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OPTIMAL QUASI-METRICS IN A GIVEN POINTWISE

EQUIVALENCE CLASS DO NOT ALWAYS EXIST

Dan Brigham and Marius Mitrea

Abstract: In this paper we provide an answer to a question found in [3], namely

when given a quasi-metric ρ, if one examines all quasi-metrics which are pointwise

equivalent to ρ, does there exist one which is most like an ultrametric (or, equivalently,
exhibits an optimal amount of Hölder regularity)? The answer, in general, is negative,

which we demonstrate by constructing a suitable Rolewicz–Orlicz space.
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1. Introduction

Quasi-normed spaces such as certain Lebesgue spaces, Lorentz spaces,
Hardy spaces, Besov spaces, and Triebel–Lizorkin spaces (to name a
few), arise naturally in analysis. In general, given a vector space X
and a norm ‖ · ‖ : X → [0,∞], if ‖ · ‖′ is pointwise equivalent to ‖ · ‖
(in the sense that vectors have comparable sizes when measured in ‖ · ‖
and ‖ ·‖′), the most we can conclude is that ‖ ·‖′ is merely a quasi-norm;
heuristically speaking, the collection of norms on a vector space is not
stable under pointwise equivalence, while the collection of quasi-norms
is. Furthermore, an operator from one quasi-normed space to another is
bounded with respect to one quasi-norm if and only if it is bounded to
some (hence, any) pointwise equivalent quasi-norm, and also pointwise
equivalent quasi-norms induce the same topologies.

A natural question arises: given a quasi-norm ‖·‖ on a vector space X,
if one looks at the collection of all pointwise equivalent quasi-norms, is
there a best quasi-norm to work with? To answer this we shall adopt a
more general point of view and consider this question formulated in the
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larger category of quasi-metric spaces (since every quasi-norm may be
viewed as a quasi-metric). In this context, the notion of “best” is made
precise in (2.5). In loose terms, quasi-metrics are the most rudimentary
tools for measuring distances, possibly failing to be continuous and their
associated balls failing to be open in the topology they induce, while met-
rics, which may be thought of as nicer versions of quasi-metrics, do not
exhibit such pathological properties, and finally ultrametrics are better
still, enjoying a number of highly specialized properties (such as every
triangle being isosceles and every point in a ball being its center). With
this mindset, the issue we address is, given a quasi-metric and examining
all quasi-metrics which are pointwise equivalent (i.e., comparable in size)
to it, whether or not there exists one which is most ultrametric-like.

This aspect is particularly relevant for the type of analysis one may
carry out on a quasi-metric space since, as we indicate in Remark 4.2,
it may be rephrased in the following form: given a quasi-metric, among
all others that are pointwise equivalent to it, is there one that exhibits
the most amount of Hölder regularity?

We shall see that, in general, this optimization problem does not nec-
essarily have a global minimizer (a phenomenon akin to a lack of com-
pactness). We establish this following these steps: first we present cer-
tain regularization results (processes associating to given quasi-metrics
other quantitatively better quasi-metrics), then introduce the Rolewicz
modulus of concavity of a topological vector space and relate this mod-
ulus of concavity to certain optimal constants regarding the geometry of
quasi-metric spaces, both of which are infima. After this we develop the
notion of Rolewicz–Orlicz spaces (which are topological vector spaces)
and construct one whose modulus of concavity is not attained. When
brought back to the setting of quasi-metrics, this proves our main result.
We conclude by identifying a scenario containing additional constraints
in which the aforementioned optimization problem happens to have a
global minimizer.

2. Requisite notions

First we record some basic definitions. Given a set X , call two func-
tions f, g : X → [0,∞] pointwise equivalent, written f ≈ g, if there exists
C ∈ [1,∞) such that C−1f(x) ≤ g(x) ≤ Cf(x) for all x ∈X .

Definition 2.1. Let X be an ambient set (tacitly assumed to have
cardinality at least 2) and denote by diag(X) the diagonal in Cartesian
product X ×X.
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(1) Call ρ : X ×X→ [0,∞] a quasi-metric on X if ρ−1({0})=diag(X)
and

Cρ := sup
x,y,z∈X

not all equal

ρ(x, y)

max{ρ(x, z), ρ(z, y)}
<∞,

C̃ρ := sup
x,y∈X
x 6=y

ρ(y, x)

ρ(x, y)
<∞.

(2.1)

In such a scenario, call the pair (X, ρ) a quasi-metric space.
(2) Given a quasi-metric ρ on X, denote by [ρ] the collection of all

quasi-metrics onX which are pointwise equivalent to ρ, and call it a
quasi-metric structure on X. Also, given a quasi-metric structure q
on X, call the pair (X,q) a quasi-metric structure space.

A few remarks are in order. First, ρ−1({0}) = diag(X) is the typical

nondegeneracy condition. Also, by design, Cρ, C̃ρ ≥ 1, hence ultimately

Cρ, C̃ρ ∈ [1,∞). That for each x, y ∈ X there holds ρ(y, x) ≤ C̃ρ ρ(x, y)

expresses the fact ρ is quasi-symmetric. Call ρ symmetric if C̃ρ = 1.
That Cρ is finite reflects the fact that ρ satisfies a quasi-ultrametric
condition, i.e.,

(2.2) ρ(x, y) ≤ Cρ max
{
ρ(x, z), ρ(z, y)

}
, ∀x, y, z ∈ X.

Call ρ an ultrametric when Cρ = 1 and C̃ρ = 1. If ρ is a metric then

we have Cρ ∈ [1, 2] and C̃ρ = 1. Ultrametrics exhibit highly specialized
characteristics which metrics, in general, do not, and metrics satisfy some
very useful properties which generic quasi-metrics may fail to enjoy. For
example, any metric (hence any ultrametric) is continuous with respect
to the topology it induces, while not all quasi-metrics are, where the
topology τρ induced by a quasi-metric ρ on X is given by

(2.3) O ∈ τρ
def⇐⇒ O ⊆ X and ∀x ∈ O ∃ r > 0 such that

Bρ(x, r) := {y ∈ X : ρ(x, y) < r} ⊆ O.

Let us mention that if ρ is a quasi-metric on X and % : X ×X → [0,∞]
is such that there exists γ ∈ (0,∞) for which %γ is pointwise equivalent
to ρ, then % is also a quasi-metric on X, and τρ = τ%. Thus, if (X,q) is
a quasi-metric structure space, defining τq := τρ for some (hence, any)
ρ ∈ q is unambiguous.

Related to the fact that quasi-metrics may fail to be continuous with
respect to their canonical topologies, given an abstract quasi-metric ρ,
the above ρ-balls Bρ(x, r) may not be open (in τρ), while balls induced
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by genuine metrics are always open sets. In other words, heuristically
speaking, the smaller Cρ is, the better properties we expect ρ to exhibit.

Note the quasi-ultrametric condition (2.2) implies the existence of a
constant C ∈ [1,∞) (usually different from the constant Cρ appearing
in (2.2)) with the property that

(2.4) ρ(x, y) ≤ C
(
ρ(x, z) + ρ(z, y)

)
, ∀x, y, z ∈ X.

We shall refer to (2.4) as the quasi-triangle inequality. Conversely, if
ρ satisfies the quasi-triangle inequality (2.4) then the quasi-ultrametric
condition (2.2) holds (again, with a typically different constant).

One final remark concerns the stability of the class of quasi-metrics
under the operation of taking powers. Specifically, if ρ is a quasi-metric
on X and α ∈ (0,∞), then ρα is also a quasi-metric on X. If the lat-
ter actually happens to satisfy a genuine triangle inequality (i.e., (2.4)
with C = 1) we shall say that the original ρ is α-subadditive. Correspond-
ing to α = ∞, call ρ ∞-subadditive if Cρ = 1. Note if ρ is symmetric
and α-subadditive for some α ∈ (0,∞] then ρβ is a genuine metric for
any finite β ∈ (0, α].

Now for the formulation of the main question addressed in this article:
keeping in mind the thinking that the smaller Cρ is, the nicer properties
we expect ρ to exhibit, given a quasi-metric structure q on some set X,
does there exist ρ ∈ q which has the smallest optimal constant in the
quasi-ultrametric condition (2.2)? In precise terms,

(2.5) is the infimum Cq := inf
{
Cρ : ρ ∈ q

}
actually attained?

3. Main result

The answer to the question posed at the end of Section 2 is contained
in the following theorem.

Theorem 3.1. There exists a quasi-metric structure space (X,q) so
that the infimum Cq is not attained. Furthermore, X may be taken to
be a vector space which, when equipped with q, is separable, complete,
locally bounded, and q is finite.

For example, let L be the collection of equivalence classes of com-
plex-valued, Lebesgue measurable functions defined on [0, 1]. Also, fix
p0 ∈ (0, 1], define ‖ · ‖ : L→ [0,∞] by

(3.1) ‖u‖ := inf

{
λ∈(0,∞) :

∫ 1

0

|u(x)/λ|p0
ln(|u(x)/λ|p0 + e)

dx≤λ
}
, ∀u∈L,
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and set X := {u ∈ L : ‖u‖ < ∞}. Then X is a vector space, ‖·‖ is
a quasi-F-norm on X, and for each p ∈ (0, p0) there exists a p-ho-
mogeneous norm on X, call it ‖ · ‖p, which induces the same topol-
ogy on X as ‖ · ‖. Furthermore, if ρp : X × X → [0,∞) is defined
by ρp(u, v) := ‖u − v‖p for all u, v ∈ X, then ρp is a quasi-metric
(in fact, a translation invariant, p-homogeneous, genuine metric) on X
such that Cρp ∈ (2p/p0 , 2] and, with qp := [ρp], the quasi-metric struc-
ture space (X,qp) has all the attributes mentioned in the first part of the

statement. In particular, Cqp = 2p/p0 but C% > 2p/p0 for every % ∈ qp.

It is understood that a quasi-metric structure space (X,q) is called
separable or complete whenever the topological space (X, τq) is so. Sim-
ilarly for locally bounded, where a topological vector space is called
locally bounded provided there exists a topologically bounded neigh-
borhood of the origin. By saying q is finite it is understood that some
(hence, any) ρ ∈ q takes values in [0,∞). For other pieces of terminology
the reader is referred to the body of the paper.

