gives a p-adic version of the construc-
tion. As has been mentioned in the introduction, this might be useful in
order to relate it to p-adic Stark–Heegner points. Another advantage of
this p-adic construction is that it is explicitly computable. Concretely,
in §6 we exploit the p-adic uniformization of X1(N+, N−) given by the
Čerednik–Drinfel’d theorem and the explicit uniformization of Bertolini–
Darmon in terms of multiplicative p-adic integrals which, combined with
a slight generalization of the algorithms of Franc–Masdeu [FM], provides
an efficient algorithm for computing algebraic ATR points in Q-curves.
We conclude with an explicit example of such computation in §7.

3. Q-curves and ATR extensions

In this section we recall some basic facts on Q-curves and their relation
with classical modular forms for Γ1(N). We also give some preliminary
results on certain Galois extensions associated to ATR fields that will be
needed in the subsequent sections, as they will be related to the field of
definition of the Heegner points under consideration.

3.1. Q-curves and modular forms. An elliptic curve E over a num-
ber field is said to be a Q-curve if it is isogenous to all of its Galois
conjugates. One of the motivations for studying Q-curves is that they
arise as the 1-dimensional factors over Q of the modular abelian varieties
attached to classical modular forms. More precisely, let f =

∑
n≥1 anq

n

be a normalized newform of weight two for Γ1(N), and denote by Kf =
Q({an}) the number field generated by its Fourier coefficients. Let Af
be the abelian variety over Q associated to f by Shimura in [Shi, Theo-
rem 7.14]. The dimension of Af is equal to [Kf : Q] and EndQ(Af )⊗Q,



518 X. Guitart, M. Masdeu

its algebra of endomorphisms defined over Q, is isomorphic to Kf . In
particular, Af is simple over Q. However, it is not necessarily absolutely

simple and, in general, it decomposes up to Q-isogeny as Af ∼Q C
n, for

some n ≥ 1 and some absolutely simple abelian variety C/Q which is
isogenous to all of its Galois conjugates. Therefore, if C turns out to be
of dimension 1, then C is a Q-curve. Conversely, as a consequence of
Serre’s modularity conjecture and results of Ribet, any Q-curve can be
obtained, up to isogeny, by this construction.

We will be interested in certain Q-curves defined over quadratic fields.
In the next proposition we characterize them in terms of the modular
construction.

Proposition 3.1. Let f ∈ S2(Γ1(N)) be a non-CM newform of Neben-
typus ψ, and let F be the field associated to ψ (by identifying ψ with a
character of Gal(Q/Q) via class field theory). Suppose that ψ has order 2
and that [Kf : Q] = 2. Then:

(1) F is real quadratic;
(2) Kf is imaginary;
(3) Af is F -isogenous to E2, where E/F is a Q-curve.

In addition, if N is odd or squarefree then the conductor NE of E/F is
generated by a rational integer, say NE = N0OF for some N0 ∈ Z≥0,
and N = N0 ·Nψ where Nψ stands for the conductor of ψ.

Proof: The field F is real because ψ, being the Nebentypus of a modular
form of even weight, is an even character.

The Nebentypus induces the complex conjugation on the Fourier co-
efficients:

(3.1) ap = apψ(p), for almost all primes p (cf., e.g., [R1, §1]).

Since ψ has order 2 it is non-trivial, which implies that Kf is imaginary.
Property (3.1) also implies that ψ is an inner twist of f , in the sense

of [R2, §3]. In fact, it is the only non-trivial inner twist because [Kf :
Q] = 2. By [GL, Proposition 2.1] F is the smallest number field where
all the endomorphisms of Af are defined. If Af were absolutely simple,
then EndF (Af )⊗Q would be isomorphic to a quaternion division algebra
over Q by [Pyl, Proposition 1.3]. But in that case the minimal field of
definition of all the endomorphisms of Af would be quadratic imaginary
by [Rot, Lemma 2.3 (i)], so this case is not possible. We conclude that
Af is not absolutely simple, so that Af is F -isogenous to E2, where E/F
is a Q-curve.

Suppose now that N is odd or squarefree. Then, by the main the-
orem in [GG, p. 2] one has that the conductor NE of E/F is of the
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form N0OF for some N0 ∈ Z≥0, and the relation N0NF = N is satisfied,
where NF stands for the conductor of F . But NF = Nψ by the con-
ductor-discriminant formula [Was, Theorem 3.11], and this finishes the
proof.

From now on we will assume that E/F is an elliptic curve obtained as
in the above proposition. That is to say, it is the absolutely simple factor
of Af for some non-CM newform f whose level N is odd or squarefree, its
Nebentypus is of order 2, and its field of Fourier coefficients is quadratic.
In addition, in the case where N is not squarefree we will also assume
that (N0, Nψ) = 1, since this condition will be needed in Proposition 3.6.
One can easily find many examples of modular forms satisfying these
conditions, for instance by consulting the table [Que, §4.1].

Remark 3.2. Observe that the above assumptions imply that Nψ is
squarefree. This is clear if N is squarefree. If N is odd, it follows
from the fact that the conductor of a quadratic character is squarefree
away from 2.

3.2. ATR extensions. Let M/F be a quadratic almost totally real
(ATR) extension of discriminant prime to NE , the conductor of E, and
such that the L-function L(E/M, s) has sign −1. This condition is equiv-
alent (see, e.g., the discussion of [D2, §3.6]) to the set

(3.2) {p | NE : p is inert in M}

having even cardinality.
We have that M = F (

√
α) for some α ∈ F . We set M ′ = F (

√
α′),

where α′ stands for the Galois conjugate of α. Then M = MM ′ is
the Galois closure of M and its Galois group Gal(M/Q) is isomorphic
to D2·4, the dihedral group of 8 elements. The diagram of subfields ofM
is of the form

(3.3)

