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ELIMINATION OF RESONANCES IN CODIMENSION

ONE FOLIATIONS

M. Fernández Duque

Abstract: The problem of reduction of singularities for germs of codimension one
foliations in dimension three has been solved by Cano in [3]. The author divides the

proof in two steps. The first one consists in getting pre-simple points and the second

one is the passage from pre-simple to simple points. In arbitrary dimension of the
ambient space the problem is open. In this paper we solve the second step of the

problem.
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1. Introduction

Reduction of singularities for germs of holomorphic codimension one
foliations in (Cn, 0) is an unsolved problem.

In ambient dimension n = 2, the first complete proof has been given
by Seidenberg in [9]. It is one of the main tools for the understand-
ing of germs of vector fields and foliations in (C2, 0). For instance, it
is absolutely necessary to support a holonomic study of those foliations
(see [8]) or to prove the existence of invariant analytic curves (separa-
trices) (see [1]).

In ambient dimension n = 3, the problem has been first solved in the
non-dicritical case ([2], [4]) and the result has been used to prove the
existence of germs of invariant surfaces in this case. In the general case,
it has been solved in [3].

Although there are invariant hypersurfaces in the non-dicritical situ-
ations and higher dimension [6], the general solution of the problem of
reduction of singularities for n ≥ 4 is still widely open.

In [4] and [3] the authors have identified two kinds of points for codi-
mension one singular foliations in higher dimensional ambient spaces.
They are the pre-simple points and the simple ones. Reduction of singu-
larities consists in obtaining at most simple points after a finite sequence
of blow-ups with non singular invariant centers. To get pre-simple points
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is the first step in that problem, and the passage from pre-simple to sim-
ple points is the second and last step. In fact, pre-simple points are
defined in terms of upper-semicontinuous invariants such as the multi-
plicity and the transversality positions of the initial forms. The defini-
tion of simple points adds non-resonance requirements to the conditions
defining pre-simple points. This paper is devoted to a global solution of
the second step of reduction of singularities.

The first example of a pre-simple but not simple point is the radial
vector field, or equivalently, the foliation defined by

dx

x
− dy

y
= 0.

After a first dicritical blow-up we obtain simple points (in this particular
case even non-singular points). Precise definitions of the notions are
given below.

Up to some considerations about the Jordan Block singularities, the
second step of the problem consists in the elimination of the resonances
appearing on the residual vectors of the pre-simple singularities.

In order to do that in a complete global way, we construct a Con-
trol Variety X with a normal crossings divisor E. We consider some
divisors whose support is contained in E in such a way that the prob-
lem of eliminating the resonances is solved once we have eliminated the
indeterminacies of these divisors (in the sense of Subsection 7.2).

We end the paper by showing how to eliminate the indeterminacies
of a divisor by means of a combinatorial game. In this way we complete
the passage from pre-simple to simple points by means of blow-ups with
invariant centers of codimension two.

2. Preliminaries

Contents of this section can be essentially found in [3].
Let M be a germ around a non singular compact analytic subset of

a complex analytic variety of dimension n. Given a point P ∈ M we
denote by OM,P the ring of analytic functions at P and by MM,P its
maximal ideal. Let ν : OM,P \ {0} −→ Z≥0 be the MM,P -adic order.
Given a ∈MM,P we denote by La := a+ M2

M,P its linear part.

A holomorphic singular codimension one foliation F of M (for short, a
foliation of M) is given locally at each point P ∈M by an equation Ω = 0
where

(1) Ω =

n∑
i=1

fi(x) dxi; fi ∈ OM,P
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is an integrable 1-form germ whose coefficients have no common factors.
Such an Ω is called a local generator of F at P .

Remark 1. Recall that a 1-form η is called integrable if η ∧ dη = 0.

Remark 2. Let Ω be a local generator of F at P and h a unit of OM,P .
Then h · Ω is also a local generator of F at P .

Remark 3. Any meromorphic integrable 1-form ω gives locally a unique
foliation that is also denoted by (ω = 0). To see this we consider a local
generator Ω where Ω = f/g·ω for an appropriate meromorphic germ f/g.
The point of multiplication by f/g is to achieve that all coefficients of Ω
are holomorphic functions having no common factors.

The singular locus of F is the subset locally given by

SingF = (f1 = · · · = fn = 0).

Since the coefficients of ω have no common factors, the codimension of
SingF is at least 2. If

ν(f1, . . . , fn) = 0

we say that the foliation F is regular at P . In this case there are local
coordinates such that F is generated by ω = dx′1.

Definition 1. Let L = {Y1, . . . , Ys} be a finite list of analytic irreducible
subsets Yj ⊂M . We say that L has normal crossings at a point P ∈M
if there are local coordinates (x1, . . . , xn) such that

Yj =
⋂
i∈Aj

(xi = 0), j = 1, . . . , s,

locally at P , where Aj ⊂ {1, . . . , n} for j = 1, . . . , s.
A finite list of analytic subsets has normal crossings if and only if the

list whose elements are the irreducible components of these subsets has
normal crossings.

Definition 2. Let H1, . . . ,Ht be hypersurfaces of M . We say that
H = ∪ti=1Hi is a normal crossings divisor if:

• each hypersurface Hi is non singular,
• the list L = {H1, . . . ,Ht} has normal crossings at every point of M .

Consider a normal crossings divisor D ⊂ M . Since M is a germ
around a compact, D has finitely many irreducible components. At each
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point P ∈ M , there are local coordinates (x1, . . . , xn) such that D is
locally given by

D =

(∏
i∈A

xi = 0

)
.