The topological space (X, τq), with X and q in the last part of Theo-
rem 3.1, is a particular case of a Rolewicz–Orlicz space. A more inclusive
point of view is adopted in the proof of Theorem 3.1 (presented in the
last part of Section 7), where certain Rolewicz–Orlicz spaces of a more
general nature are considered.

4. Regularization results

Here we discuss a number of regularization results, or procedures
which associate to an abstract quasi-metric a similar (i.e., pointwise
equivalence) yet quantitatively better quasi-metric. The first such re-
sult, correcting quasi-symmetry and the quasi-triangle inequality, may
be found in [3, Theorem 3.46, p. 144]. It may be regarded as the sharp
form of an earlier result, with similar aims, from [2].

Theorem 4.1. Let (X, ρ) be a quasi-metric space. Define the function
ρmax : X ×X → [0,∞] by

(4.1) ρmax(x, y) := max
{
ρ(x, y), ρ(y, x)

}
, ∀x, y ∈ X.

Then the function ρmax is a symmetric quasi-metric on X which satisfies

ρ ≤ ρmax ≤ C̃ρ ρ on X ×X and Cρmax
≤ Cρ.
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Given α ∈
(
0, (log2Cρ)

−1], define the α-subadditive regularization
ρα : X ×X → [0,∞] of ρ by

(4.2) ρα(x, y) :=inf

{( N∑
i=1

ρ(ξi, ξi+1)α
) 1
α

: N ∈N and ξ1, . . . , ξN+1∈X,

such that ξ1 =x and ξN+1 =y

}
, ∀ x, y ∈ X,

if α is finite and, corresponding to α =∞ (which occurs precisely when
Cρ = 1), take ρ∞(x, y) := ρ(x, y).

Then ρα is a quasi-metric on X which satisfies (Cρ)
−2ρ ≤ ρα ≤ ρ

on X×X (hence, ρα≈ρ) as well as Cρα≤Cρ≤21/α. Also, ρα is β-sub-
additive for each β∈(0, α], and ρ=ρα if and only if ρ is α-subadditive.

Finally, define ρ# : X × X → [0,∞] by ρ# := (ρmax)α with α taken
to be precisely (log2Cρ)

−1. Then ρ# is a symmetric quasi-metric on X
which is β-subadditive for each β ∈ (0, α]; hence (ρ#)β is a metric on X
for each finite β ∈ (0, α]. Furthermore Cρ# ≤ Cρ and

(4.3) (Cρ)
−2ρ(x, y) ≤ ρ#(x, y) ≤ C̃ρ ρ(x, y), ∀x, y ∈ X.

In particular, the topology induced by the distance (ρ#)β on X is pre-
cisely τρ, thus the topology induced by any quasi-metric is metrizable.

Moreover, for each finite exponent β ∈
(
0, (log2 Cρ)

−1], the func-
tion ρ# satisfies the following local Hölder-type regularity condition of
order β in both variables simultaneously:

(4.4)
∣∣ρ#(x, y)− ρ#(w, z)

∣∣
≤ 1

β max
{
ρ#(x, y)1−β , ρ#(w, z)1−β

}(
ρ#(x,w)β + ρ#(y, z)β

)
,

for all x, y, w, z ∈ X such that min{ρ(x, y), ρ(w, z)} <∞, and if β ≥ 1,
it is assumed that x 6= y, w 6= z. In particular, in the case x = w,
formula (4.4) becomes

(4.5)
∣∣ρ#(x, y)−ρ#(x, z)

∣∣≤1
β max

{
ρ#(x, y)1−β , ρ#(x, z)1−β

}[
ρ#(y, z)

]β
,

for all x, y, z ∈ X such that min{ρ(x, y), ρ(x, z)} < ∞ where, if β ≥ 1,
it is assumed that x /∈ {y, z}.

Finally, the Hölder-type results from (4.4)–(4.5) are sharp in the sense
that they may fail if β > (log2Cρ)

−1.

A few comments are in order. The first ties up the issue of whether
the infimum defining Cq in (2.5) is attained to the existence of a quasi-
distance ρ ∈ q that exhibits an optimal amount of Hölder regularity.
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Remark 4.2. As seen from the last part of Theorem 4.1 the expres-

sion
(
log2 Cρ

)−1
constitutes an optimal upper bound for the Hölder reg-

ularity exponent of a quasi-distance ρ on X. Note that the smaller Cρ

the larger
(
log2 Cρ

)−1
. In light of this observation, the issue whether

the infimum Cq := inf
{
Cρ : ρ ∈ q

}
is actually attained becomes equiva-

lent to asking whether in a quasi-metric structure space (X,q) there is a
quasi-metric ρ ∈ q which exhibits the most amount of Hölder regularity.
This aspect is particularly relevant for the type of analysis that may be
carried out on (X,q). For example, a theory of Hardy spaces Hp(X,q)
for an optimal range of p’s that takes into account this maximal amount
of Hölder regularity that the environment (X,q) may sustain has been
recently developed in [1].

Our next remark provides an example of a setting where the question
asked in (2.5) has a positive answer.

Remark 4.3. Fix γ ∈ (0,∞) and denote by qγ the pointwise equivalence
class of the quasi-distance | · − · |γ in Rn. Then inf

{
Cρ : ρ ∈ qγ

}
is

actually attained. Indeed, from the first formula in (2.1) one readily
obtains C|·−·|γ = 2γ , and we claim that Cρ ≥ 2γ for every ρ ∈ qγ . In
turn, the claim is justified via reasoning by contradiction. Specifically,
apply the fact that every function defined on an open connected subset
of the Euclidean space satisfying a Hölder condition with exponent > 1
is necessarily constant, to the function ρ#(x, ·) (with x arbitrarily fixed
in Rn) in any Euclidean ball whose closure is contained in Rn \ {x}. In
light of the Hölder-type condition formulated in (4.5) from Theorem 4.1,
this yields a contradiction whenever β ∈

(
0, (log2 Cρ)

−1) is such that

β > γ−1.

Another thing to note is that while ρ may fail to be continuous with
respect to τρ and ρ-balls may not be open in τρ, the α-subadditive reg-
ularization ρα of ρ does not exhibit these pathologies; see below.

Remark 4.4. Given a quasi-metric space (X, ρ) and α ∈
(
0, (log2 Cρ)

−1],
there holds Bρα(x, r) is open in τρ for all x ∈ X, r ∈ (0,∞). Indeed, pick
y ∈ Bρα(x, r), thus ρα(x, y) < r. Fix some finite β ∈ (0, α] and take

R :=
(
rβ − ρα(x, y)β

)1/β
> 0. Then for each z ∈ Bρα(y,R) estimate,

using the β-subadditivity of ρα,

(4.6) ρα(x, z) ≤
(
ρα(x, y)β + ρα(y, z)β

)1/β
<
(
ρα(x, y)β +Rβ

)1/β
= r.

This shows Bρα(y,R) ⊆ Bρα(x, r), hence Bρα(x, r) is open in τρ = τρα .
Also, while Bρ(x, r) may not be an open set containing x, it is always a
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neighborhood of x. In particular, {Bρ(x, 1/n)}n∈N is a countable funda-
mental system of neighborhoods of x.

We next present a regularization procedure of a quasi-metric ρ with
respect to a semigroup of transformations of the ambient set X. Given
a mapping T : X → X, call ρ T -invariant provided

(4.7) ρ
(
T (x), T (y)

)
= ρ(x, y), ∀x, y ∈ X.

Theorem 4.5. Let (X, ρ) be a quasi-metric space. Assume that F is
a semigroup of maps from X into itself (with respect to the operation of
composition) that contains the identity operator on X, and assume that
σ : F→(0,∞) is a multiplicative map, i.e., one has σ(S ◦T )=σ(S)σ(T )
for every S, T ∈F . Finally, suppose that the quasi-metric ρ satisfies

(4.8) CF
ρ := sup

x,y∈X,T∈F

ρ
(
T (x), T (y)

)
σ(T )ρ(x, y)

<∞.

Define ρF : X ×X → [0,∞] by setting

(4.9) ρF (x, y) :=sup
{
σ(T )−1ρ

(
T (x), T (y)

)
: T ∈F

}
for each x, y∈X.

Then CF
ρ ∈ [1,∞) and ρF satisfies the following properties:

(1) ρF
(
T (x), T (y)

)
≤σ(T )ρF (x, y), for each x, y∈X and each T ∈ F ;

(2) ρ ≤ ρF ≤ CF
ρ ρ, so ρF ≈ ρ, hence, in particular, ρF is a quasi-

metric on X;

(3) the optimal constants in the quasi-ultrametric condition satisfy
CρF ≤ Cρ;

(4) if ρ is symmetric then so is ρF ;

(5) if ρ is α-subadditive for some α ∈ (0,∞] then so is ρF ;

(6) if ρ is T -invariant for some transformation T : X → X which com-
mutes with every mapping in F (i.e., T ◦S = S◦T for each S ∈ F )
then ρF is also T -invariant;

(7) if the map T ∈F is bijective and has the property that T−1 ∈F ,
then ρF

(
T (x), T (y)

)
= σ(T )ρF (x, y) for each x, y ∈X. In partic-

ular, ρF is T -invariant for each invertible T in the semigroup F
satisfying σ(T ) = 1.

We make a quick comment before presenting the proof of this theorem.

Remark 4.6. In the context of Theorem 4.9, if the semigroup F is ac-
tually a group then CF

ρ = 1 if and only if ρ
(
T (x), T (y)

)
= σ(T )ρ(x, y)

for each x, y ∈ X and T ∈ F . Thus, if in addition we also have that
σ is constant (hence necessarily identically 1), then CF

ρ = 1 if and only
if ρ is T -invariant for each T ∈ F .
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Proof of Theorem 4.5: The multiplicative property of the map σ implies
σ(I) = σ(I)2, forcing σ(I) = 1. In turn, given that I ∈ F , this entails
CF
ρ ≥ 1, hence CF

ρ ∈ [1,∞) . For (1), given any x, y ∈ X and T ∈ F ,

ρF
(
T (x), T (y)

)
= sup

{
σ(S)−1ρ

(
S(T (x)), S(T (y))

)
: S ∈ F

}
≤ sup

{
σ(R)−1σ(T )ρ

(
R(x), R(y)

)
: R ∈ F

}
= σ(T )ρF (x, y),

(4.10)

where the inequality above uses the fact that for each S, T ∈ F we have
R := S ◦ T ∈ F and σ(R) = σ(S)σ(T ).