M

mmm
mmm

mmm
mmm

mmm

QQQ
QQQ

QQQ
QQQ

QQQ

zz
zz
zz
zz

CC
CC

CC
CC

M M ′ FK L L′

F

BBBBBBBB

zzzzzzzzz
K′ K

CCCCCCCC

~~~~~~~~

Q

DDDDDDDDD

{{{{{{{{
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where K = Q(
√
αα′). Observe that K is a quadratic imaginary field,

for M is ATR and necessarily αα′ = NmF/Q(α) < 0. From now on, we
will assume that the discriminant of K is relatively prime to N .

We will see that all the primes dividing Nψ are split in K (see Lem-
ma 3.5). We consider a decomposition of N of the form N = N+N−,
where

• N+ = NψN
+
0 , and N+

0 contains the primes ` | N0 such that ` splits
in K, and
• N− is squarefree and contains the primes ` | N0 such that ` is inert

in K.

As we already mentioned in the introduction, one of the central ideas
of [DRZ] is that Heegner points on Af can be used to manufacture points
on E(M). Indeed, an explicit such construction is provided in [DRZ,
§4], under the assumption that NE = (1). Such construction, in fact, is
easily seen to be valid under the following slightly more general Heegner-
type condition:

(DRZ) N− = 1 (i.e., all the primes dividing N are split in K).

Let us briefly review the structure of the construction in this case (we
refer to [DRZ] for the details). Let us (temporarily) denote by Γ0(N)
the subgroup of SL2(Z) of upper triangular matrices modulo N , and
by Γψ(N) the congruence subgroup

Γψ(N) = {
(
a b
c d

)
∈ SL2(Z) : N | c, ψ(a) = 1} ⊂ Γ0(N).

Let X0(N) (resp. Xψ(N)) denote the modular curve associated to Γ0(N)
(resp. to Γψ(N)), and let J0(N) (resp. Jψ(N)) denote its Jacobian. The
variety Af/Q turns out to be a quotient of Jψ(N)/Q. Since Af is isoge-
nous over F to E2, it follows that E admits a morphism (defined over F )
from Jψ(N). Therefore we obtain a uniformization

(3.4) Jψ(N) −→ E

which is defined over F .
On the other hand, the inclusion Γψ(N) ⊂ Γ0(N) induces a degree 2

map Xψ(N)→ X0(N), and the Heegner points in Xψ(N) are the preim-
ages of the Heegner points in X0(N). Denote by M0(N) ⊂ M2(Z) the
set of matrices which are upper triangular modulo N . An embedding
ϕ : K ↪→M2(Q) is said to be of conductor c and level N if ϕ−1(M0(N))
is equal to Oc, the order of conductor c. The Heegner points in X0(N)
associated to Oc are in one to one correspondence with the optimal em-
beddings of level N and conductor c. They are defined over its ring class
field Hc, so that their preimages in Xψ(N) are defined over a certain
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quadratic extension Lc of Hc (see §4.2 for the details). This gives rise
to Heegner points in Jψ(N) defined over Lc.

One of the results proved in [DRZ] is that, for suitable choices of c,
the extension Lc contains L (cf. §3.4 for a generalization of this result).
By taking the trace from Lc down to L one obtains a point in Jψ(N)(L).
Summing it with its conjugate by an appropriate element in Gal(M/Q)
produces a point on Jψ(N)(M). Finally, projecting to E via (3.4) yields
the point on E(M).

The reason why the construction outlined above only works under the
hypothesis that N− = 1 is that, otherwise, there do not exist optimal
embeddings ϕ : K ↪→M2(Q) of conductor c and level N . That is to say,
there are no Heegner points in X0(N) defined over ring class fields of K.

The main goal of the present article is to provide a construction of
Heegner points on E(M) in the case N− > 1. For that purpose, and
similarly to the classical case of Heegner points on curves over Q, we
need to consider Heegner points coming from Shimura curves attached
to division quaternion algebras. In the next section we introduce the
Shimura curves that will play the role of Xψ(N) in our construction,
and we discuss Heegner points on them.

Before that, we state some Galois properties of the fields in Dia-
gram (3.3) and about certain number fields Lc, attached to orders in K
of conductor c that will be the fields of definition of Heegner points. We
also introduce some more notation that will be in force for the rest of
the article.

3.3. Galois properties and the number of primes dividing N−.
In this subsection we study those properties of the field Diagram (3.3)
that are needed later. Let

χM , χ
′
M : GF −→ {±1}

denote the quadratic characters of GF = Gal(Q/F ) cutting out the
extensions M and M ′, respectively. Observe that we can, and often
do, view them as characters on the ideles A×F . Similarly we define the
characters

χL, χ
′
L : GK −→ {±1},

and view them as characters of A×K .

Remark 3.3. Observe that M = F (
√
α) by construction, and M ′ =

F (
√
α′), where α′ denotes the Gal(F/Q)-conjugate of α. In particular,

if p is a prime that splits in F , say as pOF = pp′, then χM (p) = χ′M (p′),
for the splitting behavior of p in M/F is the same as that of p′ in M ′/F .
A similar observation applies for L.



522 X. Guitart, M. Masdeu

We also denote by εF and εK the quadratic characters on A×Q corre-
sponding to F and K, and by

NmF/Q : A×F −→ A×Q , NmK/Q : A×K −→ A×Q
the norms on the ideles. Observe that, as remarked above, F is the field
cut out by ψ. This means that, in fact, εF = ψ.

We will make use of the following properties of Diagram (3.3), which
are given in Proposition 3.2 of [DRZ].

Lemma 3.4. (1) χM ·χ′M = εK ◦NmF/Q and χL ·χ′L = εF ◦NmK/Q.

(2) The restriction of χM and χ′M to A×Q is εK , and the restriction of

χL and χ′L to A×Q is εF .

(3) IndQ
F χM = IndQ

K χL.

Let dL/K denote the discriminant of the extension L/K, which by the
conductor-discriminant formula is the conductor of χL.

Lemma 3.5. (1) There exists an ideal Nψ,L⊂OK of norm Nψ canon-
ically attached to (ψ,L). In particular, all primes dividing Nψ are
split in K.

(2) One may write dL/K = c·Nψ,L, where c belongs to Z and is coprime
to N .

Proof: From the equality IndQ
F χM = IndQ

K χL, using the formula for
the conductor of induced representations and the conductor-discriminant
formula, we obtain

(3.5) Nψ ·NmF/Q(dM/F ) = disc(K) ·NmK/Q(dL/K).