These coordinates are called adapted to D.
The foliation F of M can always be given locally at each point P ∈M

by an equation ω = 0 where

(2) ω =
∑
i∈A

ai
dxi
xi

+
∑
i/∈A

ai dxi; ai ∈ OM,P

is an integrable 1-form whose coefficients have no common factors. Such
an ω is called a local generator of F adapted to D.

Definition 3. Let H ⊂ M be a hypersurface given locally at each
point P by a reduced equation f = 0, f ∈ OM,P . We say that H is
an invariant hypersurface of F if f divides Ω ∧ df , where Ω is a local
generator of F at P .

The invariant components of D are also called non-dicritical compo-
nents. The dicritical components are then generically transversal to F .
Denote by Dnd the union of the non-dicritical components of D and by
Ddic the union of the dicritical ones. We have D = Dnd ∪ Ddic and
locally at a point P we write

D =

(∏
i∈A

xi = 0

)
; Dnd =

( ∏
i∈And

xi = 0

)
; Ddic =

( ∏
i∈Adic

xi = 0

)
;

where A = And ∪ And. Note that (xi = 0) is dicritical if and only if xi
divides ai. With this notation we can write equation (2) as follows:

(3) ω =
∑
i∈And

ai
dxi
xi

+
∑
i∈Adic

bixi
dxi
xi

+
∑
i/∈A

bi dxi; ai, bi ∈ OM,P ,

where bi = ai/xi if i ∈ Adic, bi = ai if i /∈ A.

Definition 4. Let F be a foliation of M , D a normal crossings divisor,
P ∈M and ω an adapted local generator of F as in (2). The point P is
pre-simple for (F , D) if it satisfies one of the following conditions:

I. ν(a1, . . . , an) = 0.
II. There exists i ∈ A such that the linear part Lai is linearly inde-

pendent of {Lxj : j ∈ A}. Equivalently,

ai 6≡ 0 mod
(
(xj | j ∈ A) + M2

M,P

)
.
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Remark 4. If P is pre-simple for (F , D) then it is also pre-simple for
(F , Dnd). This follows directly from equation (3). In fact, if xi = 0
is dicritical then ai = xibi, so ν(ai) ≥ 1 and ai ≡ 0 mod (xi | i ∈
A) + M2

M,P .

A vector field ξ ∈ TPM is tangent to F at P if ω(ξ) = 0. If ξ is a
regular vector field tangent to F at P , we say that ξ trivializes F at P .

Definition 5. The dimensional type τ of F at P is τ := n−k, where k is
the dimension of the C-vector space spanned by the tangent vectors ξ(P ),
ξ being a germ of vector field tangent to F .

If τ is the dimensional type of F at P , as a consequence of the rec-
tification theorem of vector fields, there are local coordinates such that
F is given by a local equation ω = 0 where ω has the form

ω =

τ∑
i=1

ai(x1, . . . , xτ ) dxi.

Proposition 1. The dimensional type is upper semicontinuous.

Proof: Let P be a point of dimensional type τ . By definition there are
n− τ trivializing vector fields independent at P . These vector fields are
independent at the points of an open neighborhood U . Therefore, the
points of U have at most dimensional type τ .

Proposition 2. Let e be the number of non-dicritical components of D
passing through a pre-simple point P . We have that

e ≤ τ ≤ e+ 1.

Proof: Take the notation as in equation (3). If we are in case I of Defi-
nition 4, there are two options:

• There is i ∈ And with ai unit. In this case the vector fields

ξk = xibk
∂

∂xi
− ai

∂

∂xk
, for k /∈ And,

trivialize F at P . So the dimensional type is τ = e.
• For all j ∈ And we have ν(aj) ≥ 1. In this case there is an index i /∈
A such that bi = ai is a unit. The vector fields

ξk = bk
∂

∂xi
− bi

∂

∂xk
, for k /∈ And ∪ {i},

trivialize F at P . In this case τ = e+ 1.

In case II of Definition 4, the trivializing vector fields may be obtained
thanks to the integrability condition. Details can be found in Lemma 5
of [3].
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We say that a pre-simple point P is a corner point relatively to (F , D)
if τ = e. If τ = e+ 1 we say that P is a trace point relatively to (F , D).

Theorem 1 ([3, Proposition 46]). Let P be a pre-simple singularity for
(F , D) of dimensional type τ . There are formal coordinates (x̂1, . . . , x̂n)
adapted to D such that

Dnd ⊂
τ⋃
i=1

(x̂i = 0),

and F is given locally at P by a formal equation ω = 0 of one of the
following types:

A. There are λi ∈ C∗, i = 1, . . . , τ such that

ω =

τ∑
i=1

λi
dx̂i
x̂i
.

B. There are integers k, with 1 ≤ k ≤ τ , p1, . . . , pk ∈ Z>0, a formal
series ψ ∈ C[[t]] with ψ(0) = 0, and complex numbers α2, . . . , ατ
with αi 6= 0 for i = k + 1, . . . , τ , and not all zero if k = τ , such
that

ω =

k∑
i=1

pi
dx̂i
x̂i

+ ψ(x̂p11 · · · x̂
pk
k )

τ∑
i=2

αi
dx̂i
x̂i
.

C. There are integers k, with 2 ≤ k ≤ τ , p2, . . . , pk ∈ Z>0, and
complex numbers α2, . . . , ατ with αi 6= 0 for i = k + 1, . . . , τ , and
not all zero if k = τ , such that

ω = dx̂1 − x̂1
k∑
i=2

pi
dx̂i
x̂i

+ x̂p22 · · · x̂
pk
k

τ∑
i=2

αi
dx̂i
x̂i
.

Definition 6. The vector β defined by

β :=

{
λ = (λ1, . . . , λτ ) in case A,

α = (αk+1, . . . , ατ ) in case B,

is called residual vector of the normal form.

