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Abstract: In this paper we find necessary and sufficient conditions in order that a

planar homogeneous polynomial differential system has a polynomial or rational first

integral. We apply these conditions to linear and quadratic homogeneous polynomial
differential systems.
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1. Introduction and statement of the main results

One of the main problems in the qualitative theory of differential
systems in C2 is to determine whether they have a global first integral,
i.e. first integrals defined in a dense and open subset of C2. This problem
goes back to Poincaré. In fact, Poincaré in 1891 started a series of three
papers [26, 27, 28] in which he tried to answer the following question: Is
it possible to decide if an algebraic differential equation in two variables is
algebraically integrable? (in the sense that it has a rational first integral).

For an arbitrary polynomial differential system in C2 the existence
of a rational first integral does not imply the existence of an analytic
equation on the coefficients, and neither the degree of the integral nor
the genus of the phase curve is bounded by a function of the degree of
the differential system, see [18].

The characterization of polynomial or rational integrability for differ-
ent particular differential systems has attracted the attention of many
authors, see for instance [1, 16, 21, 22, 23] and references therein. In
the present paper we give the characterization of polynomial or rational
integrability for homogeneous polynomial differential systems. More-
over, for such systems when we control the polynomial first integrals, in
fact, we control all analytical first integrals, see [17, 21]. Indeed in [17]
it is shown that if the eigenvalues of the linear part of the differential
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system do not satisfy some form of resonance condition, then no ana-
lytic first integral exists (in a close similarity to the conditions for the
existence of polynomial and rational first integral).

Let C[x, y] be the ring of all polynomials in the variables x and y
with coefficients in C. And let C(x, y) be its quotient field, that is, the
field of rational functions in the variables x and y with coefficients in C.
As we have said, here we are interested in computing polynomial and
rational first integrals of homogeneous polynomial differential systems
in C2 i.e. differential systems of the form

(1) ẋ = Pn(x, y), ẏ = Qn(x, y),

where (x, y) ∈ C2, Pn(x, y), Qn(x, y) ∈ C[x, y] are coprime and homo-
geneous of degree n and the dot denotes derivative with respect to an
independent variable t real or complex. Our aim is to characterize the
systems of the form (1) which have a polynomial or a rational first inte-
gral.

Given a planar polynomial differential system

(2) ẋ = P (x, y), ẏ = Q(x, y),

where P (x, y), Q(x, y) ∈ C[x, y], we denote by n the degree of the system,
that is, n = max{degP,degQ}. We say that a functionH : U ⊆ C2 → C,
with U an open set, is a first integral of system (2) if H is continuous, not
locally constant and constant on each trajectory of the system contained
in U . We note that if H is of class at least C1 in U , then H is a first
integral if it is not locally constant and

P (x, y)
∂H

∂x
+Q(x, y)

∂H

∂y
≡ 0

in U . We call the integrability problem the problem of finding such a
first integral and the functional class where it belongs. We say that
the system has a polynomial first integral if there exists a first integral
H(x, y) ∈ C[x, y]. Analogously, we say that the system has a rational
first integral if there exists a first integral H(x, y) ∈ C(x, y).

We say that a function V : W ⊆ C2 → C, with W an open set, is an
inverse integrating factor of system (2) if V is of class C1, not locally
zero and satisfies the following linear partial differential equation

P (x, y)
∂V

∂x
+Q(x, y)

∂V

∂y
=

(
∂P

∂x
+
∂Q

∂y

)
V (x, y)

inW. The knowledge of an inverse integrating factor defined inW allows
the computation of a first integral in U =W \ {V = 0} by the following
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line integral

H(x, y) =

∫ (x,y)

(x0,y0)

P (x, y) dy −Q(x, y) dx

V (x, y)
,

where (x0, y0) ∈ U is any point. An easy computation shows that the
homogeneous polynomial

Vn+1(x, y) = yPn(x, y)− xQn(x, y)

is an inverse integrating factor for system (1). A proof of this well-
known fact can be found in Lemma 3 of [4]. If Vn+1(x, y) ≡ 0 and n > 1
we have that the polynomials Pn(x, y) and Qn(x, y) are not coprime
in contradiction with our hypothesis. We detail the integrability for the
case n = 1 of system (1) in Proposition 7. To see the relation between the
functional classes of the inverse integrating factors and their associated
first integrals see Theorem 3 of [14], see also [7].