From this it follows that Nψ | NmK/Q(dL/K), since N is coprime to
disc(K). If we write

dL/K =
∏

p|dL/K
p-Nψ

pep ·
∏

p|dL/K
p|Nψ

pep

then we have (by setting pp = p ∩ Z):

NmK/Q(dL/K) =
∏

p|dL/K
p-Nψ

p
e′p
p ·

∏
p|dL/K
p|Nψ

p
e′p
p , and Nψ =

∏
p|dL/K
p|Nψ

pe
′
p .

Thanks to our running assumption that (N, disc(K)) = 1, for every
p | Nψ we either have that NmK/Q(p) = pp when pp is split (in which

case e′p = ep), or that NmK/Q(p) = p2
p when pp is inert (in which case
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e′p = 2ep). Since Nψ is squarefree (see Remark 3.2), it must be e′p = 1
so that ep = 1 and pp is split. Therefore

Nψ = NmK/Q

( ∏
p|dL/K
p|Nψ

p

)
,

which proves the first assertion by putting Nψ,L =
∏

p|dL/K ,p|Nψ p.

As for the second part of the lemma, we consider primes p dividing
NmK/Q(dL/K). Suppose first that p | Nψ. By the first part p splits in K,
say as pOK = pp. Then OK,p ' Zp, and by part (3.4) of Lemma 3.4 the
composition

Z×p −→ O×K,p ×O
×
K,p

χL,p·χL,p−−−−−−→ {±1}
is equal to ψp (the local component of ψ at p), which is non trivial because
p | Nψ. But since χL,p, χL,p are quadratic characters, then necessarily

exactly one them is trivial on F×p ' O×K,p/(1 + p) ' O×
K,p

/(1 + p),

say χL,p. Then p divides exactly the conductor of χL (which is equal
to dL/K), and p does not divide it.

Now suppose that p - Nψ. That is to say, ψp is trivial on Z×p . Let
p | p be a prime in K such that pe divides exactly the conductor of χL.
The composition

Z×p −→ O×K,p
χL,p−−−→ {±1}

is equal to ψp, which is trivial on Z×p . If p was ramified in K, then the
above map would restrict to

Z×p /(1 + peZp)
'−→ O×K,p/(1 + peOK,p)

χL,p−−−→ {±1},

contradicting the non-triviality of χL,p restricted to O×K,p/(1 + peOK,p).
Hence we see that p cannot ramify. If p is inert in K there is nothing to
prove, because pe = peOK is already a rational ideal. If p splits in K,
say as pOK = pp, then χL,p ' χ−1

L,p on Z×p , implying that pe exactly
divides the conductor of χL, because OK,p ' Zp ' OK,p.

We have seen that dL/K = c ·Nψ,L with c ∈ Z. It remains to prove
that c is coprime to N . Recall that N = NψN0, where N0 is a generator
of the conductor NE of E. From what we have seen in the proof so far, it
is clear that (c,Nψ) = 1. Recall also our running assumption that NE is
coprime to dM/K (cf. §3.2), which implies that (N0,NmF/Q(dM/K)) = 1.
From (3.5) we see that c | NmF/Q(dM/F ), and therefore (c,N0) = 1.

The Heegner points that we will use in our construction arise from a
Shimura curve associated to an indefinite algebra of discriminant N−.
Therefore, the following result is key to our purposes.
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Proposition 3.6. The number of primes dividing N− is even.

Proof: Recall that NE = N0OF and that the set

(3.6) {p | NE : p is inert in M}

has even cardinality thanks to our running assumption that L(E/M, s)
has sign −1. Every prime in the set (3.6) is above a prime p | N0. Thus,
in order to prove the proposition it is enough to prove the following
claims.

Claim 1. Every prime p | N+
0 gives rise to either zero or two primes

in (3.6).

Claim 2. Every prime p | N−0 = N− gives rise to exactly one prime
in (3.6).

Proof of Claim 1: Let p be a prime dividing N+
0 . Namely, p is a prime

divisor of N0 that splits in K. Observe that p can not ramify in F
because of our assumption that (Nψ, N0) = 1. If p splits in F , say
pOF = pp′, by Remark 3.3 and part (1) of Lemma 3.4 we see that

χM (p) · χM (p′) = χM (p) · χ′M (p) = εK(NmF
Q (p)) = εK(p) = 1,

so that either both p and p′ are inert in M , or both are split. In other
words, either p and p′ belong to (3.6), or none of them does.

If p remains inert in F , by part (2) of Lemma 3.4 we have that

χM (pOF ) = εK(p) = 1,

which means that pOF is split in M , so that it does not belong to (3.6).

Proof of Claim 2: Let p be a prime dividing N−0 = N−. Again there are
two possibilities.

(1) If p is split in F , say pOF = pp′, then by part (1) of Lemma 3.4
we have that

χM (p)χM (p′) = χM (p)χ′M (p) = εK(NmF
Q (p)) = εK(p) = −1,

so exactly one of the primes above p is inert in M and therefore
belongs to (3.6).

(2) If p is inert in F , then by part (2) of Lemma 3.4 we see that

χM (pOF ) = εK(p) = −1,

and so pOF is inert in M .
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3.4. The field Lc. The aim of this subsection is to define an exten-
sion Lc of L, associated to ψ and to the order of conductor c in K. It
will turn out to be the field of definition of the Heegner points that we
will consider in §4.

Recall that from Lemma 3.5 the discriminant of L/K factors as

dL/K = c ·Nψ,L,

where c is a rational integer with (c,N) = 1 and Nψ,L is an ideal in K of
norm Nψ. Let N+ = NψN

+
0 and let N+ be an ideal of K of norm N+,

such that Nψ,L | N+. We remark that Nψ,L is determined by (ψ,L),

while there is some freedom in the choice of N+. We denote by N
+

its
complex conjugate.

Let Hc/K be the ring class field of K of conductor c. Denote by AK
the adeles of K, and by ÔK =

∏
pOK,p ⊂ AK,fin. The reciprocity map of

class field theory provides an identification Gal(Hc/K) ' A×K/(K×Uc),
where

Uc = Ẑ×(1 + cÔK)C× ⊂ A×K .
For an idele α =

∏
p αp and an ideal m, we denote by (α)m the product∏

p|m αp. Following [DRZ, §4.1] we define

U0
c = {α ∈ Uc : (α)N+ ∈ ker(ψ) ⊂ (Z/N+Z)×},

U
0

c = {α ∈ Uc : (α)
N

+ ∈ ker(ψ) ⊂ (Z/N+Z)×}.

Here we are using the fact that N+ has norm N+, so that we have
isomorphisms

O×K,N+/(1 + N+OK,N+) ' (Z/N+Z)×,

O×
K,N

+/(1 + N
+O

K,N
+) ' (Z/N+Z)×,

where the notationOK,N+ stands for
∏

p|N+OK,p and similarly forO
K,N

+ .

Let Lc and L′c be the fields corresponding by class field theory to U0
c

and U
0

c respectively. That is to say

(3.7) Gal(Lc/K) ' A×K/(K
×U0

c ), Gal(L′c/K) ' A×K/(K
×U

0

c).

Both Lc and L′c are quadratic extensions of Hc, and we denote by H̃c

the biquadratic extension of K given by H̃c = LcL