For (2), the fact that σ(I) = 1 implies ρF ≥ ρ on X×X, as the supre-
mum in the definition of ρF is taken over the set F which contains I.
For the opposite inequality, for each x, y ∈ X we write

ρF (x, y) = sup
{
σ(T )−1ρ

(
T (x), T (y)

)
: T ∈ F

}
≤ sup

{
CF
ρ ρ(x, y) : T ∈ F

}
= CF

ρ ρ(x, y).
(4.11)

To see CρF ≤ Cρ, hence treat (3), fix x, y, z ∈ X and write

ρF(x, y)=sup
{
σ(T )−1ρ

(
T (x), T (y)

)
:T ∈F

}
≤sup

{
σ(T )−1Cρmax

{
ρ
(
T (x),T (z)

)
, ρ
(
T (z),T (y)

)}
:T ∈F

}
(4.12)

=Cρ max{ρF (x, z), ρF (z, y)},

as sup and max commute. Then as CρF is the optimal constant in this
estimate, the desired conclusion follows. That symmetry is hereditary
is clear from definitions; this takes care of (4). Regarding (5), assuming
that ρ is α-subadditive for some α ∈ (0,∞), for each x, y, z ∈ X we may
estimate

ρF (x, y)= sup
T∈F

σ(T )−1ρ
(
T (x), T (y)

)
≤ sup
T∈F

σ(T )−1
{
ρ
(
T (x), T (z)

)α
+ ρ
(
T (z), T (y)

)α}1/α
≤
{

sup
T∈F

σ(T )−1ρ
(
T (x), T (z)

)α
+ sup
T∈F

σ(T )−1ρ
(
T (z), T (y)

)α}1/α
=
(
ρF (x, z)α + ρF (z, y)α

)1/α
,

(4.13)
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implying that ρF is also α-subadditive. The case α = ∞ is similar.
Moving on to (6), assume that ρ is T -invariant for some T : X → X
commuting with every mapping in F . Then, bearing in mind that we
have T ◦ S = S ◦ T for each S ∈ F , for each x, y ∈ X we may compute

ρF
(
T (x), T (y)

)
=sup

{
σ(S)−1ρ

(
S(T (x)), S(T (y))

)
: S∈F

}
=sup

{
σ(S)−1ρ

(
T (S(x)), T (S(y))

)
: S∈F

}
=sup

{
σ(S)−1ρ

(
S(x), S(y)

)
: S∈F

}
=ρF (x, y),

(4.14)

which goes to show that ρF is T -invariant as well. Finally, as far as
(7) is concerned, suppose that ρF is T -invariant for some bijective trans-
formation T ∈ F such that T−1 ∈ F . Then σ(T−1) = σ(T )−1 since
1=σ(I)=σ

(
T ◦ T−1

)
=σ(T )σ(T−1). Writing the inequality established

in (1) for T−1 in place of T and for T (x), T (y) in place of x, y then
gives ρF (x, y) ≤ σ(T )−1ρF

(
T (x), T (y)

)
for each x, y ∈ X. In concert

with (1), this shows that actually ρF
(
T (x), T (y)

)
= σ(T )ρF (x, y) for

each x, y ∈ X, as desired.

Now we shift our attention to quasi-metrics on vector spaces (always
tacitly assumed to be complex).

Definition 4.7. Let X be a vector space and let ρ be a quasi-metric
on X.

(1) Call (X, ρ) a quasi-metric linear space provided (X, τρ) is a topo-
logical vector space. In this case (X, [ρ]) is said to be a quasi-metric
linear structure space.

(2) Say ρ is quasi-translation invariant provided

(4.15) Cρ := sup
x,y,z∈X
x 6=y

ρ(x+ z, y + z)

ρ(x, y)
<∞.

Call ρ translation invariant provided Cρ = 1.
(3) Given p ∈ (0,∞), say ρ is lower quasi-p-homogeneous if

(4.16) C∗,`ρ,p := sup
x,y∈X,λ∈C
x6=y, 0<|λ|≤1

ρ(λx, λy)

|λ|pρ(x, y)
<∞.

If p = 1 abbreviate C∗,`ρ,p := C∗,`ρ and say ρ is lower quasi-homogeneous.
If the finiteness condition (4.16) holds with the supremum taken over
nonzero scalars λ call ρ quasi-p-homogeneous and label the correspond-
ing supremum as C∗ρ,p. Similarly for C∗ρ , quasi-homogeneous, p-homoge-
neous, and homogeneous.
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Much like Cρ and C̃ρ, the constants Cρ and C∗,`ρ,p belong to [1,∞) and
are designed to be the optimal constants in certain inequalities, namely

(4.17) ρ(x+ z, y + z) ≤ Cρ ρ(x, y) and ρ(λx, λy) ≤ C∗,`ρ,p|λ|pρ(x, y),

with x, y, z ∈ X and λ ∈ C such that |λ| ≤ 1. Note that if Cρ = 1
then the first inequality holds with equality, but if C∗,`ρ,p = 1 we do
not necessarily have equality in the second (though this does hold if
ρ satisfies the stronger condition of p-homogeneity). Further, observe
that ρ is (lower) quasi-p-homogeneous if and only if ρ1/p is (lower) quasi-
homogeneous. We shall now employ Theorem 4.5 in order to correct the
quasi-translation invariance without straying too far from the original
quasi-metric.

Proposition 4.8. Let (X, ρ) be a quasi-metric linear space so that ρ is
quasi-translation invariant. Define the function ρ : X × X → [0,∞] by
setting

(4.18) ρ(x, y) := sup
{
ρ(x+ z, y + z) : z ∈ X

}
for each x, y ∈ X.

Then ρ satisfies the following properties:

(1) ρ is a genuinely translation invariant quasi-metric;

(2) ρ ≤ ρ ≤ (Cρ)
−1ρ on X ×X, thus ρ is pointwise equivalent to ρ;

(3) the optimal constant in the quasi-ultrametric condition of ρ is at
most that of ρ, i.e., Cρ ≤ Cρ;

(4) if ρ is α-subadditive for some α ∈ (0,∞] then so is ρ, and if ρ is
symmetric then so is ρ.

Proof: This is a direct consequence of Theorem 4.5 used here for the
family F := {Tx}x∈X where Tx : X → X is given by Tx(y) := x+ y for
each y ∈ X, and where σ : F → (0,∞) is identically equal to 1.

The next proposition deals with correcting the lower quasi-p-homo-
geneity property.

Proposition 4.9. Suppose (X, ρ) is a quasi-metric linear space such
that ρ is lower quasi-p-homogeneous for some p ∈ (0,∞). Define the
function ρ∗,` : X ×X → [0,∞] by setting

(4.19) ρ∗,`(x, y) :=sup
{
|λ|−pρ(λx, λy) : 0 < |λ| ≤ 1

}
for each x, y∈X.

Then ρ∗,` satisfies the following properties:

(1) ρ∗,` is a genuinely lower p-homogeneous quasi-metric on X, and
Cρ∗,` ≤ Cρ;
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(2) ρ∗,` is pointwise equivalent to the quasi-metric ρ in the precise
sense that ρ ≤ ρ∗,` ≤ C∗,`ρ,pρ;

(3) if ρ is α-subadditive for some α ∈ (0,∞] then so is ρ∗,`;

(4) if ρ is translation invariant then so is ρ∗,`, and if ρ is symmetric
then so is ρ∗,`.

Proof: Apply Theorem 4.5 with F := {Tλ : λ ∈ C, 0 < |λ| ≤ 1} where
Tλ : X → X is given by Tλ(x) := λx for each x ∈ X, and where the map
σ : F → (0,∞) acts according to σ(Tλ) := |λ|p for each Tλ ∈ F .

An analogous result may be formulated when ρ is assumed to be
quasi-p-homogeneous rather than lower quasi-p-homogeneous, in which
case we would define ρ∗(x, y) := sup

{
|λ|−pρ(λx, λy) : λ ∈ C\{0}

}
for all

x, y ∈ X. Then results (1)–(4) above hold by omitting the word “lower”
and the superscript “`.”

5. Relating Cq to indR(X, τq)

We first record some concepts pertaining to topological vector spaces,
which are always tacitly assumed to be Hausdorff. Taking after Rolewicz
in [4], we make the the following definition.

Definition 5.1. (1) Let X be a vector space and let U be a sub-
set of X. Then the (Rolewicz) modulus of concavity of U , de-
noted c(U), is defined by

(5.1) c(U) := inf
{
s ∈ [1,∞) : U + U ⊆ sU

}
,

convening that inf ∅ := ∞. Call U pseudoconvex if it has a finite
modulus concavity, i.e., if c(U) <∞.

(2) Let (X, τ) be a topological vector space. Define the Rolewicz mod-
ulus of concavity of (X, τ) as

(5.2) indR(X, τ) := inf
{
c(U) : ∅ 6= U ⊆ X, U open, balanced, and

topologically bounded
}
.

Recall a subset U of a vector space is balanced provided sU ⊆ U for
every s ∈ C satisfying |s| ≤ 1, and a subset U of a topological vector
space is called topologically bounded if for every neighborhood of the
origin N there exists a scalar s so that U ⊆ sN . Also note c(λU) = c(U)
for all λ ∈ C \ {0}.