Remark 5. If P is a corner point, we only can have the types A or B
of the theorem, and in this case ω is a formal adapted generator for F .
For trace points, the three types are possible. The type C provides an
adapted generator for F . In the cases A and B, in order to adapt ω
to the divisor, we have to multiply ω by the variable x̂i which does
not correspond to a component of the divisor, therefore, x̂iω = 0 is an
adapted generator.
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Remark 6. We state this theorem without proof, but it is desirable to
sketch some parts of the proof. Suppose that we are in the corner case.
The formal coordinates x̂ which give us the formal normal forms, are
obtained as a limit of convergent coordinates. Starting with convergent
coordinates x adapted to D, we make coordinate changes x(1),x(2), . . . ,
following a process known as Jordanization. All of these coordinate
changes are of the form

x
(s+1)
i := x

(s)
i · u

(s)
i (x

(s)
1 , . . . , x(s)τ ),

where the u
(s)
i are units. Therefore we have that

x̂i = xi · ûi(x1, . . . , xτ ),

where û is a formal unit. This implies that locally the components of
the divisor (xi = 0) are equal to the formal hypersurfaces (x̂i = 0).

In the case of a trace point, the situation is similar except for at
most one of the variables. The difference appears when we have a trace
point of type A or B. In this situation the convergent coordinates give
us τ − 1 invariant hypersurfaces, but the formal coordinates show one
more germ of formal invariant hypersurface. Suppose that locally D =
∪τi=2(xi = 0). First, it is shown that there is an additional germ of
formal invariant hypersurface with equation

x̂1 := x1 + ϕ̂(x2, . . . , xτ ) = 0,

where ϕ̂ is a formal series vanishing at the origin. Now the process is
exactly like in the corner case, but replacing x1 by x̂1.

Let us recall the case of foliations on surfaces studied by Seidenberg
in [9] (see [5] for a more detailed study). Let F be a foliation given locally
at a point P by ω = a dx+b dy. Consider the vector field X = b ∂∂x−a

∂
∂y

determined by ω. Let LX be the linear part of X , and λ, µ ∈ C its
eigenvalues. The point P is a pre-simple singularity if λ or µ are non
zero. A pre-simple point P is simple if one of the following conditions
holds:

• λµ = 0 (saddle-node),
• λµ 6= 0 and λ/µ /∈ Q>0.

If λ/µ /∈ Q>0 we say that the pair (λ,−µ) is non-resonant. The following
definitions generalize this notion to arbitrary dimension.
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Definition 7. Let β be an s-tuple β = (β1, . . . , βs) ∈ Cs. An s-tuple of
nonnegative integers m = (m1, . . . ,ms) ∈ Zs≥0 is a resonance of β if

〈m,β〉 =

s∑
i=1

miβi = 0.

We say that β is non-resonant if its only resonance is m = 0.

We use the formal normal forms given by Theorem 1 in order to define
simple singularities.

Definition 8. Let P be a pre-simple singularity for (F , D). It is a
simple sigularity if it has a formal normal form of type A or B, and the
residual vector is non-resonant.

3. Stratification of Sing F
Let P be a point and x = (x1, . . . , xn) a local coordinate system

adapted to D defined in a neighborhood U of P . For all I ⊂ {1, . . . , n}
denote

Sx
I :=

{
Q ∈ U : Q ∈ (xi = 0) ∀ i ∈ I, Q /∈ (xj = 0) ∀ j /∈ I

}
,

Tx
I := Sx

I =
{
Q ∈ U : Q ∈ (xi = 0) ∀ i ∈ I

}
.

Theorem 1 gives a formal description of the singular locus SingF around
a pre-simple point for (F , D). In adapted formal coordinates x̂ =
(x̂1, . . . , x̂n) we have

SingF =
⋃

1≤i<j≤τ

T x̂
i,j , if P is of type A or B,

SingF =
⋃

2≤i≤k

T x̂
1,i ∪

⋃
2≤i<j≤τ

T x̂
i,j , if P is of type C.

We have that this formal description is in fact convergent. We present
this result in the following proposition, whose proof follows from Re-
mark 6.

Proposition 3. Let P be a pre-simple point for (F , D) of dimensional
type τ . There are local coordinates x = (x1, . . . , xn) adapted to D such
that

SingF =
⋃

1≤i<j≤τ

Tx
i,j , if P is of type A or B,

SingF =
⋃

2≤i≤k

Tx
1,i ∪

⋃
2≤i<j≤τ

Tx
i,j , if P is of type C

locally at P , and such that the vector fields ∂/∂xτ+1, . . . , ∂/∂xn are tan-
gent to F .
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Denote

Sing∗(F , D) :=
{
P ∈M | P is not pre-simple for (F , D)

}
.

Proposition 4. Sing∗(F , D) is a closed set.

Proof: Proposition 14 of [3].

From now on, we assume that Sing∗(F , D) = ∅.
Consider the sets

Ms :=
{
P ∈M | the dimensional type of F at P is at least s

}
,

for s = 1, . . . , n. By Proposition 1 all these sets are closed. Note that in
particular SingF = M2.

Proposition 5. The set Ms is a finite union of irreducible components
of codimension s with normal crossings with D. In addition, all points
of a connected component of Ms \Ms+1 are analytically equivalent.

Proof: Let P ∈Ms\Ms+1 and let x be a local coordinate system adapted
to D. By Proposition 3 we have that the points of Tx

1,...,τ are analytically
equivalent to P (the analytic triviality is given by the flow of the vector
fields ∂/∂xτ+1, . . . , ∂/∂xn), and outside this set the dimensional type
decreases.

By Proposition 3 we have that the sets Ms and D locally have normal
crossings. Note that each subvariety Tx

I is contained in different compo-
nents of the divisor, consequently, they are all different from each other.
From this fact follows the global normal crossings.