′
c.

Lemma 3.7. If c is the one given by Lemma 3.5, then L is contained
in Lc. Therefore LL′ is contained in H̃c.
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Proof: By class field theory it is enough to show that U0
c is contained in

kerχL. Recall that the conductor of χL is equal to dL/K and hence equal

to cNψ,L, with Nψ,L | N+. This means that χL|Ô×K
factors through a

character

(3.8) χL : O×K,cN+/(1 + cN+OK,cN+) −→ {±1}.

Let (α) be a finite idele of K that belongs to U0
c . We aim to see that

χL(α) = 1. Since α belongs to Uc, we can write it as α = a(1 + cx) for

some a ∈ Ẑ× and some x ∈ ÔK . Locally, we can express this as

α = a(1 + cx) = a
∏

p-cN+

xp
∏
p|c

(1 + pvp(c)xp)
∏
p|N+

xp.

By (3.8) we see that

χL

( ∏
p-cN+

xp
∏
p|c

(1 + pvp(c)xp)

)
= 1.

Therefore, we see that

χL(α) = χL

(
a
∏
p|N+

xp

)
= χL

( ∏
p|N+

apxp

)
χL

(∏
p|c

ap

)
.

Since
∏

p|c ap lies in A×Q , we have that

χL

( ∏
p|N+

apxp

)
χL

(∏
p|c

ap

)
= ψ

( ∏
p|N+

apxp

)
ψ

(∏
p|c

ap

)

= ψ
(
(α)N+

)
ψ

(∏
p|c

ap

)
= ψ

(∏
p|c

ap

)
.

But
∏

p|c ap ∈
∏

p|c Z
×
pp (where pp = p ∩ Z). Since the conductor of ψ

is Nψ, which is coprime to c, we have that

ψ

(∏
p|c

ap

)
= 1,

as we aimed to show.

4. CM points on Shimura curves with quadratic
character

In this section we recall some basic facts and well-known properties
of Shimura curves. We also introduce the CM points that will play a
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key role in our construction of points in E(M) later in §5, and we use
Shimura’s reciprocity law to deduce their field of definition.

Let B/Q be the quaternion algebra of discriminant N−. Thanks to
Proposition 3.6 we see that B is indefinite so we can, and do, fix an
isomorphism

ι∞ : B ⊗Q R '−→ M2(R).

Choose R0 = R0(N+, N−) an Eichler order of level N+ in B together
with, for every prime ` | N+, an isomorphism

ι` : B ⊗Q Q`
'−→ M2(Q`)

such that

ι`(R0) '
{(

a b
c d

)
∈ M2(Z`) : c ∈ `Z`

}
.

In this way we also obtain an isomorphism

ιN+ : R0 ⊗ ZN+ '
{(

a b
c d

)
∈ M2(ZN+) : c ∈ N+ZN+

}
,

where ZN+ =
∏
p|N+ Zp. Let η : R0 → ZN+/N+ZN+ be the map that

sends γ to the upper left entry of ιN+(γ) taken modulo N+. The charac-
ter ψ can be regarded in a natural way as a character ψ : ZN+/N+ZN+ →
{±1}. Let U0 = R×0 be the group of units in R0, and define

(4.1) Uψ = {γ ∈ U0 : ψ ◦ η(γ) = 1}.

Let also Γ0 (resp. Γψ) denote the subgroup of norm 1 elements in U0

(resp. Uψ).

4.1. Shimura curves. Let X0 = X0(N+, N−) be the Shimura curve
associated to Γ0. Similarly, let Xψ = Xψ(N+, N−) be the Shimura curve
associated to Γψ. See [BC, Chapitre III] for the precise moduli descrip-
tion. They are curves over Q, whose complex points can be described
as

(4.2) X0(C) ' Γ0\H, Xψ(C) ' Γψ\H,

where H denotes the complex upper half plane, and Γ0 and Γψ act on H
via ι∞. The inclusion Γψ ⊂ Γ0 induces a degree 2 homomorphism defined
over Q

πψ : Xψ −→ X0.
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4.2. CM points. Let c be an integer relatively prime to N and to the
discriminant of K, and let Oc = Z + cOK be the order of conductor c
in K. An algebra embedding ϕ : Oc ↪→ R0 is said to be an optimal
embedding of conductor c if ϕ(K) ∩R0 = ϕ(Oc). Recall also the ideal

N+ ⊂ K of norm N+ that we fixed in §3.4, and that we denote by N
+

its complex conjugate.

Definition 4.1. We say that an optimal embedding ϕ : Oc ↪→ R0 is
normalized with respect to N+ if it satisfies that

(1) ι∞(ϕ(a)) ( τ1 ) = a ( τ1 ) for all a ∈ Oc and all τ ∈ C (here we view
K ⊂ C), and

(2) ker(η ◦ ϕ) = N+.

We denote by E(c,R0) the set of normalized embeddings with respect
to N+.

Remark 4.2. Observe that we do not impose any normalization at the
primes dividing N− (in particular, the Galois action that we will intro-
duce below on the set of normalized embeddings will not be transitive).
But the involutions at primes dividing the discriminant of the algebra
do not play any role for the applications of the present note.

The groups Γ0 and Γψ act on E(c,R0) by conjugation, and we denote
by E(c,R0)/Γ0 and E(c,R0)/Γψ the corresponding (finite) sets of con-
jugacy classes. Each ϕ ∈ E(c,R0) has a unique fixed point τϕ in H. The
image of τϕ in Γ0\H ' X0(C) (resp. in Γψ\H ' Xψ(C)) only depends
on the class of ϕ in E(c,R0)/Γ0 (resp. E(c,R0)/Γψ). We will denote the
point defined by τϕ in the Shimura curve by [τϕ]. The points obtained
in this way are the so-called CM points or Heegner points.

We denote by CM0(c) the set of CM points of conductor c correspond-
ing to optimal embeddings normalized with respect to N+. That is to
say

CM0(c) = {[τϕ] ∈ X0(C) : ϕ ∈ E(c,R0)/Γ0}.
Similarly, we denote by CMψ(c) their preimage under πψ, which can be
described as

CMψ(c) = {[τϕ] ∈ Xψ(C) : ϕ ∈ E(c,R0)/Γψ}.
From now on we identify CM0(c) with E(c,R0)/Γ0 and CMψ(c) with
E(c,R0)/Γψ (this is possible because the association [ϕ] 7→ [τϕ] is injec-
tive). Every element in CM0(c) has two preimages in CMψ(c), which are
interchanged by the action of any element Wψ ∈ Γ0 r Γψ.

There is an action ? of K̂× on E(c,R0), given as follows. For any x =

(xp)p∈K̂× and ϕ∈E(c,R0), the fractional ideal ϕ̂(x)R̂0∩B is principal,
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say generated by γx ∈ B×. Let ax = ϕ̂(xN+)−1γx. Observe that ax,p ∈
R×0 for every p | N+, and therefore it makes sense to consider ψ ◦ η(ax).
Modifying each γx,p by a unit if necessary and by strong approximation
we can assume that γx is chosen in such a way that ψ ◦ η(ax) = 1. That
is to say, ϕ̂(xN+)−1γx lies in the kernel of ψ ◦ η. Then x ? ϕ is defined
as x ? ϕ := γ−1

x ϕγx.
By results of Shimura CM points are defined over Kab, the maximal

abelian extension of K. The Galois action on them is given in terms of
the reciprocity map of class field theory

rec : K̂×/K× −→ Gal(Kab/K)

by means of Shimura’s reciprocity law (cf. [Shi, Theorem 9.6]):

(4.3) rec(x)−1([τϕ]) = [τx?ϕ].