Given a quasi-metric linear structure space (X,q), a setting in which
both indR(X, τq) and Cq are defined, our goal is to relate indR(X, τq)
to Cq := inf

{
Cρ : ρ ∈ q

}
. Most importantly, we seek to show that if
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the infimum in Cq is attained then so is the infimum in indR(X, τq),
granted proper conditions on q; see Theorem 5.6 below. We need sev-
eral preliminary results in order to accomplish this task: properties of
Minkowski functionals, which allow us to pass from certain sets (namely
open, topologically bounded, balanced sets) to quasi-norms, then nego-
tiating passing from a quasi-norm to a quasi-metric, and finally a couple
of lemmas detailing properties of certain balls.

Recall that, given a topological vector space X and a neighborhood
of the origin U ⊆ X, the Minkowski functional (or Minkowski gauge
function) of U , denoted ‖ · ‖U : X → [0,∞], is defined as

(5.3) ‖x‖U := inf
{
λ ∈ (0,∞) : x/λ ∈ U

}
, ∀x ∈ X,

where the infimum of the empty set is taken to be∞. Note any topolog-
ically bounded neighborhood of the origin is pseudoconvex. For a proof
of the next proposition see [3, (4.391)–(4.394), p. 222].

Proposition 5.2. Given topological vector space (X, τ) and a nonempty,
open, balanced, topologically bounded set U ⊆ X, the Minkowski gauge
function ‖ · ‖U associated with U is nondegenerate (in the sense that
‖x‖U = 0 if and only if x = 0), is finite (in the sense that ‖ · ‖U does
not take the value ∞), is homogeneous (in the sense that one has
‖λx‖U = |λ| · ‖x‖U for all λ ∈ C and x ∈ X), and satisfies the quasi-
ultrametric-like condition ‖x + y‖U ≤ c(U) max{‖x‖U , ‖y‖U} for all
x, y ∈ X.

Thus the notation ‖ · ‖U employed in (5.3) is not merely suggestive: if
U is a nonempty, open, balanced, topologically bounded set then ‖ · ‖U
is indeed a quasi-norm. Below we state and prove a lemma which gives
us a quasi-metric from any given Minkowski functional. Recall that a
subset U of a quasi-metric space (X, ρ) is said to be ρ-bounded provided
diamρ(U) := sup{ρ(x, y) : x, y ∈ U} <∞.

Lemma 5.3. Let (X, ρ) be a quasi-metric linear space such that ρ is both
quasi-translation invariant and quasi-p-homogeneous for some exponent
p ∈ (0,∞). Then any nonempty, open, ρ-bounded, and balanced set
U ⊆ X induces a symmetric, finite, translation invariant, homogeneous
quasi-metric ρU on X via

(5.4) ρU (x, y) := ‖x− y‖U for every x, y ∈ X,
where ‖ · ‖U is as in (5.3). Furthermore, ρU ≈ ρ1/p (hence τρU = τρ)
and CρU ≤ c(U).

Proof: Observe that ρU is translation invariant by design, while its ho-
mogeneity and finiteness are inherited from ‖ ·‖U ’s. Note also that these
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imply ρU is symmetric. We claim that there exists a constant C ∈ [1,∞)
so that C−1ρU ≤ ρ1/p ≤ CρU on X × X (and this will force ρU to be
a quasi-metric). To see a constant multiple of ρU dominates ρ1/p, set
k := diamρ(U). Then k ∈ (0,∞) since U is ρ-bounded and does not con-
sist of only the zero vector. Fix x, y ∈ X along with some arbitrary ε > 0.
By definition of ρU , we have

(5.5)
y − x

ρU (y, x) + ε
∈ U, hence ρ

(
0,

y − x
ρU (y, x) + ε

)
≤ k.

Calling upon the quasi-p-homogeneity and quasi-translation invariance
of ρ, we may estimate

(5.6) k ≥ ρ
(

0,
y − x

ρU (y, x) + ε

)
≥ ρ(0, y − x)

C∗ρ,p
(
ρU (y, x) + ε

)p .
Since ρU is symmetric and ε > 0 was arbitrary, this ultimately forces

ρ1/p ≤
[
kC∗ρ,pCρ

]1/p
ρU on X ×X.

To show a constant multiple of ρ1/p dominates ρU , fix x, y ∈ X dis-
tinct. Since {Bρ(0, 1/n)}n∈N is a fundamental system of neighborhood
of the origin (cf. Remark 4.4) and U is a neighborhood of the origin,
there exists n ∈ N so that Bρ(0, 1/n) ⊆ U . Due to this and quasi-p-ho-
mogeneity of ρ it follows that

(5.7)
y − x[

2nC∗ρ,p ρ(0, y − x)
]1/p ∈ Bρ(0, 1/n) ⊆ U.

From this, keeping in mind that 1 ≥ ‖z‖U for all z ∈ U , the definition
of ρU , and that ρU is translation invariant and homogeneous, we obtain

1≥

∥∥∥∥∥ y − x[
2nC∗ρ,p ρ(0, y − x)

]1/p
∥∥∥∥∥
U

=ρU

(
0,

y − x[
2nC∗ρ,p ρ(0, y − x)

]1/p
)

=
ρU (x, y)[

2nC∗ρ,p ρ(0, y − x)
]1/p .

(5.8)

In turn, this further implies that ρU ≤
[
2nC∗ρ,pCρ

]1/p
ρ1/p on X×X. At

this point, there remains to show that CρU ≤ c(U). In this regard, by
the last part in Proposition 5.2, for any x, y, z ∈ X we have

(5.9) ‖x− y‖U = ‖x− z + z − y‖U ≤ c(U) max
{
‖x− z‖U , ‖z − y‖U

}
.

Hence, ρU (x, y) ≤ c(U) max
{
ρU (x, z), ρU (z, y)

}
for all x, y, z ∈ X, so

CρU ≤ c(U) by (2.1).
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The final two auxiliary results needed for relating Cq to indR(X, τq)
in a proper setting are contained in Lemmas 5.4–5.5. The reader is re-
minded that the regularization ρ∗,` of a quasi-metric ρ is defined in (4.19).

Lemma 5.4. Suppose (X, τ) is a topological vector space such that
τ = τq for some quasi-metric structure q on X and, further, that there
exists ρ ∈ q which is lower quasi-p-homogeneous for some p ∈ (0,∞).
Then any ρ-bounded subset of X is topologically bounded. Moreover, for
any r ∈ (0,∞), the ball Bρ∗,`(0, r) is a topologically bounded, balanced
neighborhood of the origin in (X, τ).

Proof: From (4.16) it readily follows that for every given R, r ∈ (0,∞)
there holds

(5.10) c ≥ max
{

1,
(
C∗,`ρ,pR/r

)1/p}
=⇒ Bρ(0, R) ⊆ cBρ(0, r).

Based on this and the last part of Remark 4.4, the first conclusion in the
statement of the lemma follows.

To establish the second conclusion, fix an arbitrary r ∈ (0,∞). From
the last part of Remark 4.4 it follows that Bρ∗,`(0, r) is a neighborhood
of the origin. In addition, if |s| ≤ 1 and x ∈ Bρ∗,`(0, r) then, since

ρ∗,`(0, sx) ≤ |s|pρ∗,`(0, x) < r, we have sx ∈ Bρ∗,`(0, r). This goes to
show that Bρ∗,`(0, r) is also balanced. Finally, given that Bρ∗,`(0, r) is

ρ-bounded (thanks to ρ ≈ ρ∗,`), the first part of the proof gives that this
set is topologically bounded as well.

Lemma 5.5. Suppose (X, τ) is a topological vector space such that
τ = τq for some quasi-metric structure q on X and, further, that there
exists ρ ∈ q which is both quasi-translation invariant and lower quasi-p-
homogeneous for some p ∈ (0,∞). Then a subset of X is topologically
bounded if and only if it is ρ-bounded.

Proof: Define ‖ · ‖ : X → [0,∞] by setting ‖x‖ := ρ(0, x) for each x ∈ X.
Then with c0 := C∗,`ρ,p ∈ [1,∞) and c1 := (Cρ)

2Cρ ∈ [1,∞), we have

‖λx‖≤c0‖x‖, ∀x∈X and ∀λ∈C such that |λ|≤1,(5.11)

‖x+ y‖≤c1
(
‖x‖+ ‖y‖

)
, ∀x, y∈X.(5.12)

Indeed, (5.11) is clear from (4.16), while (5.12) may be justified by esti-
mating

(5.13) ‖x+y‖=ρ(0, x+y)≤Cρ ρ(−x, y)≤CρCρ max
{
ρ(−x, 0), ρ(0, y)

}
≤CρCρ max

{
Cρ ρ(0, x), ρ(0, y)

}
≤(Cρ)

2Cρ
(
‖x‖+ ‖y‖

)
,
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by (4.17) and (2.1). Granted (5.11)–(5.12), we may invoke [3, Lem-
ma 3.40, p. 133] in order to conclude that

(5.14) ‖λx‖ ≤ c0c1
(
c0 + 4c21|λ|1+log2 c1

)
‖x‖, ∀λ ∈ C and ∀x ∈ X.

Bearing in mind the definition of ‖ · ‖, this ultimately implies

(5.15) λBρ(0, r) ⊆ Bρ
(
0, cρ,λr

)
, ∀λ ∈ C,

where we have abbreviated cρ,λ ∈ [1,∞) as

cρ,λ := c0c1
(
c0 + 4c21|λ|1+log2 c1

)
= (Cρ)

2CρC
∗,`
ρ,p

(
C∗,`ρ,p + 4(Cρ)

4(Cρ)
2|λ|1+log2((Cρ)

2Cρ)
)
.

(5.16)

At this stage, the fact that any topologically bounded subset of X is
ρ-bounded follows from (5.15)–(5.16), while the converse statement has
been already established in Lemma 5.4.

Now we are ready to prove the aforementioned theorem, relating Cq

and indR(X, τ); this is of independent interest. Recall that for a quasi-
metric structure space (X,q) we have set Cq := inf

{
Cρ : ρ ∈ q

}
and that

the Rolewicz modulus of concavity indR(X, τ) of a topological vector
space (X, τ) is defined as in (5.2). Finally, the topology τq induced by a
quasi-metric structure q is given immediately after (2.3).