Remark 7. If P is a point of dimensional type τ , and x is a local coor-
dinate system adapted to D, then

Mr =
⋃

#I=r
I⊂{1,...,τ}

Sx
I ,

locally at P .

Remark 8. Note that if Sing∗(F , D) 6= ∅ the proposition is false. Con-
sider for example the foliation of C3 given by d(xy(x− y)(x− zy)) = 0.
In this case M3 = (x = y = 0) has codimension two.

We have that SingF is the union of finitely many codimension two
regular subvarieties. Let TrSingF ⊂ SingF be the set of all the trace
points. As we shall precise below, we know that TrSingF is the union
of some irreducible components of SingF that we call trace components.
The next proposition is due to Cano and Cerveau.
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Proposition 6. If all points are simple, each connected component of
TrSingF defines the germ of a formal invariant hypersurface.

Proof: See [4, Part II, §5].

Remark 9. We are not supposing that all points are simple, therefore we
cannot use Proposition 6. If all points are pre-simple, we do not have a
unique germ of formal hypersurface invariant for F , due to its possible
dicriticalness. However, the connected components of TrSingF are well
defined, and this fact is the property that we need.

Proposition 5 allows us to stratify SingF considering the connected
components of Ms \Ms+1, for s = 2, . . . , n, as strata (where Mn+1 = ∅).
Since we are working with a divisor which may have dicritical compo-
nents, it is useful to add this data to the stratification. Thus, the points
of a stratum are characterized by being analytically equivalent and be-
longing to the same components of the divisor. If we denote by τ(Γ) the
dimensional type of the stratum Γ and by d(Γ) the number of dicritical
components which contain it, we have

dim(Γ) = n− τ(Γ)− d(Γ).

For simplicity, it is useful to extend the stratification to the whole va-
riety M . We just need to add to the stratification some strata of di-
mensional type 1: one trace stratum for the points outside the divisor, a
corner stratum for each non-dicritical component (formed by the regular
points), and the strata corresponding to regular points over dicritical
components.

We say that the stratum Γ has the property P if that property is
satisfied by its points (note that all points of a stratum are analytically
equivalent). To describe F at a stratum Γ we use as a local generator
one corresponding to an arbitrary point P ∈ Γ. From now on we will
talk about strata rather than points.

Let Γ be a stratum of dimensional type τ contained in d dicritical
components. By Proposition 2, we know that Γ can be a corner stra-
tum or a trace one. If it is of corner type, then it is, locally at Γ, the
intersection of τ non-dicritical components of the divisor and d dicrit-
ical ones. However, if Γ is a trace stratum, it is the intersection of
τ − 1 non-dicritical components, one connected component of TrSingF
and d dicritical components.
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4. Transforming foliations by non singular blow-ups
with codimension two centers

In this work we only use blow-ups with regular centers of codimension
two, which are irreducible components of the singular locus. Denote by
E1, . . . , Et the non-dicritical components of D and by F1, . . . , Fs the
connected components of TrSingF .

Definition 9. A subvariety Y ⊂ M is an allowed center if it is of the
form Ei ∩ Ej (corner centers) or Ei ∩ Fj (trace centers).

Remark 10. Note that there are only two options for a stratum: either
it is contained in the center, or they are disjoint.

Let π : M ′ −→ M be the blow-up with center Y . In M ′ we have a
foliation F ′ and a divisor D′ where:

• F ′ is the foliation of M ′ defined locally in the following way. Let
Γ′ ⊂ M ′ be a stratum and let Γ = π(Γ′) ∈ M be its image by π.
Let ω = 0 be a local equation of F at Γ. We have that F ′ is given
locally at Γ′ by ω′ = 0, where ω′ := π∗(ω) is the pull-back of ω
by π.
• D′ = ∪t+1

i=1D
′
i, where D′i is the strict transform of Di for i = 1, . . . , t,

and D′t+1 = π−1(Y ) is the exceptional divisor.

We need to describe how the stratification is modified by the blow-up.

Proposition 7. Let Γ ⊂ M be a stratum. Let π be the blow up with
center Y . If Γ 6⊂ Y , then there is just one stratum Γ′ ⊂ M ′ such that
π(Γ′) = Γ. In this case, Γ′ is analytically equivalent to Γ. Nevertheless,
if Γ ⊂ Y , there are three strata in M ′ that are projected by π onto Γ.
Denoting these strata by Γ1, Γ2, and Γ̃, we have

dim(Γ1) = dim(Γ2) = dim(Γ);

dim(Γ̃) = dim(Γ) + 1.

Proof: We use codimension two centers, so it is useful to recall here the
dimension two case. Let us consider the plane with the divisor formed by
both coordinate axes. The exceptional divisor obtained after blowing-up
the origin is a projective line. We can divide this line into three subsets:
the origin of each chart (defined by the intersection between the excep-
tional divisor and each component of the strict transform of the divisor),
and the rest of the points. The blow-up induces an isomorphism between
the punctured plane and the new variety without the exceptional divisor.

Without loss of generality, suppose that Y is a corner center, say
Y = Ei ∩ Ej (for trace centers the reasoning is the same).
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Outside the center, the blow-up is a birational morphism, thus, the
strata disjoint from the center are not modified, and they are in one to
one correspondence with the strata of M ′ \ π−1(Y ).

Let Γ be a stratum contained in Y . We have that, as sets,

π−1(Γ) ' Γ× P1.

As in the two dimensional case described above, divide π−1(Γ) in three
subsets:

Γ1 := π−1(Γ) ∩ Ei;
Γ2 := π−1(Γ) ∩ Ej ;

Γ̃ := π−1(Γ) \
(
Γ1 ∪ Γ2

)
.