Here the action in the left is the usual Galois action on the Q-points of
a variety defined over Q. One of its well known consequences is that
CM0(c) ⊂ X0(Hc), i.e. CM points of conductor c on X0 are defined over
the ring class field of conductor c. One can also derive from it the field
of definition of CMψ(c), which is precisely the field Lc defined in §3.4.

Proposition 4.3. CMψ(c) ⊂ Xψ(Lc).

Proof: It follows directly from (4.3) and the fact that U0
c acts trivially

on E(c,R0)/Γψ.

5. ATR points on Q-curves

In this section we introduce the main construction of this note, namely
an ATR point in E manufactured by means of CM points on Xψ. To
this end, let us briefly recall the setting of §3 and some of the results
encountered so far. The initial data is a classical modular form f =
fE ∈ S2(N,ψ) such that N is odd or squarefree, ψ is of order 2, and its
field of Fourier coefficients Kf is quadratic imaginary. Then the modular
abelian variety Af is F isogenous to the square of a Q-curve E, which is
defined over the real quadratic field F corresponding to ψ. In fact, E/F
is characterized by the equality of L-functions

(5.1) L(E/F, s) =
∏

σ : Kf ↪→C
L(f, s).

Let M be a quadratic ATR extension of F such that L(E/M, s) has
sign −1. This gives rise to a quadratic imaginary extension K, sitting
in the field Diagram (3.3). We assume that level N factorizes as N =
N+N−, where N+ is supported on the primes that split in K and N− is
the squarefree product of an even number of primes that are inert in K.



530 X. Guitart, M. Masdeu

By Lemma 3.5 the discriminant of L/K factorizes as cNψ,L, with
c ∈ Z and Nψ,L ⊂ K an integral ideal of norm Nψ. Recall also that we
fixed an ideal N+ of norm N+ with Nψ,L | N+. Recall also CMψ(c),
the set of Heegner points of conductor c (and normalized with respect
to N+), which lie in Xψ(Lc).

5.1. Construction of the ATR point. Recall that, as we have seen
before, by Simura’s reciprocity law if τ ∈ CMψ(c) then τ ∈ Xψ(Lc).
Next, we describe how to attach to each such Heegner point τ a point
Pτ ∈ E(M).

Let S2(Γψ) = S2(Γψ(N+, N−)) denote the space of weight two new-
forms with respect to Γψ. Thanks to the Jacquet–Langlands correspon-
dence there exists a newform g ∈ S2(Γψ) such that L(g, s) = L(f, s). In
other words, g has the same system of eigenvalues by the Hecke opera-
tors as f . In addition, if we let Jψ = Jac(Xψ) there exists a surjective
homomorphism defined over Q (see [YZZ, §1.2.3])

(5.2) πf : Jψ −→ Af .

The map πf is given explicitly in terms of integrals of g and its conjugate
(cf. §5.2 below).

The next step is to associate to τ a divisor of degree 0 on Xψ, hence
a point in Jψ that we can project to Af . In the case of classical modular
curves, i.e. when N− = 1, the usual procedure is to use the embedding
Xψ ↪→ Jψ given by the choice of the rational cusp ∞ as base point.
That is to say, the degree 0 divisor attached to τ would be (τ) − (∞).
However, when N− > 1 the Shimura curve Xψ does not have cusps.
In this case, Zhang (cf. [YZZ, §1.2.2]) uses the map φ : Xψ → Jψ that
sends τ to τ − ξ, where ξ ∈ Pic(Xψ) ⊗ Q is the so called Hodge class.
Then the point P ′τ = πf ◦ φ(τ) belongs to Af (Lc).

Before continuing with the construction of the point Pτ , it is worth
mentioning how P ′τ (or rather a closely related point) can be computed
in practice because this will be used in the explicit calculations of §7.
For this we follow a remark of [Mok, §4.4], based on the fact that ξ is a
divisor of degree 1 satisfying that T`ξ = (`+ 1)ξ for all primes ` (here T`
stands for the `-th Hecke operator). Thanks to the Hecke-equivariance
of πf , if we let a` denote the `-th Hecke eigenvalue of f we have that

(`+ 1− a`)πf (φ(τ)) = πf ((`+ 1− T`)φ(τ))

= πf ((`+ 1− T`)(τ − ξ))
= πf ((`+ 1− T`)τ).
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This gives an expression for (`+ 1− a`)P ′τ , in which we are regarding a`
as an endomorphism of Af via the identification K` ' EndQ(Af )⊗Q.

Returning to the construction of Pτ , recall that by Lemma 3.7 the
field Lc contains L. Then we define

Pτ,L = TrLc/L(P ′τ ) ∈ Af (L).

Our running assumption that the sign of the functional equation for E/M
is −1 implies that L(E/M, 1) = 0. Next, we apply the Gross–Zagier-
type formula of [YZZ] in order to show that Pτ,L is of infinite order
in analytic rank one situations. The natural case to consider is when
L(E/F, 1) 6= 0, because otherwise the non-torsion point on E would
already be defined over F .

Proposition 5.1. If L(E/F, 1) 6= 0 and L′(E/M, 1) 6= 0 then Pτ,L is
non-torsion.

Proof: From the basic equality

L(E/M, s) = L(E/F, s)L(E/F, χM , s)

we see that L(E/F, χM , 1) = 0, because of the assumption L(E/F, 1) 6=
0. The derivative of the above expression, together with the assumption
that L′(E/M, 1) 6= 0 also implies that L′(E/F, χM , 1) 6= 0. By (5.1), the
Artin formalism, and Lemma 3.4 we have that

L(E/F, χM , s) = L(f/F ⊗ χM , s) = L(f ⊗ IndQ
F χM , s)

= L(f ⊗ IndQ
K χL, s) = L(f/K ⊗ χL, s),

from which we obtain that L′(f/K ⊗ χL, 1) 6= 0.
The modular form f gives rise to a cuspidal automorphic representa-

tion π of GL2(AQ) whose central character ωπ is the Nebentypus ψ of f .
Since ωπ · χL|A×Q = 1 by Lemma 3.4, we are in the position of apply-

ing the Gross–Zagier-type formula of [YZZ, §1.3.2]. For that, starting
with the Heegner point P ′τ ∈ Af (Lc) and regarding χL as a character of
Gal(Lc/K) we set

(5.3) PχLτ :=
∑

σ∈Gal(Lc/K)

χL(σ)−1 · σ(P ′τ ).

Then [YZZ, Theorem 1.2] expresses the Neron–Tate heigh of PχLτ as
a non-zero multiple of L′(f/K ⊗ χL, 1). This implies that PχLτ is non-
torsion. But now, since χL is the character corresponding to the qua-
dratic extension L/K, we can write

PχLτ =
∑

σ∈Gal(Lc/L)

σ(P ′τ ) +
∑

σ∈Gal(Lc/L)

(−1) · (sσ)(P ′τ ),
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where s ∈ Gal(Lc/K) is an element that induces the nontrivial automor-
phism of L/K. This can be written as

(5.4) PχLτ = Pτ,L − s(Pτ,L),