Theorem 5.6. Let (X,q) be a quasi-metric linear structure space for
which there exists ρ ∈ q that is both quasi-translation invariant and lower
quasi-p-homogeneous for some p ∈ (0,∞). Then Cq ≥

[
indR(X, τq)

]p
.

Moreover, if the lower quasi-p-homogeneity condition on ρ is strength-
ened to quasi-p-homogeneity then

(5.17) Cq =
[
indR(X, τq)

]p
,

and the infimum in Cq is attained if and only if the infimum in
indR(X, τq) is attained.

The fact that, under the condition specified above, formula (5.17)
holds is remarkable since Cq is a purely quasi-metric entity, while
indR(X, τq) pertains to the topological vector space structure of the
ambient.

Proof of Theorem 5.6: Unraveling definitions, the first claim in the state-
ment follows as soon as we prove

(5.18) inf
{
Cρ : ρ ∈ q

}
≥ inf

{
c(U)p : ∅ 6= U ⊆ X, U open,

topologically bounded, and balanced
}
.
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To this end, fix ρ ∈ q lower quasi-p-homogeneous and quasi-translation

invariant. Consider the quasi-metric ρ′ :=
(
(ρα)

)∗,`
where the α-regu-

larization is as in Theorem 4.1, the bar-regularization is as in Proposi-
tion 4.8, and the (·)∗,`-regularization is as in Proposition 4.9. By the
aforementioned theorem and propositions it follows that Cρ ≥ Cρ′ and
that ρ′ is α-subadditive, translation invariant, and lower p-homogeneous.
Moreover, ρ ≈ ρ′ which makes Cρ′ a contender in the infimum in the left
side of (5.18).

Define Uρ := Bρ′(0, 1). By Lemma 5.4 it follows that Uρ is a topolog-
ically bounded, balanced neighborhood of the origin, and by Remark 4.4
(and the α-subadditivity of ρ′) Uρ is also open. We wish to prove
that c(Uρ)

p ≤ Cρ′ . Fix x, y ∈ Uρ arbitrary with the aim of showing

x + y ∈ (Cρ′)
1/pUρ; this suffices as c(Uρ) is the infimum over all such

constants c > 0 satisfying x + y ∈ cUρ for all x, y ∈ Uρ. Making use of
lower p-homogeneity, the fact that Cρ′ ∈ [1,∞), and translation invari-
ance, we estimate

ρ′
(

0,
x+ y

(Cρ′)1/p

)
≤ 1

Cρ′
ρ′(0, x+ y) =

1

Cρ′
ρ′(−y, x)

≤ 1

Cρ′
· Cρ′ max

{
ρ′(−y, 0), ρ′(0, x)

}
= max

{
ρ′(0, y), ρ′(0, x)

}
< 1,

(5.19)

as desired. Hence, Cρ ≥ Cρ′ ≥ c(Uρ)p, and this readily yields (5.18), i.e.,

Cq ≥
[
indR(X, τq)

]p
.

Moving on, strengthen the lower quasi-p-homogeneity condition on ρ
to quasi-p-homogeneity, with the goal of proving the opposite inequal-
ity in (5.18). Specifically, fix U ⊆ X such that U is nonempty, open,
topologically bounded, and balanced. Bringing in Lemma 5.3 (whose
applicability is ensured by Lemma 5.5 and current hypotheses, since
U ⊆ X is topologically bounded) gives (ρU )p ≈ ρ and CρU ≤ c(U).

Hence, C(ρU )p =
(
CρU

)p ≤ c(U)p, thus in the current case (5.18) also
holds with the inequality sign reversed.

The above reasoning also makes possible to show that, under the latter
(stronger) hypotheses on ρ, the infimum in Cq is attained if and only if
the infimum in indR(X, τq) is attained. Indeed, in one direction, suppose

ρ ∈ q is such that Cρ = Cq. Then c(Uρ)
p ≤ Cρ =

[
indR(X, τq)

]p
and,

given the nature of the infimum in indR(X, τq), it follows that c(Uρ) =
indR(X, τq). In the opposite direction, assume U ⊆ X is a nonempty,
open, topologically bounded, and balanced set, with the property that
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c(U) = indR(X, τq). Then C(ρU )p ≤ c(U)p =
[
indR(X, τq)

]p
= Cq, and

since (ρU )p ∈ q the definition of Cq forces C(ρU )p = Cq.

6. Rolewicz–Orlicz spaces

Theorem 5.6 shifts the focus to finding a topological vector space (X,τ)
with the topology induced by a suitable quasi-metric and for which the
infimum indR(X, τ) is not attained. We shall eventually identify such a
specimen in the category of Rolewicz–Orlicz spaces. As a preamble, we
discuss quasi-modulars, a notion that refines a concept found in [4].

Definition 6.1. Let X be a vector space. A function m : X → [0,∞] is
called a quasi-modular (on X) provided there exist k0, k1 ∈ [1,∞) such
that the following conditions are satisfied:

(1) m is nondegenerate in the sense that m(x) = 0 ⇐⇒ x = 0, for
each x ∈ X;

(2) m(λx) ≤ k0m(x) for all x ∈ X and λ ∈ C such that |λ| = 1;

(3) m(λx+ (1− λ)y) ≤ k1(m(x) +m(y)) for all x ∈ X and λ ∈ [0, 1];

(4) m(λnx) → 0 if the sequence {λn}n∈N ⊆ C converges to zero and
x ∈ X is such that m(x) <∞.

Call m a modular if k0 and k1 may be taken to be 1. If further m satisfies
the property

(5) m(λxn) → 0 whenever λ ∈ C and {xn}n∈N ⊆ X is such that
m(xn)→ 0 as n→∞,

call m a metrizing quasi-modular. Again, if 1 is an admissible value
for k0 and k1 and m satisfies (5), call m a metrizing modular. Lastly,
given a quasi-modular m on X define

(6.1) Xm :=
{
x ∈ X : there exists C ∈ (0,∞) so that m(Cx) <∞

}
.

The above axioms imply a number of things, including

k−10 m(λx) ≤ m(|λ|x) ≤ k0m(λx) for all λ ∈ C and x ∈ X,(6.2)

m(λx) ≤ k0k1m(x) whenever x ∈ X and |λ| ≤ 1.(6.3)

A special feature of metrizing quasi-modulars is that they give rise
to quasi-F-norms in the precise sense described in Theorem 6.2 be-
low. Following [3, (3.426)–(3.429), p. 135], we shall call a function
‖·‖ : X → [0,∞] a quasi-F-norm on a vector space X provided ‖·‖ is non-
degenerate, quasi-subadditive, quasi-subhomogeneous (i.e., ‖λx‖ ≤ C‖x‖
for all x ∈ X and λ ∈ C such that |λ| ≤ 1, where C is some fixed, positive
constant), and ‖λnx‖ → 0 for each fixed x ∈ X if λn → 0 and ‖x‖ <∞.
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Note lower quasi-p-homogeneity implies quasi-subhomogeneity for any
p ∈ (0,∞). Also, agree to remove the prefix “quasi” if ‖ · ‖ is actually
subadditive and subhomogeneous (the latter meaning ‖λx‖ ≤ ‖x‖ for
all x ∈ X and all λ ∈ C with |λ| ≤ 1). Note the F in F-norm is for
Fréchet.

In the next theorem we reference metrizing quasi-modulars being topo-
logically equivalent to quasi-F-norms, meaning they induce the same
topology. The topology τm induced by a quasi-modular m on a vec-
tor space X is defined as

(6.4) O ∈ τm
def⇐⇒ O ⊆ X and ∀x ∈ O ∃ r > 0 such that

{y ∈ X : m(x− y) < r} ⊆ O,

with a similar definition for the topology induced by a quasi-F-norm.

Theorem 6.2. Let X be a vector space and m : X → [0,∞] be a metriz-
ing quasi-modular. Then Xm is a vector space and there exists a quasi-F-
norm ‖ · ‖m : Xm → [0,∞) so that for every sequence {xn}n∈N⊆Xm one
has ‖xn‖m→0 if and only if m(xn)→0. Hence, m is topologically equiv-
alent to a quasi-F-norm on Xm and, ultimately, to an F-norm on Xm.

Proof: Define ‖ · ‖m : X → [0,∞] by setting (with the convention that
inf ∅ :=∞)

(6.5) ‖x‖m := inf
{
|c| : c ∈ C \ {0} satisfying m(x/c) ≤ |c|

}
, ∀x ∈ X.

First, we propose to show that

(6.6) Xm =
{
x ∈ X : there exists C ∈ (0,∞) so that ‖Cx‖m <∞

}
.

To prove the left-to-right inclusion in (6.6), fix an arbitrary x ∈ Xm.
By definition there exists C1 ∈ (0,∞) such that m(C1x) < ∞. We
need C2 ∈ (0,∞) such that ‖C2x‖m < ∞ or, equivalently, such that
there exists c ∈ C \ {0} for which m(C2x/c) ≤ |c|. However, this latter
inequality is satisfied if we choose c := m(C1x) + 1 ∈ [1,∞) ⊆ C \ {0}
and C2 := C1

(
m(C1x) + 1

)
∈ (0,∞).

To establish the right-to-left inclusion in (6.6), fix some x belonging
to the right side of (6.6). Unraveling definitions, we are guaranteed some
C1∈(0,∞) and some c∈C\{0} satisfying m(C1x/c)≤|c|. Invoking (6.2)
with λ :=C1/c ∈ C yieldsm(C1x/|c|) ≤ k0m(C1x/c) ≤ k0|c| <∞. Thus,
m(C2x) < ∞ if C2 := C1/|c| ∈ (0,∞), which shows that x ∈ Xm. This
concludes the proof of (6.6).
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Second, regarding quasi-subhomogeneity, for each x ∈ X and each
scalar λ ∈ C satisfying |λ| ≤ 1 we have

‖λx‖m = inf
{
|c| : c ∈ C \ {0} such that m(λx/c) ≤ |c|

}
= inf

{
|k0k1c| : c∈C \ {0} such that m

( λ

k0k1
x/c
)
≤|k0k1c|

}
(6.7)

≤ k0k1 inf
{
|c| : c∈C \ {0} such that m(x/c) ≤ |c|

}
= k0k1‖x‖m,

where in going from the first line to the second we replaced c ∈ C \ {0}
with k0k1c ∈ C \ {0}, and the inequality comes from taking the infimum
over a possibly smaller set, as seen with the help of (6.3). This establishes
the quasi-subhomogeneity of ‖ · ‖m on X.