Many works deal with the integrability problem of a system of the
form (2), see for instance [3, 5, 7, 20, 24] and references therein. The
main idea of these works is to consider the singular points of the system
and to give necessary conditions on the eigenvalues associated to the
linear part of each singular point in order that the system has a first
integral of a particular functional class. The paper [25] deals with linear
differential systems defined in kN , where k is a field of characteristic
zero and N ≥ 2 is an integer, and the author gives a characterization of
the linear differential systems which have a polynomial or a rational first
integral in terms of the eigenvalues of the constant matrix which defines
the linear differential system.

Our main result is a characterization of the homogeneous polynomial
differential systems (1) which have a polynomial or a rational first inte-
gral in terms of the eigenvalues associated to the singular points of the
system which lie on the “exceptional divisor”, once the origin has been
blow-up.

We consider the homogeneous polynomial Vn+1(x, y) = yPn(x, y) −
xQn(x, y) and its factorization in linear factors

(3) Vn+1(x, y) =
n+1∏
i=1

vi(x, y),

where vi(x, y) ∈ C[x, y] are homogeneous polynomials of degree 1, for
i = 1, 2, . . . , n + 1. We say that two linear factors are equal if they
are proportional by a scalar value c ∈ C. We note that Vn+1(x, y) is
square-free if vi(x, y) is different from vj(x, y) for all i 6= j.
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Our first result establishes the non-existence of a rational first integral,
and in consequence the non existence of a polynomial first integral, for
system (1) when Vn+1(x, y) factorizes with repeated linear factors.

Proposition 1. If the homogeneous polynomial Vn+1(x, y) = yPn(x, y)−
xQn(x, y) is not square-free in C[x, y], then system (1) has no rational
first integral.

The proof of this result is given in Section 2.
We analyze system (1) with n = 1 in Proposition 7. We note that the

origin for n > 1 of system (1) is a degenerate singular point. We make
use of the blow-up technique for studying its local phase portrait and
to characterize the integrability properties of the system. For a detailed
explanation of the blow-up technique, see for instance Chapter 3 of [11].
The idea of a blow-up is to separate the directions at which the orbits
of a system get to a singular point. In order to do that, we consider the
change of coordinates (x, y)→ (u, v) with x = u and y = u v. We observe
that in all the points of C2 except those with x = 0, this change is a one-
to-one correspondence and that all the points (x, y) in the same straight
line through the origin y = mx, with m ∈ C, are transformed to the
horizontal straight line v = m. In order to “see” also the points such that
x = 0, we also consider the directional blow-up given by (x, y) → (u, v)
with x = u v, y = v, which is in one-to-one correspondence for all the
points of C2 except those with y = 0. This blow-up can be interpreted
as a change which transforms the disk in a neighborhood of the origin
into a Moebius band and the origin into a circle S1 in the middle of this
Moebius band. This circle, which turns out to be the union of the orbits
of the transformed system after dividing by un−1 (or vn−1 in the case
of the second directional blow-up), is called the exceptional divisor. The
two considered directional blow-ups are two local charts which cover
the Moebius band. In the first one (x, y) → (u, v) with x = u and
y = u v, the exceptional divisor is given by u = 0 and in the second
one (x, y) → (u, v) with x = u v, y = v, the exceptional divisor is given
by v = 0.