and we see that Pτ,L must be non-torsion as well.

Now let τM denote the element in Gal(M/Q) whose fixed field is M .
We define

Pτ,M = Pτ,L + τM (Pτ,L),

which belongs to Af (M). We have the following consequence of Propo-
sition 5.1.

Proposition 5.2. If L(E/F, 1) 6= 0 and L′(E/M, 1) 6= 0 then Pτ,M is
non-torsion.

Proof: The key property is that Pτ,L is defined over L, but it is not
defined over K (this follows from (5.4): if it was defined over K, then
PχLτ would be 0 because s would fix it, but under the hypothesis of
the proposition PχLτ is non-torsion). The same is true for any multiple
n ·Pτ,L. Since τM (L) = L′, we see that τM (Pτ,L) is defined over L′ (and
is not defined over K). But now, if Pτ,L + τM (Pτ,L) was torsion, say of
order n, we would have that

nPτ,L = −nτM (Pτ,L),

which is a contradiction because the point in the left is defined over L,
and the point on the right is defined over L′.

Finally, in order to define Pτ , recall that Af is F -isogenous to E2. In
particular, Q ⊗Z Af (M) ' Q ⊗Z E(M) × Q ⊗Z E(M), so that we can
choose a projection πE : Af → E defined over F such that

Pτ = πE(Pτ,M ) ∈ E(M)

is of infinite order when Pτ,M is.

Remark 5.3. Observe that the projection πE is not uniquely determined
by the above condition. However, this does not affect the construction
in a sensible way because the property for a point being defined over M
or being of infinite order is not affected by isogenies defined over F .

One of the main motivations for the construction of the point Pτ is
that it extends the construction of [DRZ] to the case N− > 1. However,
a nice feature of the setting considered in [DRZ] is that in that case the
points can be effectively computed (cf. the explicit formula of [DRZ,
Theorem 4.6]) as suitable integrals of the classical modular form f . In
our situation, however, the equivalent computation seems to be more
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difficult, because the modular forms involved are quaternionic modular
forms. This is the issue that we address in the next paragraph. As we
will see in §6, the effective computation of Pτ can be accomplished by
using p-adic methods.

5.2. Complex uniformization and Heegner points. The projec-
tion map πf of (5.2) is given by a generalization of the classical Eichler–
Shimura construction (cf. [D2, §4]). In this context, the quaternionic
modular form g gives rise to a differential form ωg ∈ H0(Xψ,Ω

1). Recall
that g is obtained via the Jacquet–Langlands correspondence from an
elliptic modular form f . Denote by f ′ the modular form whose Fourier
coefficients are the complex conjugates of those of f , and let g′ denote
the modular form with respect to Γψ corresponding to f ′ by Jacquet–
Langlands. Observe that ωg and ω′g are determined by this construction
only up to multiplication by scalars, but they can be normalized so as to
satisfy that {ωg, ω′g} is a basis of the space of differential 1-forms defined
over F . Let Φ = ΦN+,N− be the map

Φ: Div0(H) −→ C× C

z2 − z1 7−→
(∫ z2

z1

ωg,

∫ z2

z1

ωg

)
.

The subgroup generated by the images under Φ of divisors which become
trivial in Γψ\H is a lattice Λg ⊂ C×C, and C2/Λg is isogenous to Af (C).
This gives the following analytic description of πf :

(5.5)

Φ: Div0(H/Γψ) −→ Af (C)

z2 − z1 7−→
(∫ z2

z1

ωg,

∫ z2

z1

ωg

)
.

Suppose that D = τ2−τ1 ∈ Div0 CMψ(c). We see that the point πf (D) ∈
Af (Lc) is given, in complex analytic terms, by the formula

(5.6) πf (D) =

(∫ τ2

τ1

ωg,

∫ τ2

τ1

ωg

)
∈ C2/Λg ' Af (C).

The effective computation of the above integrals, however, turns out to
be difficult in general when B is a division algebra, because the newforms
in S2(Γψ) cannot be expressed as a Fourier expansion at the cusps. In the
next section, and modeling on the classical case of newforms in S2(Γ0),
we will see that the points Pτ defined in §5.1 can be computed via p-adic
uniformization, instead of complex uniformization.
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6. p-adic uniformization and CM points

If p is a prime dividing N− the abelian varieties J0 = Jac(X0) and
Jψ = Jac(Xψ) admit rigid analytic uniformizations at p. That is to
say, there exist free groups of finite rank Λ0, S0,Λψ, Sψ together with
isomorphisms

(6.1) J0(Cp) ' Hom(S0,C×p )/Λ0, Jψ(Cp) ' Hom(Sψ,C×p )/Λψ.

In this section we use the p-adic uniformization of Čerednik–Drinfel’d, in
the explicit formulation provided by Bertolini–Darmon, in order to give
a p-adic analytic formula for the points πf (D) for D a degree 0 divisor
in Jψ of (5.2). The main feature of this formula, in contrast with that
of (5.6), is that it is well suited for numerical computations, thanks to
the explicit algorithms of [FM].

6.1. Čerednik–Drinfel’d uniformization. The main reference for
this part is [BC, §5]. Recall the indefinite quaternion algebra B/Q of
discriminant N− and R0 ⊂ B the Eichler order or level N+ that we
fixed in §4. Now let B/Q be the definite quaternion algebra obtained
from B by interchanging the invariants p and ∞. That is to say, its set
of ramification primes is

ram(B) = {` : ` 6= p and ` | N−} ∪ {∞}.

For every ` | pN+ fix an isomorphism

i` : B ⊗Q` −→ M2(Q`).

Let R0 be a Z[ 1
p ]-Eichler order of level N+ in B, which is unique up to

conjugation by elements in B×. In fact, we can choose R0 in such a way

that is locally isomorphic to R0 at every prime ` 6= p. Let Γ
(p)
0 = (R0)×1

denote the group of norm 1 units, and let

Rψ = {γ ∈ R0 : γ ∈ ker(ψ ◦ η)},

where η : R0 → ZN+/N+ZN+ denotes the map that sends γ to the upper

left entry of iN+(γ) taken modulo N+. Set Γ
(p)
ψ = (Rψ)×1 .

Both groups Γ
(p)
0 and Γ

(p)
ψ act on the p-adic upper half plane Hp by

means of ip, and the quotients Γ
(p)
0 \Hp and Γ

(p)
ψ \Hp are rigid analytic

varieties. In the following statement we collect some particular cases
of the Čerednik–Drinfel’d theorem. We denote by Qpi the unramified
extension of Qp of degree i.