The subset Γ1 (respectively Γ2) corresponds to the origin of the first
(respectively second) chart. It is contained in Ei (respectively Ej) and
in the exceptional divisor, but it is disjoint to Ej (respectively Ei). The
remaining points of π−1(Γ) are only contained in the exceptional divisor.

The analytic triviality along these subsets can be obtained by lifting
the corresponding diffeomorphisms for Γ.

Remark 11. Note that it does not matter if the blow-up is dicritical or
not, these sets are always well defined. In fact, this is the reason to
consider the dicritical components in the stratification.

Let (x1, . . . , xn) be a coordinate system adapted to D at Γ. Let ω be
a local generator of F adapted to D at Γ. Suppose that locally we have
Es = (xi = 0) and Et = (xj = 0). To obtain the expression of π∗(ω) we
just need to substitute the equations of the blow-up in the expression
of ω. In the first chart we have that

xi = x′i ⇒ dxi = dx′i,

xj = (x′j + ε)x′i ⇒ dxj = x′i dx
′
j + (x′j + ε) dx′i,(4)

where ε depends on the point we are looking at. The value ε = 0 cor-
responds to Γ1, and the different values ε 6= 0 correspond to the points
of Γ̃. Interchanging the indices i and j we obtain the equations for the
second chart (thus for Γ2).

Proposition 8. Let Γ ⊂ Y be a simple stratum. Then π is non-dicritical
and Γ1, Γ2, and Γ̃ are simple strata.

Proof: Suppose that Γ is a stratum of type A, and fix adapted coordi-
nates x such that Y = Ti,j . Let λ be the residual vector of Γ. A direct
calculation shows that Γ1 is a type A stratum whose residual vector is
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λ′ := λ + λjei (where ei is the i-th vector of the canonical basis). Let
p′ ∈ Zτ be a vector orthogonal to λ′. We have that p := p′ + p′iej is
orthogonal to λ. If p′ ∈ Zτ≥0, then p ∈ Zτ≥0 and therefore λ′ is non-
resonant. This reasoning works for the other strata, and for the case of
a type B singularity.

5. Statement of the main theorem

Let us make a precise statement of the result of reduction to simple
singularities:

Theorem 2. Let M be a germ around a non singular compact analytic
subset of a complex analytic variety of dimension n, D ⊂ M a divisor
with normal crossings, and F a foliation of M . Assume that all points
of M are pre-simple for (F , D). There is a finite sequence of blow-ups

M = M0
π1←−M1

π2←− · · · πN←−MN = M ′

satisfying:

• the center Yi of πi+1 is an irreducible component of SingFi, where
Fi is the transformed foliation of F in Mi,
• Di := (π1 ◦ · · · ◦ πi)−1(D) ⊂Mi is a normal crossings divisor,

such that all points of M ′ are simple for (F ′, D′).

We divide the proof in two parts. First we eliminate the type C
singularities (Theorem 3) and after this we eliminate the resonances
(Theorem 4).

6. Elimination of type C singularities

In the two dimensional case, type C points are completely character-
ized by their behavior under blow-up. We recall here this case since it
is very similar to the arbitrary dimension case. Consider the foliation
of C2 given by

ω = dx− pxdy
y

+ ypα
dy

y
,

and suppose that p > 1. If we blow-up the origin, we obtain two sin-
gularities in the exceptional divisor: a saddle node in the origin of the
first chart and a type C singularity in the origin of the second chart.
Replacing p by p− 1 in the above expression we obtain a local generator
at the new type C point. After blowing-up p − 1 times we obtain one
type C singularity with p = 1. If we blow-up one more time, the only
singularity that appears is a saddle node in the origin of the first chart.
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As illustrated by the two dimensional case, if we blow-up type C points
enough times, they disappear. Our strategy for eliminating all type C
points consists in blowing-up all the trace components of the singular
locus which contains type C strata.

Proposition 9. Let π be the blow-up of M with allowed center Y . Each
type C stratum of M produces at most one type C stratum in M ′.

Proof: As Proposition 7 states, there is nothing to do for strata disjoint
from Y . Using again Proposition 7 we know that there are three strata
over the ones contained in the center. Using the same arguments as in
Proposition 8 we see that type A and B strata only produce the same
kind of strata (or even non singular strata). So, if there are no type C
strata contained in Y , the statement is true.

Suppose that Γ ⊂ Y is a type C stratum of dimensional type τ . We
can take adapted coordinates x̂ such that locally Y = T x̂

1,k, Γ = Sx̂
1,...,τ

and such that

(5) ω = dx̂1 − x̂1
k∑
i=2

pi
dx̂i
x̂i

+ x̂p22 · · · x̂
pk
k

τ∑
i=2

αi
dx̂i
x̂i

is a local generator of F at Γ. Denote by ∆1, ∆2, and ∆̃ the strata
that locally are equal to Sx̂

2,...,τ , Sx̂
1,...,k−1,k+1,...,τ , and Sx̂

2,...,k−1,k+1,...,τ

respectively. We have that Γ is contained in ∆i (i = 1, 2) and in ∆̃.
Depending on the values of τ , k, pk, and αk the behavior of Γ under the
blow-up centered at Y is different. First, suppose that τ ≥ 3.

• If pk > 1 the blow-up is non-dicritical. Thus, Γ̃ and Γ1 are corner
strata and consequently they cannot be of type C. Replacing pk
by pk − 1 in (5) we obtain a local generator at Γ2.
• If pk = 1 and αk 6= 0 the blow-up is also non-dicritical. The

situation is like in the previous case. Note that now pk − 1 = 0,
and therefore the index k drops to k − 1.
• If pk = 1 and αk = 0 the blow-up is dicritical. The points of Γ1,

Γ2, and Γ̃ are analytically equivalent to the ones of ∆1, ∆2, and
∆̃ respectively, but they belong to one more dicritical component
of the divisor. Note that in the three strata the dimensional type
has dropped. Replacing pk by pk − 1 = 0 in the expression (5)
we obtain a local generator for Γ2, and this is the unique type C
stratum created.