We deal with the singular points of system (1) which lie on the ex-
ceptional divisor S1. We will show that if p ∈ S1 is a singular point of
system (1) once transformed, then the matrix corresponding to the lin-
ear part of the system in a neighborhood of p is diagonal. We denote its
eigenvalues by λp and µp, where λp is the eigenvalue whose eigenvector is
orthogonal to the exceptional divisor S1 and µp is the eigenvalue whose
eigenvector is tangent to the exceptional divisor S1. We also define the
quotient of these two eigenvalues by γp = λp/µp.
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Lemma 2. Consider the factorization of the polynomial Vn+1(x, y) =
yPn(x, y)−xQn(x, y) given in (3). Each vi(x, y) defines a singular point
on the exceptional divisor having eigenvalues λi and µi, where λi is the
eigenvalue whose eigenvector is orthogonal to the exceptional divisor and
µi is the eigenvalue whose eigenvector is tangent to the exceptional divi-
sor. If Vn+1(x, y) is square-free, then λi µi 6= 0, for i = 1, 2, . . . , n+ 1.

The proof of Lemma 2 is given in Section 2.

The following result provides the explicit expression of a first integral
of system (1) when Vn+1(x, y) is square-free.

Theorem 3. Using the same notation than in Lemma 2, if the homo-
geneous polynomial Vn+1(x, y) is square-free, then

H(x, y) =

n+1∏
i=1

vi(x, y)γi ,

with γi = λi

µi
, is a first integral of system (1). Furthermore,

n+1∑
i=1

γi = −1.

The function of the first integral given in Theorem 3 is called of
Darboux type, and the first integral is called Darboux first integral.
To know more about the Darboux theory of integrability, see for in-
stance [6, 8, 9, 19] and the references therein. The proof of Theorem 3
is given in Section 2. There are several papers which give results about
general planar polynomial differential systems of the form (2). Using
these results for the general case, one could give alternative proofs to
Proposition 1 and Theorem 3 in the particular case of the homogeneous
system (1). This could be done in the framework of remarkable values,
see [6, 12, 13] and the references therein, and using the necessary con-
ditions for the existence of invariant algebraic curves, see [7] and the
references therein. In particular, in [12], there are several results about
systems of the form (2) which have a Darboux first integral character-
izing the existence of a polynomial inverse integrating factor. We note
that the particular homogeneous systems (1) that we consider have the
Darboux first integral provided in Theorem 3 and the polynomial inverse
integrating factor Vn+1(x, y) defined in Proposition 1.

The following theorem is the main result of this paper and character-
izes when system (1) has a polynomial or a rational first integral. As
usual Q denotes the set of rational numbers, and Q+ (resp. Q−) the set
of positive (resp. negative) rational numbers.
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Theorem 4. Using the same notation than in Lemma 2, the following
statements hold.

(a) System (1) has a rational first integral if and only if Vn+1(x, y) is
square-free and γi ∈ Q for i = 1, 2, . . . , n+ 1.

(b) System (1) has a polynomial first integral if and only if Vn+1(x, y)
is square-free and γi ∈ Q− for i = 1, 2, . . . , n+ 1.

In relation with statement (a) we remark that, as
∑n+1
i=1 γi = −1, we

only need to have that n (out of n+ 1) of the values γi are rational and
we deduce that all of them are rational. In relation with statement (b)
we need that the n + 1 values γi are in Q−. Theorem 4 is proved in
Section 2.

As an application of Theorem 4, we characterize all the linear and
quadratic homogeneous polynomial differential systems of the form (1)
which admit a rational or a polynomial first integral, see Section 3.

The following statement provides some necessary conditions for some
planar polynomial differential systems of the form (2) to have a rational
first integral.

Corollary 5. Consider a system (2) of degree n and let Pn and Qn
be the terms of degree n of the polynomials P and Q. Assume that Pn
and Qn are coprime. We define the polynomial Vn+1 = yPn − xQn and
the values γi defined in Theorem 3. Then the following statements hold.

(i) If Vn+1 is not square-free, then system (2) has no rational first
integral.