Third, to prove the finiteness of ‖ · ‖m on Xm we make use of (6.6).
Specifically, given x ∈ Xm this implies that there exists C ∈ (0,∞) such
that ‖Cx‖m < ∞. If C ∈ [1,∞), we may invoke (6.7) with λ := C−1

in order to write ‖x‖m =
∥∥C−1(Cx)

∥∥
m
≤ k0k1‖Cx‖m < ∞, as wanted.

If, on the other hand, C ∈ (0, 1), we proceed as follows. The finiteness
condition ‖Cx‖m < ∞ entails the existence of some c1 ∈ C \ {0} such
that m(Cx/c1) ≤ |c1|. As such, taking c := c1/C ∈ C \ {0} yields
m(x/c) = m(Cx/c1) ≤ |c1| ≤ |c| given that C ∈ (0, 1). Hence, we have
‖x‖m ≤ |c| < ∞ in this case as well. Let us note that, as a simple
consequence of (6.6) and the finiteness of ‖ · ‖m on Xm we have the
description

(6.8) Xm =
{
x ∈ X : ‖x‖m <∞

}
.

Fourth, to show that ‖ · ‖m is nondegenerate on X, assume that x ∈ X
is such that ‖x‖m = 0. By definition, this implies the existence of a
sequence {cj}j∈N ⊆ C \ {0} such that limj→∞ cj = 0 and m(x/cj) ≤ |cj |
for each j ∈ N. Given that by (6.3) when the number j is large we
have m(x) = m(cj · x/cj) ≤ k0k1m(x/cj) ≤ k0k1|cj |, we deduce that
necessarily m(x) = 0. Hence, x = 0 since m is nondegenerate.

Fifth, for quasi-subadditivity of ‖ · ‖m on Xm, fix x1, x2 ∈ Xm and
ε > 0. By the definition of ‖·‖m, it follows that there exist c1, c2 ∈ C\{0}
such that |ci| ≤ ‖xi‖m + ε and m(xi/ci) ≤ |ci| for i = 1, 2. Abbreviate
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k := k0k1 ∈ [1,∞). Then by the third axiom of Definition 6.1 and (6.2),

m

(
k(x1 + x2)

k(|c1|+ |c2|)

)
= m

(
x1 + x2
|c1|+ |c2|

)

= m

(
|c1|

|c1|+ |c2|
· x1
|c1|

+
|c2|

|c1|+ |c2|
· x2
|c2|

)

≤ k1
[
m
( x1
|c1|

)
+m

( x2
|c2|

)]

≤ k0k1
[
m
(x1
c1

)
+m

(x2
c2

)]
≤ k

(
|c1|+ |c2|

)
,

(6.9)

which forces ‖k(x1 + x2)‖m ≤ k
(
|c1| + |c2|

)
≤ k

(
‖x1‖m + ‖x2‖m + 2ε

)
.

As this holds for all ε > 0, we get ‖k(x1 + x2)‖m ≤ k
(
‖x1‖m + ‖x2‖m

)
for each x1, x2 ∈ Xm. To proceed, observe next from (6.6) that for
each x1, x2 ∈ Xm we have x1/k, x2/k ∈ Xm. Writing the last inequality
for x1/k, x2/k in place of x1, x2 then shows that for each x1, x2 ∈ Xm we
have ‖x1+x2‖m ≤ k

(
‖x1/k‖m+‖x2/k‖m

)
≤ k2

(
‖x1‖m+‖x2‖m

)
, where

the last inequality uses (6.3). This establishes the quasi-subadditivity
of ‖ · ‖m on Xm.

Sixth, we shall show that Xm is a vector space. That Xm is stable
under addition is a consequence of the quasi-subadditivity of ‖·‖m on Xm

and (6.8). From (6.6) we also see that Xm is stable under multiplication
by positive scalars, while from (6.7) and (6.8) it follows that Xm is stable
under multiplication by scalars λ ∈ C satisfying |λ| ≤ 1. Combining
these, the desired conclusion readily follows.

Going further, pick a sequence {λn}n∈N ⊆ C convergent to zero, along
with some x ∈ Xm. The goal is to prove that ‖λnx‖m → 0 as n → ∞.
Since x ∈ Xm there exists c ∈ C \ {0} such that m(x/c) ≤ |c|. In partic-
ular, m(x/c) < ∞ and for each fixed ε > 0, axiom (4) in Definition 6.1
then gives m

(
λnx/(εc)

)
→ 0 as n → ∞. As such, m

(
λnx/(εc)

)
≤ |εc|

for n large, which goes to show that ‖λnx‖m ≤ ε|c| from a rank on,
depending on ε. Ultimately, this shows that ‖λnx‖m → 0 as n→∞, so
the final property needed for ‖ · ‖m to be a quasi-F-norm on Xm holds.

There remains to prove that for any sequence {xn}n∈N ⊆ Xm one
has ‖xn‖m → 0 if and only if m(xn)→ 0. First suppose {xn}n∈N is such
that ‖xn‖m converges to zero. By definition of ‖ · ‖m, for each n ∈ N
there exists cn ∈ C \ {0} such that m(xn/cn) ≤ |cn| and cn → 0 as
n → ∞. Making use of (6.3) we may write, for sufficiently large n (in
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particular, we need |cn| ≤ 1),

(6.10) m(xn) = m

(
cn
xn
cn

)
≤ k0k1m(xn/cn) ≤ k0k1 |cn|,

implying m(xn)→ 0 as n→∞.
Conversely, suppose m(xn) → 0 as n → ∞ and fix ε > 0 arbitrary.

As m is a metrizing quasi-modular it follows that m(xn/ε) also converges
to 0. Thus, for sufficiently large n we have m(xn/ε) ≤ ε. This shows
‖xn‖m → 0 as n → ∞. Lastly, that m is topologically equivalent to
a genuine F-norm follows from every quasi-F-norm being topologically
equivalent to an F-norm. This is a consequence of Theorem 4.1 used in
an appropriate setting (see [3, Theorem 3.41, p. 136] for details).

We now state a lemma which ties up with the definition of Rolewicz–
Orlicz spaces. Given (X ,M, µ) a measure space, denote the collection of
(equivalence classes of) M-measurable, complex-valued functions defined
on X by L(X ,M, µ). We will be interested in functions obeying a
slow growth condition; namely, f : [0,∞)→ [0,∞) is said to satisfy the
∆2-condition provided there exists k ∈ (0,∞) such that

(6.11) f(2x) ≤ kf(x), ∀x ∈ [0,∞).

Lemma 6.3. Let (X ,M, µ) be a measure space and suppose the function
N: [0,∞)→ [0,∞) satisfies the ∆2-condition, is continuous, nondecreas-
ing, and vanishes only at zero. Define mN : L(X ,M, µ) → [0,∞] by
setting

(6.12) mN (u) :=

∫
X

(N ◦ |u|) dµ for each u ∈ L(X ,M, µ).

Then mN is a metrizing modular.

Proof: We must show mN satisfies conditions (1)–(5) in Definition 6.1.
Throughout, u, v ∈ L(X ,M, µ).

For (1), as the function N vanishes only at 0 and is nondecreasing,∫
X (N ◦ |u|) dµ = 0 if and only if |u| = 0 µ-a.e., and so u vanishes
µ-almost everywhere. Next, condition (2) from Definition 6.1 is obvious
in the present context. To see (3), set X0 :=

{
x ∈X : |u(x)| ≥ |v(x)|

}
,
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X1 :=
{
x ∈X : |u(x)| < |v(x)|

}
, and fix λ ∈ [0, 1]. Then

mN

(
λu+ (1− λ)v

)
=

∫
X

(
N ◦ (|λu+ (1− λ)v|)

)
dµ

≤
∫

X0∪X1

(
N ◦ (λ|u|+ (1− λ)|v|)

)
dµ

≤
∫

X0

(
N ◦ (λ|u|+ (1− λ)|u|)

)
dµ

+

∫
X1

(
N ◦ (λ|v|+ (1− λ)|v|)

)
dµ

≤
∫

X

(N ◦ |u|) dµ+

∫
X

(N ◦ |v|) dµ

= mN (u) +mN (v),

(6.13)

as desired. For (4), suppose {λn}n∈N is a sequence of scalars such that
λn → 0 as n→∞, and assume mN (u) <∞. Without loss of generality
suppose |λn| ≤ 1 for n ∈ N. Since N is nondecreasing we have

(6.14) mN (λnu) =

∫
X

(N ◦ |λnu|) dµ ≤
∫

X

(N ◦ |u|) dµ <∞.

Noting due to continuity of N that N(|λnu(x)|)→N(0)=0 for all x∈X ,
we may invoke Lebesgue’s dominated convergence theorem and conclude
mN (λnu)→ 0 as n→∞.

Finally, regarding (5), suppose {un}n∈N ⊂ L(X ,M, µ) is a sequence
such that mN (un) → 0 as n → ∞, and fix a scalar λ. Since N satisfies
the ∆2-condition and is nondecreasing, there exists some k > 0 so that,
for all n ∈ N, N◦|λun| ≤ k(N◦|un|) on X , hence mN (λun) ≤ kmN (un),
ultimately showing mN (λun) → 0 as n → ∞, and concluding the
proof.

We now define a topological space based on the above lemma. The
reader is advised to recall (6.1).

Definition 6.4. Let (X ,M, µ) be a measure space and suppose
N : [0,∞)→ [0,∞) is continuous, nondecreasing, vanishes only at zero,
and satisfies the ∆2-condition. With mN as in (6.12) and X abbrevi-
ating L(X ,M, µ), call the pair (XmN , τmN ) a Rolewicz–Orlicz space,
written LRN (X ,M, µ).