If τ = 2 we cannot have the third case (if α2 = 0 then Γ is a trace
stratum of type A). In the other cases the situation is similar, but note
that if the index k becomes 0, Γ2 is a non singular stratum.
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Theorem 3. Let M be a germ around a non singular compact analytic
subset of a complex analytic variety of dimension n, D ⊂ M a divisor
with normal crossings, and F a foliation of M . Assume that all points
of M are pre-simple for (F , D). There is a finite sequence of blow-ups

M = M0
π1←−M1

π2←− · · · πN←−MN = M ′

satisfying:

• the center Yi of πi+1 is an irreducible component of SingFi, where
Fi is the transformed foliation of F in Mi,
• Di := (π1 ◦ · · · ◦ πi)−1(D) ⊂Mi is a normal crossings divisor,

such that there are no type C points in M ′.

Proof: For each stratum Γ consider the invariant ι(Γ) ∈ Z3
≥0 defined by

ι(Γ) :=

{
(1, k, p2 + · · ·+ pk) if Γ is a type C stratum,

(0, 0, 0) otherwise,

where the numbers k and p2 + · · ·+ pk are exactly the ones that appear
in a formal normal form.

Let π be the blow-up of M with allowed center Y of trace type. By
Proposition 9 we know that there is at most one type C stratum in M ′

over a stratum of M . Then, for each type C stratum Γ′ of M ′ there is
one stratum Γ in M such that π(Γ′) = Γ. As we can see in the proof of
Proposition 9 we have that

ι(Γ′) ≤ ι(Γ)

for the lexicographic order. Moreover, the inequality is strict for strata
contained in the center of the blow-up.

There are finitely many strata of type C. Number them by Γ1, . . . ,ΓN
and consider the global invariant

ιC :=

N∑
i=1

ι(Γi).

Each time we blow-up an allowed trace center containing type C strata,
the invariant ιC decreases for the lexicographic order. Consequently,
after a finite chain of such blow-ups there will not be any type C stra-
tum. Therefore the strategy consists in blowing-up all the allowed trace
centers containing type C strata. We can do this by choosing the cen-
ters arbitrarily, or, for example, taking each time one which contains a
stratum that reaches the maximum value of the invariant.
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7. Elimination of resonances

After eliminating all type C singularities, the only non simple strata
are resonant of type A or B. The following proposition allows us to know
when a stratum is resonant without using the formal normal forms.

Proposition 10. Let Γ be a pre-simple stratum of type A or B. The
following conditions are equivalent:

(1) Γ is resonant.
(2) There is a finite chain of blow-ups

(6) M = M0
π1←−M1

π2←− · · · πN←−MN = M ′

satisfying:
• The center Yi of πi+1 is an irreducible component of SingF ,

and there is a stratum Γi ⊂ Yi, such that dim(Γi) = dim(Γ)
and such that π1 ◦ · · · ◦ πi(Γi) = Γ.

• πN is dicritical, and it is the only one in the chain with this
property.

Proof: Let λ be the residual vector of Γ. If Γ is a type B stratum we
only use centers of blow-up involving the variables which give the residual
vector. Thus we can think without loss of generality that Γ is a type A
stratum.

(1) ⇒ (2) Let r0 = (r1, . . . , rτ ) be a resonance of Γ0 := Γ such that
gcd(r1, . . . , rτ ) = 1. Fix two indices i, j with ri, rj > 0. Let Y0 be the
subvariety locally equal to Tx

i,j , and let π be the blow-up centered at Y0.

If ri ≤ rj then the stratum Γ1 has r1 = r0−riej as resonance. If instead
we have ri > rj the stratum Γ2 has r1 = r0 − rjei as resonance. Take
Γ1 equal to one of the resonant strata and denote by r1 its resonance.
We have that |r1| < |r0|. We can repeat this process until we reach
a stratum ΓN−1 with resonance rN−1 = es + et. Let YN−1 be the
subvariety locally equal to Tx

s,t, and let πN be the blow-up centered
at YN−1. This last blow-up is dicritical and therefore the described
sequence of blow-ups is the desired chain.

(2) ⇒ (1) We need to construct a resonance of Γ using the chain of
blow-ups (6). We know that rN−1 = es + et is a resonance of ΓN−1
since πN is dicritical. The stratum ΓN−1 is in the origin of one of the
charts of the blow-up πN−1. If for example, it is in the first chart, we
have that rN−2 = rN−1 + rN−1i ej is a resonance for ΓN−2. Iterating
this process we get a resonance for Γ.
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Proposition 11. Let Γ and ∆ be strata of M . If ∆ ⊂ Γ and Γ is
resonant, then ∆ is also resonant.

Proof: By Proposition 10 we know that there is a finite chain of blow-ups
satisfying certain conditions related to Γ. The same sequence of blow-
ups satisfies the same conditions with respect to ∆. Using again the
equivalence of the previous proposition we have that ∆ is resonant.

Proposition 12. Suppose that all type A strata are non-resonant. Then,
all type B strata are also non-resonant.