(ii) If Vn+1 is square-free and there is a value γi 6∈Q, for i=1, 2, . . . , n+
1, then system (2) has no rational first integral.

(iii) If Vn+1 is square-free and there is a value γi 6∈ Q−, for i =
1, 2, . . . , n+ 1, then system (2) has no polynomial first integral.

Corollary 5 is proved in Section 2.

2. Proofs of the main results

Proof of Proposition 1: If the homogeneous polynomial Vn+1(x, y) =
yPn(x, y)− xQn(x, y) is not square-free in C[x, y], we can assume, with-
out loss of generality, that it has the multiple factor y with multiplic-
ity m > 1. That is, Vn+1(x, y) = ymR(x, y) where R(x, y) is a homoge-
neous polynomial of degree n+1−m and such that R(x, 0) 6≡ 0. To have
this assumption we consider, if necessary, a rotation of the variables so
as to get y as the multiple factor. Indeed, in the new coordinates, we



Polynomial and Rational First Integrals 261

get that y divides Qn(x, y) and, since Pn(x, y) and Qn(x, y) are coprime
polynomials, we have that Pn(x, 0) 6≡ 0.

Assume that system (1) has a rational first integral H(x, y) = A(x,y)
B(x,y) ,

with A,B ∈ C[x, y]. Hence,

Pn(x, y)
∂H

∂x
+Qn(x, y)

∂H

∂y
≡ 0.

By deriving the quotient H(x, y) = A(x, y)/B(x, y) and multiplying
by B(x, y)2, we get

Pn(x, y)

(
∂A

∂x
B(x, y)−A(x, y)

∂B

∂x

)
+Qn(x, y)

(
∂A

∂y
B(x, y)−A(x, y)

∂B

∂y

)
≡ 0,

or equivalently

(4)

(
Pn(x, y)

∂A

∂x
+Qn(x, y)

∂A

∂y

)
B(x, y)

= A(x, y)

(
Pn(x, y)

∂B

∂x
+Qn(x, y)

∂B

∂y

)
.

We denote by Aa(x, y) the homogeneous terms of highest order a in the
polynomial A(x, y) and by Bb(x, y) the homogeneous terms of highest

order b in the polynomial B(x, y). We denote by Ã(x, y) (resp. B̃(x, y))
the sum of lower terms in A(x, y) (resp. B(x, y)), that is, A(x, y) =

Ã(x, y) +Aa(x, y) (resp. B(x, y) = B̃(x, y) +Bb(x, y)). In the particular
case that a = b and there exists a constant c ∈ C such that Aa(x, y) =
cBb(x, y), we consider the first integral H(x, y) − c instead of H(x, y).
Then

H(x, y)− c =
Ã(x, y) +Aa(x, y)

B̃(x, y) +Bb(x, y)
− c

=
Ã(x, y) +Aa(x, y)− cB̃(x, y)− cBb(x, y)

B̃(x, y) +Bb(x, y)

=
Ã(x, y)− cB̃(x, y)

B̃(x, y) +Bb(x, y)
.

Thus, we can assume, without loss of generality, that the quotient
Aa(x, y)/Bb(x, y) is not a constant. The equation of the highest order
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terms in expression (4) gives(
Pn(x, y)

∂Aa
∂x

+Qn(x, y)
∂Aa
∂y

)
Bb(x, y)

= Aa(x, y)

(
Pn(x, y)

∂Bb
∂x

+Qn(x, y)
∂Bb
∂y

)
,

which implies that the quotients Aa(x, y)/Bb(x, y) and Bb(x, y)/Aa(x, y)
are also rational first integrals of system (1). Hence, if H(x, y) is a ratio-
nal first integral of system (1), we can assume without loss of generality
that H(x, y) is a homogeneous function of degree d ≥ 0, where d = |a−b|.

We consider the blow-up (x, y)→ (u, v) with x = u and y = uv. The
transformed system, after dividing by un−1, is

(5) u̇ = uPn(1, v), v̇ = Qn(1, v)− vPn(1, v).