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Theorem 6.1. (1) X0 ⊗Qp2 ' Γ
(p)
0 \Hp(Qp2).

(2) If p is split in F then Xψ ⊗Qp2 ' Γ
(p)
ψ \Hp(Qp2).

(3) If p is inert in F then Xψ ⊗Qp4 ' Γ
(p)
ψ \Hp(Qp4).

Proof: Part (1) is well know. As for parts (2) and (3), it follows from the

Čerednik–Drinfel’d theorem that Xψ ⊗ Cp ' Γ
(p)
ψ \Hp. The only thing

that we need to check is that the isomorphism takes place after extending
scalars to Qp2 if p splits in F , and after extending scalars to Qp4 if p is
inert in F . This follows from the discussion in [BC, Remark 3.5.3.1].

Indeed, observe that ip(Rψ) ⊂ M2(Qp), contains
( p 0

0 p

)
if ψ(p) = 1 (i.e.,

if p splits in F ), but only contains
(
p2 0

0 p2

)
if ψ(p) = −1 (i.e., if p is inert

in F ). By [BC, Remark 3.5.3.1] the curve Γ
(p)
ψ \Hp and the isomorphism

to Xψ are defined over Qp2 and over Qp4 , respectively.

6.2. Explicit p-adic uniformization. The main reference for this

part is [D2, §5]. Let Γ be either Γ
(p)
0 or Γ

(p)
ψ . The group Γ acts on

Hp = Cp\Qp with compact quotient. We can speak of S2(Γ), the space
of rigid analytic modular forms of weight 2 on Γ. It is the set of all rigid
analytic functions h : Hp → Cp such that

h(γ · τ) = (cτ + d)2h(τ) for all γ =
(
a b
c d

)
∈ Γ.

Let Meas0(P1(Qp),Cp) denote the space of Cp-valued measures of P1(Qp)
with total measure 0. The group Γ acts on it in the following way: if
µ ∈ Meas0(P1(Qp),Cp) and γ ∈ Γ then (γ · µ)(U) = µ(γ−1U). There is
an isomorphism, due to Amice–Velu and Vishik [DT, Corollary 2.3.4]

(6.2) S2(Γ) ' Meas0(P1(Qp),Cp)Γ,

where the superscript denotes the elements fixed by Γ.
Let T denote the Bruhat–Tits tree of PGL2(Qp). Its set of ver-

tices V(T ) is identified with the set of homothety Zp-lattices in Q2
p. Its

set of oriented edges E(T ) consists of ordered pairs of vertices (v1, v2)
that can be represented by lattices Λ1, Λ2 such that Λ1 ⊂ Λ2 with
index p. For an oriented edge e = (v1, v2), we denote e = (v2, v1),
s(e) = v1, and t(e) = v2. An harmonic cocycle is a function

h : E(T ) −→ Cp
such that h(e) = −h(e) for all e ∈ E , and such that for all v ∈ V(T )∑

s(e)=v

h(e) = 0.
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The group Γ acts on Q2
p via ip, and this induces an action on E(T ). The

space of Γ-invariant measures can be identified with the set of Γ-invariant
harmonic cocycles. This gives an integral structure

Meas0(P1(Qp),Z)Γ ⊂ Meas0(P1(Qp),Cp)Γ

given by the Z-valued harmonic cocycles. It thus gives rise, via the
isomorphism (6.2), to an integral structure S2(Γ,Z) ⊂ S2(Γ).

If µ ∈ Meas0(P1(Qp),Z) and r is a continuous function on P1(Qp)
then the multiplicative integral of r against µ is defined as

×
∫
P1(Qp)

r(t) dµ(t) = lim
{Ua}

∏
r(ta)µ(Ua),

where the limit is defined over increasingly fine disjoint covers {Ua}
of P1(Qp) and ta ∈ Ua is any sample point.

If h∈S2(Γ,Z) and z1, z2∈Hp the multiplicative line integral ×
∫ z2
z1
h(z) dz

is defined to be

×
∫ z2

z1

h(z) dz := ×
∫
P1(Q)

(
t− z1

t− z2

)
dµh(t),

where µh is the measure attached to h by the isomorphism (6.2). This
is used to define the p-adic Abel–Jacobi map

ΦAJ : Div0(Hp) −→ Hom(S2(Γ,Z),C×p ) ' (C×p )g

z1 − z2 7−→
(
h 7→ ×

∫ z2

z1

h(z) dz

)
,

where g denotes the genus of Γ\Hp. The group of degree 0 divisors
in Hp that become trivial on Γ\Hp are mapped by ΦAJ to a lattice
ΛΓ ⊂ Hom(S2(Γ,Z),C×p ). This gives

φAJ : Div0(Γ\Hp) −→ Hom(S2(Γ,Z),C×p )/ΛΓ ' Jac(XΓ)(Cp).

By particularizing this to the groups Γ
(p)
0 and Γ

(p)
ψ one obtains an explicit

expression for the rigid analytic uniformizations of (6.1):

Div0(Γ
(p)
0 \Hp) ' J0(Cp)

ΦAJ−−→ Hom(S2(Γ
(p)
0 ,Z),C×p )/Λ0,

Div0(Γ
(p)
ψ \Hp) ' Jψ(Cp)

ΦAJ−−→ Hom(S2(Γ
(p)
ψ ,Z),C×p )/Λψ.

6.3. CM points and the p-adic uniformization. Let CMp
0(c) ⊂

Γ
(p)
0 \Hp (resp. CMp

ψ(c) ⊂ Γ
(p)
ψ \Hp) denote the set of points correspond-

ing to CM0(c) ⊂ X0 (resp. CMψ(c) ⊂ Xψ) under the isomorphism
X0(Cp) ' Γ0\Hp (resp. Xψ(Cp) ' Γψ\Hp).
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Bertolini and Darmon give in [BD1] an explicit description of CMp
0(c)

in terms of certain optimal embeddings of the order of conductor c
into B. Next, we use this in order to derive the corresponding description
of CMp

ψ(c).

Let R0 be an Eichler order of B of level N+ as in §6.1. Let ϕ : Oc[ 1
p ] ↪→

R0 be an optimal embedding of Z[ 1
p ]-algebras. It has a single fixed point

τϕ ∈ Hp satisfying

α

(
τϕ
1

)
= ip(ϕ(α))

(
τϕ
1

)
for all α ∈ Oc[ 1

p ]. As before, we can define the notion of normalized

embedding : the isomorphism

iN+ : R0 ' {
(
a b
c d

)
∈ M2(ZN+) : c ∈ N+ZN+}

allows us to define the homomorphism

η : R0 −→ Z/N+Z
that sends each element x to the upper left entry of iN+ modulo N+.
Then we say that an optimal embedding ϕ : Oc[ 1

p ] ↪→ R0 is normalized

with respect to N+ if ker(η ◦ ϕ) = N+. The explicit description of
CMp

0(c) given by Bertolini–Darmon is then:

CMp
0(c) = {[τϕ] ∈ Γ

(p)
0 \Hp : ϕ ∈ E(c,R0)}.

Therefore, the set CMp
ψ(c) is given by:

CMp
ψ(c) = {[τϕ] ∈ Γ

(p)
ψ \Hp : ϕ ∈ E(c,R0)}.

As a consequence of Proposition 4.3 we see that ΦAJ(Div0(CMp
ψ(c))) is

contained in Jψ(Lc).

6.4. A p-adic analytic formula for ATR points on Q-curves.
Recall the modular form f ∈ S2(Γ0(N), ψ) corresponding to E. There
exists a rigid analytic modular form h ∈ S2(Γψ,Cp) which is an eigen-
vector for the Hecke operators, and has the same system of eigenvalues
as f . Since the eigenvalues of f are defined over the quadratic imagi-
nary field Kf we can identify h with an harmonic cocycle with values in

the ring of integers of Kf , and we denote by h the complex conjugated

cocycle. Then h0 := (h+h)/2 and h1 := (h−h)/2i belong to S2(Γψ,Z).

Let Φ(p) be the map

Φ(p) : Div0(Hp) −→ C×p × C×p

z2 − z1 7−→
(
×
∫ z2

z1

h0(z) dz,×
∫ z2

z1

h1(z) dz

)
.
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The image of the divisors whose image under Φ(p) becomes trivial in