Proof: Let Γ be a type B stratum and suppose that it is resonant. Let
x̂ be an adapted to D coordinate system such that Γ is locally equal
to Sx̂

1,...,τ and let

ω = dx̂1 − x̂1
k∑
i=2

pi
dx̂i
x̂i

+ x̂p22 · · · x̂
pk
k

τ∑
i=2

αi
dx̂i
x̂i

be a formal normal form. The residual vector of Γ is λ = (αk+1, . . . , ατ ).
Let r be a resonance of Γ with the maximum amount of zeros and let
I ⊂ {k + 1, . . . , τ} be the set of indices I := {i | ri 6= 0}. Let ∆ be
the stratum locally equal to Sx

I . Using the arguments of the proof of
Proposition 10 we can determine a chain of blow-ups in the conditions
of the proposition involving only the variables corresponding to I. This
chain of blow-ups also satisfies the conditions with respect to ∆. Thus,
by Proposition 10, we have that ∆ is resonant. This stratum is resonant
involving all the variables, and therefore it is of type A contradicting the
hypothesis.

Theorem 4. Let M be a germ around a non singular compact analytic
subset of a complex analytic variety of dimension n, D ⊂ M a divisor
with normal crossings, and F a foliation of M . Assume that all points
of M are pre-simple for (F , D), and that there are no type C points.
There is a finite sequence of blow-ups

M = M0
π1←−M1

π2←− · · · πN←−MN = M ′

satisfying

• the center Yi of πi+1 is an irreducible component of SingFi, where
Fi is the transformed foliation of F in Mi,
• Di := (π1 ◦ · · · ◦ πi)−1(D) ⊂Mi is a normal crossings divisor,

such that all points of M ′ are simple for (F ′, D′).

The idea is to reduce the problem to a combinatorial process of elimi-
nation of indeterminacies. First we need to treat all the strata together,
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both the trace and the corner ones. Then we define the Control Variety:
a variety with a divisor which represents the properties of SingF that we
need. In this variety we define and solve a combinatorial game. Finally
we show that this solves also the problem of eliminating resonances.

As we saw in the previous sections, the irreducible components of
SingF are determined by E1, . . . , Et (the non-dicritical components of
the divisor) and F1, . . . , Fs (the connected components of TrSingF).

Rename these sets by K̃1, . . . , K̃N , where N = s + t, K̃i = Ei for i =
1, . . . , t, and K̃t+j = Fj for j = 1, . . . , s. Denote by K̃ the set K̃ :=

{K̃1, . . . , K̃N}.
In order to treat all the strata together, we will represent all the resid-

ual vectors and resonances in a common space. Let Γ be a type A strata
of dimensional type τ . Note that Γ is contained in exactly τ elements
of K̃. Let I(Γ) ⊂ {1, . . . , N} be the set of indices corresponding to these
elements. Let λ ∈ (C∗)τ be the residual vector of Γ. Each coefficient λi
corresponds to one of the components of K̃, say K̃ni

. Consider the in-
jective map

ι : (C∗)τ −→ CN

defined by ι(λ)ni
= λi and ι(λ)j = 0 if j /∈ I(Γ). Using the same idea

we can represent the resonances r ∈ Zτ≥0 into ZN≥0. For short, we will

write λ instead of ι(λ) (and we do the same for the resonances).
Consider the vector subspace of QN

Res(Γ) := 〈r ∈ ZN≥0 \ {0} | r is a resonance of Γ〉Q.

Note that if Γ is non-resonant then Res(Γ) = ∅. Now consider the
subspace of QN

Res∗(Γ) := 〈p ∈ QN | pi = 0 if i /∈ I(Γ) and 〈p, r〉 = 0 ∀ r ∈ Res(Γ)〉,

if Γ is resonant, and Res∗(Γ) = ∅ otherwise.
Let B(Γ) := {p1, . . . ,pt} be a system of generators of Res∗(Γ).

Definition 10. Let p ∈ ZN be a vector of integers. If p ∈ ZN≥0 or

p ∈ ZN≤0, we say that the vector p has pure sign.

Remark 12. Note that a resonance is a vector with pure sign.

Lemma 1. If all the elements of B(Γ) have pure sign, then Γ is non-
resonant.

Proof: By definition, two vectors with pure sign can not be orthogonal.
Since the resonances have pure sign, Γ has to be non-resonant.



Elimination of Resonances in Codimension One Foliations 93

7.1. The Control Variety. Let Ã ∈MN×N be the matrix defined by

Ãi,j = 1 if K̃i∩K̃j 6= ∅ and Ãi,j = 0 otherwise. We refer to this matrix as

the codimension two incidence matrix of K̃. Let (i1, j1) < · · · < (is, js)

be the pairs of indices such that i < j and Ãi,j = 0, ordered by the
lexicographic order.

Consider the affine space X0 = CN and let K0 = ∪Ni=1Ki be the
divisor defined by Ki := (zi = 0), where (z1, . . . , zN ) are coordinates
of CN . Note that the codimension two incidence matrix of K0 is defined
by A0 := (A0

i,j = 1)Ni,j=1. We will modify this variety by blow-ups until
we get a new one in which the codimension two incidence matrix of the
strict transform of the divisor is exactly Ã.

Let π1 : X1 −→ X0 be the blow-up with center Ki1 ∩ Kj1 and let

K1 ⊂ X1 be the strict transform of K̃ (for simplicity, we denote the
strict transform of each component equal to the initial one). Replacing
Ai1,j1 and Aj1,i1 by 0 we obtain the codimension two incidence matrix

of K̃1. Repeating this process with the pairs (i2, j2) < · · · < (is, js), we
finally get a projective variety X := Xs and a divisor K := Ks whose
codimension two incidence matrix is exactly A := Ã.