We remark that, since Vn+1(x, y) = ymR(x, y), we get Vn+1(u, uv) =
un+1 vmR(1, v). We define r(v) := R(1, v) and since Vn+1(x, y) =
yPn(x, y)− xQn(x, y), we get that the expression of v̇ in the above sys-
tem can we rewritten as v̇ = −vm r(v) with r(0) 6= 0. Indeed, as we have
argued in the first paragraph of the proof of Proposition 1, Pn(1, 0) 6= 0.

This change of variables gives that H(u, u v) = udH(1, v) is a rational
first integral of the system

u̇ = uPn(1, v), v̇ = −vm r(v).

We define h(v) := H(1, v) which is, by assumption, a rational function
of the variable v. We have that

uPn(1, v)
(
dud−1h(v)

)
− vm r(v)

(
ud h′(v)

)
≡ 0.

We note that if d = 0 in the previous expression, we get that h′(v) = 0,
which implies that h(v) is a constant. In this case, we can assume that
h(v) ≡ 1. This fact implies that H(u, u v) = u0 which means that
H(x, y) is a constant, in contradiction with the fact that it is a first
integral. Therefore, d > 0. The previous identity gives that

(6)
h′(v)

h(v)
=
dPn(1, v)

vm r(v)
.

We develop the right-hand side of this identity in simple fractions of v,
that is,

dPn(1, v)

vm r(v)
=
cm
vm

+
cm−1
vm−1

+ · · ·+ c1
v

+
α1(v)

r(v)
+ α0(v),

where ci ∈ C, for i = 1, 2, . . . ,m, and α0(v), α1(v) are polynomials
with α1(v) a polynomial of degree at most the degree of r(v) minus 1.
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Equating both expressions, we get that cm = dPn(1, 0)/r(0). Therefore,
cm ∈ C\{0}. We integrate identity (6) with respect to v, we exponentiate
and we get that

h(v) = C exp

[
cm

1−m
1

vm−1

]
× exp

[∫ (
cm−1
vm−1

+ · · ·+ c1
v

+
α1(v)

r(v)
+ α0(v)

)
dv

]
,

where C is a constant of integration, which cannot be zero. We note

that exp
[
cm

1−m
1

vm−1

]
is not a rational function because cm cannot be

zero. This exponential function cannot be simplified by any part of the
second factor. Thus, we get a contradiction with the fact that h(v) is a
rational function. We conclude that if Vn+1(x, y) is not square-free, then
there cannot exist a rational first integral for system (1).

Proof of Lemma 2: We can assume, without loss of generality, that x is
not a divisor of the homogeneous polynomial Vn+1(x, y) = yPn(x, y) −
xQn(x, y). If it was, we consider an affine change of variables (a rotation)
to avoid it. Therefore, the homogeneous polynomial Vn+1(x, y) factorizes
in C[x, y] as

Vn+1(x, y) = c (y − α1x) (y − α2x) · · · (y − αn+1x) ,

where αi ∈ C for i = 1, 2, . . . , n + 1 and c ∈ C − {0}. In this way, we
only need to consider the directional blow-up (x, y)→ (u, v) with x = u,
y = u v in order to see all the singular points of the exceptional divisor.
This directional blow-up transforms system (1) into (5). We observe
that the singular points of system (5) on the exceptional divisor u = 0
are exactly those with v = αi, for i = 1, 2, . . . , n+ 1, because

v̇ = Qn(1, v)− vPn(1, v) = −Vn+1(1, v)

= −c (v − α1) (v − α2) · · · (v − αn+1) .

Straightforward computations show that the linear matrix of system (5)
in a neighborhood of the singular point (u, v) = (0, αi) is(

Pn(1, v) 0

0
∂

∂v
(Qn(1, v)− vPn(1, v))

)∣∣∣∣∣
v=αi

.