At its heart, a Rolewicz–Orlicz space is a topological space. How-
ever, one could alternatively, and quite naturally, define Rolewicz–Orlicz
spaces to be F-normed spaces instead, using Theorem 6.2. Indeed, the
F-norm which is topologically equivalent to mN used in showing τmN is
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given by an F-norm was displayed in (6.5). In particular, (6.5) becomes,
after replacing the generic m with mN from (6.12),

(6.15) ‖u‖mN = inf

{
λ ∈ (0,∞) :

∫
X

(
N ◦

∣∣∣u
λ

∣∣∣) dµ ≤ λ} .
Our next proposition elaborates on the relationship between certain
types of F-norms and local p-convexity. For a quick definition, a topolog-
ical vector space (X, τ) is said to be locally p-convex, for some p ∈ (0,∞),
if it has a fundamental system of neighborhoods of the origin {Un}n∈N
satisfying c(Un) ≤ 21/p for all n ∈ N. Also, given a vector space X
and p ∈ (0,∞), call ‖ · ‖ : X → [0,∞] a lower p-homogeneous norm if
‖ ·‖ satisfies the usual nondegeneracy and triangle inequality axioms but
rather than homogeneity we have ‖λx‖ = |λ|p‖x‖ for all x ∈ X and
λ ∈ C such that |λ| ≤ 1. Instead, call ‖ · ‖ a p-homogeneous norm if the
above condition holds for all λ ∈ C.

Proposition 6.5. Suppose (X, τ) is a topological vector space and let
p ∈ (0,∞) be such that there exists a lower p-homogeneous norm
‖·‖ : X → [0,∞] for which τ = τ‖·‖. Then if Bn := {x ∈ X : ‖x‖ < 1/n}
for n ∈ N, it follows that {Bn}n∈N is a fundamental system of neighbor-
hoods of the origin, with the property that Bn is open, balanced, topologi-
cally bounded, and c(Bn) ≤ 21/p, for each n ∈ N. In particular, (X, τ) is
locally p-convex.

Proof: That each Bn is open and {Bn}n∈N is a fundamental system of
neighborhoods of 0 follows from Remark 4.4 upon viewing ‖·‖ as a quasi-
metric on X via ρ : X ×X→ [0,∞], ρ(x, y) := ‖x− y‖ for all x, y ∈ X.
In a similar manner, Lemma 5.4 implies that each Bn is topologically
bounded and balanced. Regarding their moduli of concavity, fix n ∈ N
and x, y ∈ Bn, and so by definition ‖x‖, ‖y‖ < 1/n. As 2−1/p ∈ (0, 1), a
scalar for which we may use lower p-homogeneity of ‖ · ‖, estimate

(6.16)
∥∥2−1/p(x+ y)

∥∥ ≤ 1
2‖x+ y‖ ≤ 1

2

(
‖x‖+ ‖y‖

)
< 1/n.

Hence x+ y ∈ 21/pBn and, as c(Bn) is the infimum over such constants,
it follows that c(Bn) ≤ 21/p. As this happens for all n ∈ N, (X, τ) is
locally p-convex.

Remark 6.6. Regarding the converse direction in Proposition 6.5, we
wish to note that if (X, τ) is a topological vector space that is locally
p-convex for some p ∈ (0,∞) then there exists a p-homogeneous norm
‖ · ‖ : X → [0,∞) with the property that τ = τ‖·‖. This follows from a
version of the Aoki–Rolewicz theorem which may be found in [3, Theo-
rem 1.4, p. 5].
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Call a measure space (X,M, µ) separable provided there exists
{An}n∈N ⊆ M such that for any set B ∈ M of finite measure and for
any ε > 0 there exists n0 ∈ N such that µ(B \An0

) +µ(An0
\B) < ε. In

this case call µ separable. And now we record a couple of results from [4]
regarding Rolewicz–Orlicz spaces.

Proposition 6.7. Let (X ,M, µ) be a measure space and fix a function
N : [0,∞) → [0,∞) which is continuous, nondecreasing, satisfies the
∆2-condition, and which vanishes only at zero. In this setting, consider
the Rolewicz–Orlicz space LRN (X ,M, µ). Also define n : (0,∞) → [0, 1]
by

(6.17) n(x) := inf

{
λ > 0 : N(λx) ≥ N(x)

2

}
, ∀x ∈ (0,∞).

Then the following are valid:

(1) LRN (X ,M, µ) is complete;
(2) LRN (X ,M, µ) is separable if and only if µ is separable;
(3) if inf

0<x<∞
n(x) > 0 then LRN (X ,M, µ) is locally bounded.

Proof: These are, respectively, Propositions 1.5.1 and 1.6.4, and Theo-
rem 3.3.1 of [4].

Next are two important results from [4]. Given f, g : [0,∞)→ [0,∞),

write f
∞
≈ g if f ≈ g for sufficiently large inputs. Also, call a measure

space purely atomic if every measurable set contains an atom, where an
atom is a set which has positive measure but no proper subset of it has
positive measure.

Proposition 6.8. (1) Let (X ,M, µ) be a measure space such that µ is
not purely atomic and fix p∈(0,∞). Further let N : [0,∞)→ [0,∞)
be a continuous, nondecreasing function satisfying the ∆2-condi-
tion and which vanishes only at zero. If

(6.18) lim inf
x→∞

N(x)

xp
= 0

then the Rolewicz–Orlicz space LRN (X ,M, µ) is not locally p-con-
vex.

As a corollary, in this context the topology of LRN (X ,M, µ) can-
not be given by a p-homogeneous norm.

(2) Let (X ,M, µ) be a finite measure space. Fix p ∈ (0, 1] and let
N : [0,∞)→ [0,∞) be a continuous, nondecreasing function which
vanishes only at zero, and satisfies the ∆2-condition.
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If there exists a convex function M : [0,∞) → [0,∞) such that

M(xp)
∞
≈ N(x) then the topology of the Rolewicz–Orlicz space

LRN (X ,M, µ) is given by a p-homogeneous norm.
As a corollary, in this setting LRN (X ,M, µ) is locally p-convex.

Proof: The above two main claims are Theorem 3.4.4 and Proposi-
tion 3.4.2 of [4], respectively, while the corollary statements follow from
Proposition 6.5.

We wish to point out here that, while (6.15) illustrates that every
Rolewicz–Orlicz space may be thought of as an F-normed space, the
second part of Proposition 6.8 takes this a step further. In particular, it
gives a sufficient condition for Rolewicz–Orlicz spaces to be thought of
as p-homogeneous normed spaces for p ∈ (0, 1]. The latter is a stronger
condition than the former, as every p-homogeneous norm is an F-norm
but not every F-norm is a p-homogeneous norm for some p ∈ (0,∞), let
alone p ∈ (0, 1].

7. Construction of the key quasi-metric structure space

Here we construct our desired Rolewicz–Orlicz space. To set the stage,
first we prove a lemma elaborating on the properties of a key function
in the construction of this example.

Lemma 7.1. Fix a number p0 ∈ (0,∞) and consider the function
N : [0,∞)→ [0,∞) defined by

(7.1) N(x) :=
xp0

ln(xp0 + e)
, ∀x ∈ [0,∞).

Then N enjoys the following properties:

(1) N vanishes only at zero and limx→∞N(x) =∞;

(2) N ∈ C0
(
[0,∞)

)
∩ C∞

(
(0,∞)

)
;

(3) N is strictly increasing on [0,∞);

(4) N satisfies the ∆2-condition with constant 2p0 ;

(5) for p ∈ (0,∞) one has lim
x→∞

N(x)/xp = 0 ⇐⇒ p ≥ p0;

(6) for q ∈ (0,∞), the function N(xq) is convex for large x (dependent
upon q) ⇐⇒ q > 1/p0;

(7) if n : (0,∞) → [0, 1] is associated with the current N as in (6.17)
then inf

0<x<∞
n(x) ≥ 4−1/p0 .
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Proof: (1) and (2) are clear by design. For (3), the first derivative of N
is

(7.2) N ′(x) =
p0 x

p0−1
(
(xp0 + e)ln(xp0 + e)− xp0

)
(xp0 + e)

(
ln(xp0 + e)

)2 , ∀x ∈ (0,∞).

Since ln(xp0 + e)> 1 for x> 0 we have (xp0 +e)ln(xp0 +e)−xp0 > e> 0
for x > 0, ultimately showing N is strictly increasing on [0,∞). Regard-
ing (4), observe that for each x ∈ [0,∞),

N(2x) ≤ 2p0N(x) ⇐⇒ (2x)p0

ln((2x)p0 + e)
≤ 2p0

xp0

ln(xp0 + e)

⇐⇒ ln(xp0 + e) ≤ ln
(
(2x)p0 + e

)
,

(7.3)

with the last inequality obviously true. Moving on, as for (5), fix a
number p ∈ (0,∞). Then

(7.4) lim
x→∞

N(x)

xp
= lim
x→∞

xp0−p

ln(xp0 + e)
,

and if p0 − p ≤ 0 then the limit is 0 and otherwise the limit is ∞.
For (6), fix q ∈ (0,∞) and, to ease the exposition, define f(x) := N(xq)
and relabel a := qp0 ∈ (0,∞). Then

(7.5) f(x) :=
xa

ln(xa + e)
, ∀x ∈ (0,∞).

After a somewhat lengthy but straightforward differentiation, we see that
the second derivative of f is

f ′′(x) = axa−2
(
2ax2a + (a− 1)(xa + e)2(ln(xa + e))2

− xa(3ae+ (2a− 1)xa − e)ln(xa + e)
)
/(

(xa + e)2(ln(xa + e))3
)
.

(7.6)

Note that axa−2 > 0 since a, x ∈ (0,∞). If a ∈ (1,∞) (which is equiva-
lent to q > 1/p0) we wish to show that, for x large,

(7.7) 2ax2a + (a− 1)(xa + e)2
(
ln(xa + e)

)2
> xa

(
3ae+ (2a− 1)xa − e

)
ln(xa + e).