7.2. Elimination of local indeterminacies of a divisor. The ob-
jects for the combinatorial game mentioned above are divisors with sup-
port contained in K. They are all of the form

Φ :=

N∑
i=1

niKi,

where ni ∈ Z. Suppose that we perform the blow up of X centered at
Ks∩Kt. By abuse of notation denote the strict transforms of K1, . . . ,KN

with the same symbols, and denote by KN+1 the exceptional divisor. We
define the strict transform of Φ as

Φ∗ :=

N+1∑
i=1

n′iKi,

where n′i = ni for i = 1, . . . , N and n′N+1 = ns + nt.
Let µi,j(Φ) be the integer defined by

µi,j(Φ) =

{
−ninj if i < j, Ki ∩Kj 6= ∅ and ninj < 0,

0 otherwise.

Let M(Φ) be the integer defined by

M(Φ) := max
i,j

{
µi,j(Φ)

}
.
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Definition 11. A divisor Φ is locally determined if M(Φ) = 0.

The following lemma is the combinatorial key in our process of elim-
ination of resonances.

Lemma 2. There is a finite chain of blow-ups, all of them centered at
the intersection of two components of K, such that the strict transform
of Φ is locally determined.

Proof: Let l(Φ) be the integer defined by

l(Φ) := #
{

(i, j) | i < j and µi,j(Φ) = M(Φ)
}
,

and let ι(Φ) be the pair

ι(Φ) := (M(Φ), l(Φ)).

Choose a pair of indices (s, t) such that µs,t > 0 (suppose without loss
of generality that ns < 0 < nt and ns + nt ≥ 0). Let π be the blow-up
of X with center Ks ∩Kt. By definition we have that

µ′s,t = 0

and

µ′i,j = µi,j

if {i, j} ⊂ {1, . . . , N} \ {s, t}. Since ns < n′N+1 = ns + nt < nt we have
that

µ′s,N+1, µ
′
t,N+1 < µs,t.

Finally, take an index i 6= s, t. If Ki ∩KN+1 = ∅, or if ni ≥ 0 then

µ′i,N+1 = 0.

Otherwise we have

µ′i,N+1 = −n′in′N+1 = −ni(ns + nt) < −nint = µi,t.

We have that if the pair (s, t) satisfies µs,t = M(Φ) then

ι(Φ′) < ι(Φ)

for the lexicographic order. Repeating this process we get ι(Φ′) = 0,
hence, M(Φ) = 0, as desired.

Remark 13. This lemma is an avatar of the general result of resolution
of singularities of Hironaka [7] applied to the case of the elimination
of indeterminacies of a rational function that is already locally a quo-
tient of monomials. We take a slightly more general situation, since our
divisor is not necessarily a principal divisor. Moreover, our algorithm
uses only codimension two centers. In the local uniformization approach
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we are close to the classical results of Zariski [10]; there he uses only
codimension two centers.

Definition 12. Let Φ =
∑N
i=1 niKi and Ψ =

∑N
i=1miKi be divisors.

We say that Ψ is a subdivisor of Φ if for all index i we have mi = ni or
mi = 0.

Remark 14. Note that if Φ is a locally determined divisor, so are all its
subdivisors.

7.3. End of the proof of Theorem 4. Suppose that there is just one
resonant stratum Γ ⊂ M with B(Γ) = {p}. Consider the divisor Φp

in X defined by

Φp :=

N∑
i=1

piKi.

Since p has pure sign we have that Φp is not locally determined.
Suppose that π is the blow-up of X centered at Ks ∩Kt. Let Φ∗p be

the strict transform of Φp and consider the following subdivisors:

Φ1
p :=

N+1∑
i=1
i 6=s

piKi; Φ̃p :=

N+1∑
i=1
i 6=s,t

piKi; Φ2
p :=

N+1∑
i=1
i 6=t

piKi.

Let π̃ be the blow-up of M centered at K̃s ∩ K̃t. Suppose that Γ1 is
resonant. In the proof of Proposition 8 we saw how to compute the
resonances of Γ1 using the ones related to Γ. We have that

B(Γ1) = {p1},
where p1 is exactly the vector of integers appearing in the expression
of Φ1

p. Thus, if we associate a divisor to p1 we get Φ1
p. In the same way,

if Γ2 or Γ̃ are resonant, its associated divisors are Φ2
p and Φ̃p respectively.

Lemma 2 gives us a finite chain of blow-ups in X which transforms
Φp into a locally determined divisor. Let Y1, . . . , Ym be the centers of
such blow-ups. Each center is the intersection of two components of K,
so we can write Yi = Ksi ∩Kti where {si, ti} ⊂ {1, 2, . . . , N + i− 1}.

Let π1 be the blow-up of M with center Ỹ1 = K̃s1 ∩ K̃t1 . We ob-
tain three strata over Γ, which may be resonant. We need to control
these three strata, but as we saw previously, we can do this with sub-
divisors of Φ∗p. The key is in Remark 14: if we transform Φp into a
locally determined divisor, then all its subdivisors will be also locally
determined. Now we can continue the process by blowing-up the center
Ỹ2 = K̃s2 ∩ K̃t2 , and so on. In the final step, we have that all the strata
over Γ are non-resonant.
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In the general case we have finitely many resonant strata. Denote
them by Γ1, . . . ,ΓN . Fix systems of generators of Res∗(Γi)

B(Γi) =
{
pi1, . . . ,p

i
ni

}
for i = 1, . . . , N . Denote by T the number T = n1 + · · · + nN and let
Φ1, . . . ,ΦT be the divisors related to the elements of B(Γi).

In the same way we did before, using Lemma 2 we can determine a
finite chain of blow-ups which transform Φ1 into a locally determined
divisor. This chain of blow-ups transforms also the other divisors. Now,
we can use Lemma 2 again so that Φp2

(its strict transform) becomes
locally determined (note that if we transform a locally determined divisor
by blow-ups, it stays locally determined). Using Lemma 2 enough times,
we determine a chain of blow-ups which makes all the divisors become
locally determined. With the corresponding chain of blow-ups in M we
reach the situation desired.
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