We observe that this matrix is diagonal and following the notation in-
troduced in the statement of Lemma 2 we have λi = Pn(1, αi) and

µi =
∂

∂v
(Qn(1, v)− vPn(1, v))

∣∣∣∣
v=αi

.
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We remark that λi 6= 0 because if Pn(1, αi) = 0 then, since Qn(1, αi)−
αiPn(1, αi) = 0, this would imply that Qn(1, αi) = 0 and, hence, the
polynomials Pn(x, y) and Qn(x, y) would not be coprime, in contradic-
tion with the hypothesis. Therefore, λi 6= 0.

On the other hand, we see that

(7) µi =
∂

∂v
(−Vn+1(1, v))

∣∣∣∣
v=αi

= −c
n+1∏

j=1, j 6=i

(αi − αj).

If Vn+1(x, y) is square-free then αi 6= αj when i 6= j and, thus, µi 6= 0,
for i = 1, 2, . . . , n+ 1.

Proof of Theorem 3: We use the notation detailed in the statement and
in the proof of Lemma 2 and we will first show that

(8)

n+1∑
i=1

γi =

n+1∑
i=1

λi
µi

= −1.

This equality appears as a corollary of the results given in [2, 24] but
we include here a proof for the sake of completeness. We can assume,
without loss of generality, that x is not a divisor of the homogeneous
polynomial Vn+1(x, y) = yPn(x, y)− xQn(x, y). We recall that

−Vn+1(1, v) = Qn(1, v)− vPn(1, v)

= −c (v − α1) (v − α2) · · · (v − αn+1) .
(9)

Since the Vn+1(x, y) is square-free, we have that αi 6= αj when i 6= j.
We use the decomposition in simple fractions of a rational function, then

Pn(1, v)

Qn(1, v)− vPn(1, v)
=

n+1∑
i=1

bi
v − αi

,

where bi ∈ C. We take the common denominator in the right-hand side,
we multiply both members of the equality by it, i.e. by

∏n+1
i=1 (v − αi),

and we get that

Pn(1, v)

−c
=

n+1∑
i=1

bi

n+1∏
j=1, j 6=i

(v − αj).

We take the value v = αi and we obtain that

Pn(1, αi)

−c
= bi

n+1∏
j=1, j 6=i

(αi − αj).
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As we have seen in the proof of Lemma 2, we have that λi = Pn(1, αi) and

µi = −c
∏n+1
j=1, j 6=i(αi − αj), see (7). Hence, bi = λi/µi = γi. Therefore,

we have that

(10)
Pn(1, v)

Qn(1, v)− vPn(1, v)
=

n+1∑
i=1

γi
v − αi

.

We take again common denominator in the right-hand side of the pre-
vious identity and we multiply both members by

∏n+1
i=1 (v − αi). We

observe that the coefficient of vn in the left-hand side is the coefficient
of vn of Pn(1, v) divided by −c. By (9), we deduce that c is the coeffi-
cient of vn in the polynomial Pn(1, v). Thus, the coefficient of vn in the
left-hand side is −1 whereas the same coefficient in the right-hand side
is
∑n+1
i=1 γi. Thus, we conclude (8).

Now we consider the expression H(x, y) =
∏n+1
i=1 vi(x, y)γi and we

have that it is a first integral of system (1) if and only if H(u, u v) is a
first integral of system (5), that is, if the following identity is satisfied

(11)
∂H(u, u v)

∂u
uPn(1, v) +

∂H(u, u v)

∂v
(Qn(1, v)− vPn(1, v)) ≡ 0.

By (9) and (8), we have that

H(u, u v) = u
∑n+1

i=1 γi

n+1∏
i=1

(v − αi)γi =
1

u

n+1∏
i=1

(v − αi)γi .

We can deduce, by simplifying H(u, u v), from identity (11)

(12) (−1)Pn(1, v) +

n+1∑
i=1

γi
Qn(1, v)− vPn(1, v)

v − αi
≡ 0.