For large x, upon expanding, the dominant contributor on the left side

will be (a−1)x2a
(
ln(xa+e)

)2
, while the dominant term on the right side

is (2a − 1)x2aln(xa + e). Since a > 1 and ln(xa + e) increases without
bound, it follows that (7.7) is valid for large x. Hence, f ′′(x) > 0 for
x large in this case.
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If however a ∈ (0, 1] (which is the same as saying q ≤ 1/p0) then a
similar analysis based on the behavior of the dominant terms leads to
the conclusion that f ′′(x) is negative for large x.

Finally, to establish (7), for each fixed number x ∈ (0,∞) introduce
I(x) :=

{
λ > 0 : N(λx) ≥ N(x)/2

}
. Since N is nondecreasing and

nonnegative, I(x) is either
(
n(x),∞

)
or
[
n(x),∞

)
. We claim that

(7.8) 4−1/p0 /∈ I(x) for every x ∈ (0,∞).

Indeed, if x ∈ (0,∞) is such that 4−1/p0 ∈ I(x) then we necessarily have
N
(
4−1/p0x

)
≥ N(x)/2, which is further equivalent to

(7.9)

(
4−1/p0x

)p0
ln
(
(4−1/p0x)p0 + e

) ≥ 1

2

xp0

ln(xp0 + e)

⇐⇒ 1

2
ln(xp0 + e) ≥ ln

(
xp0/4 + e

)
.

Introducing t := xp0 ∈ (0,∞) this further becomes equivalent to

ln
√
t+ e ≥ ln

(
t/4 + e

)
⇐⇒ t+ e ≥

(
t/4 + e

)2
⇐⇒ t2/16 + (e/2− 1)t+ (e2 − e) ≤ 0,

(7.10)

with the last inequality an impossibility since the discriminant of the
above quadratic expression is ∆ = (e/2−1)2−(e2−e)/4 = 1−3e/4 < 0.
This concludes the proof of (7.8). In turn, from (7.8) and the format of
I(x) we deduce that necessarily n(x) ≥ 4−1/p0 for each x ∈ (0,∞), as
wanted.

And here is the key Rolewicz–Orlicz space.

Theorem 7.2. For each p0 ∈ (0, 1] there exists a complete, separable,
locally bounded, topological vector space (X, τ) whose topology τ can be
given by a p-homogeneous norm for p ∈ (0, p0) (hence (X, τ) is locally
p-convex for such p) but is not locally p0-convex (hence τ cannot be given
by a p0-homogeneous norm).

Proof: The idea is to construct a Rolewicz–Orlicz space and then invoke
the two parts of Proposition 6.8.

Fix p0 ∈ (0, 1] and let (X ,M, µ) be a measure space so that µ is sep-
arable, not purely atomic, and µ(X ) <∞. For example, [0, 1] equipped
with the Lebesgue measurable sets and the Lebesgue measure suffices.
Take N : [0,∞) → [0,∞) to be the function from Lemma 7.1. Then, in
light of (1)–(4) of Lemma 7.1, N satisfies all the properties needed to
construct the Rolewicz–Orlicz space LRN (X ,M, µ) as in Definition 6.4.
By part (7) in Lemma 7.1 and part (3) of Proposition 6.7 it follows that
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LRN (X ,M, µ) is locally bounded. Parts (1) and (2) of Proposition 6.7
also give that LRN (X ,M, µ) is complete and separable.

Next we show that for every p ∈ (0, p0) the topology of LRN (X ,M, µ)
can be given by a p-homogeneous norm. In hopes of calling upon (2) of
Proposition 6.8, we need that for every p ∈ (0, p0) there exists a con-

vex function Mp : [0,∞) → [0,∞) such that Mp(x
p)

∞
≈ N(x). First,

Mp(x
p)

∞
≈ N(x) is equivalent to Mp(x)

∞
≈ N(x1/p). That is, calling

q := 1/p, we wish to show for every q ∈ (1/p0,∞) there exists a con-
vex function that is pointwise equivalent with N(xq) for large inputs.
Fix such a q. Indeed, something stronger happens, namely by (6) of
Lemma 7.1 the function that N(xq) itself is convex for large x depen-
dent upon q. Bearing this in mind, fix x0 ≥ 0 so that N(xq) is convex
for xq ≥ x0, then define Mp(x) := N(xq) for x ≥ x0, and for x ∈ [0, x0]
take Mp(x) to be the linear function whose graph is the line segment
which connects the origin to (x0, N(xq0)). Invoking part (2) of Proposi-
tion 6.8 we then conclude the topology of LRN (X ,M, µ) can be given by
a p-homogeneous norm, as desired.

Finally, property (5) in Lemma 7.1 permits us to invoke part (1)
of Proposition 6.8, whose conclusion is that the Rolewicz–Orlicz space
LRN (X,M, µ) is not locally p0-convex. In concert with Proposition 6.5
this further shows that the topology of LRN (X ,M, µ) cannot be given
by a p0-homogeneous norm.

It should be noted that Proposition 3.4.8 on p. 115 of [4] is simi-
lar to the above Theorem 7.2, its beginning stating “There is a locally
bounded space X such that the topology in X can be determined by a
p-homogeneous norm for p, 0 < p < p0 but cannot be determined by
a p0-homogeneous norm”, but a closer inspection shows that the argu-
ment sketched there simply does not work. More specifically, S. Rolewicz
claims for any h : [0,∞)→ [0,∞) which is positive, decreasing, continu-
ous, convex, and so that h(0) < p0 and h(x)→ 0 as x→∞, the function
N : [0,∞)→ [0,∞) given by

(7.11) N(x) := xp0−h(x), ∀x ∈ [0,∞),

works in lieu of our N in Theorem 7.2, at least for the purposes of invok-
ing both parts of Proposition 6.8. However, for example, the function
h(x) := p0/(x + 2), x ∈ [0,∞), satisfies the aforementioned properties
yet (6.18) does not hold for N as in (7.11) when p = p0 (as the limit
inferior in question is 1 when p = p0).

Corollary 7.3. For every p0∈(0, 1] there exists a locally bounded, com-
plete, separable topological vector space (X, τ) so that indR(X, τ) = 21/p0
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but for every open, topologically bounded, balanced set U ⊆ X there
holds c(U) > 21/p0 . In particular, the infimum defining indR(X, τ) (as
in (5.2)) is not attained.

Proof: Fix p0∈(0,1] and consider the Rolewicz–Orlicz space LRN (X,M,µ)
from the proof of Theorem 7.2, which we denote (X, τ). Pick p ∈ (0, p0),
and suppose ‖ · ‖p is the p-homogeneous norm such that τ = τ‖·‖p guar-
anteed by Theorem 7.2. From Proposition 6.5 (with r in place of 1/n)
it follows that, for any r > 0, B‖·‖p(0, r) := {x ∈ X : ‖x‖p < r} is open,

topologically bounded, balanced, and c
(
B‖·‖p(0, r)

)
≤ 21/p.

Since, by Theorem 7.2, the space (X, τ) is not locally p0-convex, by
definition there is no fundamental system of neighborhoods of the ori-
gin {Un}n∈N satisfying c(Un) ≤ 21/p0 for each n ∈ N. In fact, something
stronger happens, namely every open, topologically bounded, balanced
set U satisfies c(U) > 21/p0 . For otherwise, suppose U is open, topo-
logically bounded, balanced, and such that c(U)≤21/p0 . Then defining
Un :=n−1U for all n∈N, it follows that c(Un)=c(U)≤21/p0 for all natu-
ral numbers n, and {Un}n∈N is a fundamental system of neighborhoods.
That c(Un) = c(U) was noted after Definition 5.1, while the second prop-
erty may be justified as follows. Fix an arbitrary neighborhood V ⊆ X
of the origin. Since U is topologically bounded, there exists λ ∈ (0,∞)
so that U ⊆ λV . Choose n ∈ N so that n ≥ λ. Since U is balanced so is
Un = n−1U , thus λUn ⊆ nUn = U ⊆ λV , or Un ⊆ V , as desired.

Combining the above two paragraphs we see that the infimum in the
definition of indR(X, τ) is 21/p0 , and further that it is not attained.

Lastly, we are now ready to present the

Proof of Theorem 3.1: Pick p0 ∈ (0, 1] and consider the Rolewicz–Orlicz
space LRN (X ,M, µ) as in the proofs of Theorem 7.2 and Corollary 7.3,
which we will denote (X, τ). Then (X, τ) is a topological vector space
which is locally bounded, complete, separable, and such that the infi-
mum defining indR(X, τ) is not attained. Fix some p ∈ (0, p0). By
Theorem 7.2 there exists a p-homogeneous norm ‖ · ‖p on X such that
τ = τ‖·‖p . We then define ρ : X × X → [0,∞) by ρ(x, y) := ‖x − y‖p
for all x, y ∈ X. By design, (X, ρ) is a quasi-metric linear space so that
ρ is translation invariant and p-homogeneous. Granted these, we are in
a position to apply Theorem 5.6, from which, labeling q := [ρ] (implying
τ = τq), we conclude that the infimum defining Cq is not attained.

In closing, we note that while the infimum in Cq is not necessarily
attained, a truncated version of it is, granted proper constraints. To
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make this precise, given a quasi-metric space (X, ρ), for λ ∈ [1,∞) define

(7.12) [ρ]λ :=
{
ρ′ : X ×X → [0,∞] : λ−1ρ ≤ ρ′ ≤ λρ on X ×X

}
.

The following result has been established in [3, Theorem 4.64, p. 219],
using Ascoli’s compactness theorem and the metrization result presented
in Theorem 4.1.

Theorem 7.4. Suppose that (X, ρ) is a quasi-metric space with the prop-
erty that (X, τρ) is a separable topological space. In this setting, define
α := (log2 Cρ)

−1 ∈ (0,∞] and consider ρα as in Theorem 4.1. Then

(7.13) inf
{
Cρ′ : ρ′ ∈ [ρα]λ

}
is attained, for every λ ∈ [1,∞).

In other words, as long as ρ induces a separable topology and the focus
is on quasi-metrics which do not differ too drastically from ρα (i.e., stay
within prescribed multiplicative bounds), then we are guaranteed a best
(in the sense of most ultrametric-like) pointwise equivalent quasi-metric,
in the same class.
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Primera versió rebuda el 25 de febrer de 2014,
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