Γ
(p)
ψ \Hp generates a lattice Λpf ⊂ C×p × C×p , and the quotient1 C×p ×

C×p /Λ
p
f is isogenous to Af (Cp). In particular, if D=τ2−τ1∈Div0 CMp

0(c)
we find the following p-adic analytic formula for the corresponding CM
point in Af :

(6.3) πf (D) =

(
×
∫ τ2

τ1

h0(z) dz,×
∫ τ2

τ1

h1(z) dz

)
,

which in fact belongs to Af (Lc). The above formula for πf (D) can
be explicitly computed, thanks to a slight modification of the explicit
algorithms of [FM]. In the next section we give a detailed example on
how these algorithms can be used in order to compute in practice πf (D),
and therefore also the point Pτ ∈ E(M) constructed in §5.

7. An example

The goal of this section is to illustrate with an example the construc-
tion carried out above. Let F = Q(

√
5) and consider the elliptic curve

defined over F given as

E : y2 = x3 + (−432
√

5− 1296)x+ (−113184
√

5− 282960).

Remark that E is a Q-curve, and has conductor 39OF . We will take
p = 13. The modular form fE attached to E belongs to S2(135, ψ), where
ψ is the unique quadratic character ψ : (Z/5Z)× → {±1} of conductor 5.
Note that the form fE has field of coefficients Q(

√
−1).

We need to construct the quotient of the Bruhat–Tits tree of GL2(Qp)
by the group Γψ. In order to do so, the algorithms of [FM] have been
adapted to work with congruence subgroups such as Γψ. The main
algorithm of [FM] returns, given two vertices or edges of the Bruhat–
Tits tree, the (possibly empty) set of elements of Γ0 relating them. One
just needs to check whether the intersection of this set with Γψ is empty,
which is easily done. The quotient graph that we obtain is represented
in Figure 1. It consists of 4 vertices and 28 edges. The numbers next
to each side of the square in Figure 1 describe how many edges link
each of the two corresponding vertices. For example, there are 8 edges
connecting v0 with v1. Note that all vertices have valency 14 = p+ 1, so
all of them have trivial stabilizers.

1In fact, in view of Theorem 6.1 we can even be more precise in the field of definitions
and work over Hp(Qp4 ); we have that Q×

p4
× Q×

p4
/Λp

f is isogenous to Af (Qp4 ).
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v0 v1

v2v3

6

8

8

6

Figure 1. Quotient Γψ\E(T ).

The space of harmonic cocycles on Γψ\E(T ) has dimension 25. Taking
the common eigenspace on which T19 acts as 4 and T2 acts as 0 we obtain
a 2-dimensional subspace associated to fE . An integral basis of this
subspace is given by the harmonic cocycles h0 and h1, which we proceed
to describe. The harmonic cocycle h0 has support on four edges, and
takes values in ±1 there. In fact, it takes the value +1 and −1 once on
two edges connecting v0 and v3, and the value +1 and −1 on two edges
connecting v1 and v2. The harmonic cocycle h1 can be described exactly
as h0, but they have disjoint supports.

Moreover, T3 satisfies:

T3(h0) = −h1 and T3(h1) = h0.

Define also α = 2
√

5− 1, and let M = F (
√
α), which is ATR. In this

case, the resulting field is K = Q(
√
−19), which has class number 1. Let

g be a root in Cp of the polynomial x2 − x+ 5, and let

τ = (6g + 1) + (8g + 12)13 + (7g + 11)132 + (3g + 3)133

+ (12g + 9)134 + (6g + 1)135 + · · ·

be a fixed point under an embedding ϕ of the maximal order of K into
the Eichler order R0(1) of the quaternion algebra B = (−3,−1), having
basis:

R0(1) = 〈1, j, 5/2j + 5/2k, 1/2 + 1/2i− 3/2j − 3/2k〉.
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We consider the divisor D = (τ)− (τ) and calculate:

J0 = ×
∫ τ

τ

ωh0
= (8g + 12) + (3g + 1)13 + (7g + 10)132 + (8g + 8)133

+ (7g + 1)134 + (7g + 6)135 + (9g + 8)136 + (7g + 7)137

+ (4g + 9)138 + (4g + 4)139 + (5g + 12)1310

+ (8g + 1)1311 + (11g + 11)1312 + · · ·

and in fact J1 = J0.
We calculate the image of J0 under the Tate uniformization map, to

get coordinates (x, y) ∈ E(Cp):

x = (12h3 + 3h2 + 4h+ 1) + (9h3 + 10h2 + h+ 9)13

+ (6h3 + 5h2 + 3h+ 9)132 + (6h3 + 8h2 + 8)133

+ (8h3 + 2h2 + 5h+ 8)134 + (4h3 + 9h2 + 4h+ 6)135 + · · ·

and

y = (11h3 + 5h2 + 2h+ 9) + (12h3 + 12h2 + h+ 10)13

+ (7h2 + 10h+ 7)132 + (2h3 + 5h2 + 9h+ 7)133

+ (5h3 + 2h2 + 4h+ 4)134 + (3h3 + 3h+ 11)135 + · · ·

Here, h satisfies:

h4 + 3h2 + 12h+ 2 = 0.

We have carried out all the calculations to precision 1380, and up to
this precision it turns out that x is a root of the irreducible polynomial:

Px(T ) = T 4 + 60T 3 + 19728T 2 + 380160T + 40144896

and y is a root of the irreducible polynomial:

Py(T ) = T 8−1166400T 6+5027006707200T 4−321342050396160000T 2

+ 75899706935371407360000.

The polynomial Py(T ) factors as two quartics over F . We let M/F
be the quartic extension generated by one of these two factors, and
we remark that Py(T ) splits completely over M, so it is actually the
splitting field of Py(T ). Let α be a root of Py(T ) in M. Then the
coordinates (x, y) are defined over M and correspond to the point:

((1/12960
√

5− 1/4320)α2 + 3/2
√

5 + 15/2, α) ∈ E(M).
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Since M contains the field M , we can compute the trace of this point
down to M , to obtain the point of infinite order

PD =

(
474
√

5 + 750

19
,

20412
√

5 + 19440

361

√
α

)
∈ E(M).
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Basel, 2004, pp. 189–239.

[Que] J. Quer, Package description and tables for the paper “Fields
of definition of building block”, arXiv:1202.3061.

[R1] K. A. Ribet, Galois representations attached to eigenforms
with Nebentypus, in: “Modular functions of one variable, V”
(Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), Lec-
ture Notes in Math. 601, Springer, Berlin, 1977, pp. 17–51.

[R2] K. A. Ribet, Twists of modular forms and endomorphisms
of Abelian varieties, Math. Ann. 253(1) (1980), 43–62. DOI:

10.1007/BF01457819.
[R3] K. A. Ribet, Abelian varieties over Q and modular forms,

in: “Modular curves and Abelian varieties”, Progr. Math. 224,
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