We see by (9) that

Qn(1, v)− vPn(1, v)

v − αi
= −c

n+1∏
j=1, j 6=i

(v − αj) .

We use this expression to rewrite the second term in the left-hand
side of (12) and also using that γi = λi/µi, λi = Pn(1, αi) and µi =

−c
∏n+1
j=1, j 6=i(αi − αj) (see (7)) we have that

n+1∑
i=1

γi
Qn(1, v)− vPn(1, v)

v − αi
=

n+1∑
i=1

Pn(1, αi)

n+1∏
j=1, j 6=i

v − αj
αi − αj

,
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which is the expression of the Lagrange polynomial which interpolates
the n + 1 points (αi, Pn(1, αi)), i = 1, 2, . . . , n + 1, see for more de-
tails [15]. Therefore, this polynomial is Pn(1, v) and we conclude that
identity (12) is satisfied and, hence, identity (11) is also satisfied.

Proof of Theorem 4: As we have proved in Proposition 1, the fact that
Vn+1(x, y) is square-free is a necessary condition for system (1) to have a
rational (or polynomial) first integral. We will assume that Vn+1(x, y) is
square-free for the rest of the proof and we will also assume that x is not
a divisor of Vn+1(x, y), by doing a rotation in the variables if necessary.

Assume that system (1) has a rational first integral H(x, y). As we
have shown in the proof of Proposition 1, we can assume that H(x, y) is
a homogeneous function of degree d > 0. Indeed, we have that H(u, u v)
is a first integral of system (5). We can write H(u, u v) = udh(v) with
h(v) := H(1, v). Since it is a first integral of system (5), we have that

uPn(1, v)
(
dud−1h(v)

)
+ (Qn(1, v)− vPn(1, v))udh′(v) ≡ 0,

which implies that

h′(v)

h(v)
= −d Pn(1, v)

Qn(1, v)− vPn(1, v)
.

By (10) we have that

h′(v)

h(v)
= −d

n+1∑
i=1

γi
v − αi

,

which implies that

h(v) = k

(
n+1∏
i=1

(v − αi)γi
)−d

,

where k ∈ C \ {0} is an integration constant. Therefore,

H(u, u v) = k

(
u∏n+1

i=1 (v − αi)γi

)d
,

and thus

H(x, y) = k

(
x∏n+1

i=1 (y/x− αi)γi

)d
= k

(
x1+

∑n+1
i=1 γi∏n+1

i=1 (y − αix)γi

)d
.
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Using that
∑n+1
i=1 γi = −1 as we have shown in Theorem 3, we get that

H(x, y) = k

(
n+1∏
i=1

(y − αix)γi

)−d
.

This fact implies that any first integral of system (1) needs to be the
sum of powers of the expression given in Theorem 3.

In short, the only possibility for system (1) to have a rational first
integral is that the expression given in Theorem 3 is a power of a rational
function, which means that γk/γ1 ∈ Q for k = 2, 3, . . . , n+1. In this case,

we denote by qk = γk/γ1 for k = 2, 3, . . . , n + 1. Since
∑n+1
i=1 γi = −1,

we have that

γ1 (1 + q2 + q3 + · · ·+ qn+1) = −1.

Therefore, the fact that qk ∈ Q for k = 2, 3, . . . , n + 1 is equivalent to
γi ∈ Q for i = 1, 2, . . . , n+ 1.

Moreover, the only possibility for system (1) to have a polynomial
first integral is that the expression given in Theorem 3 is the power of
a polynomial, which means that all the γi belong to Q and are of the
same sign. Again, since

∑n+1
i=1 γi = −1, we conclude that γi ∈ Q− for

i = 1, 2, . . . , n+ 1.

Proof of Corollary 5: We first prove that if system (2) has a rational
first integral, then system ẋ = Pn(x, y), ẏ = Qn(x, y), where Pn and Qn
are the terms of degree n of the polynomials P and Q, has a rational
first integral. We assume that system (2) has the rational first integral
H(x, y) = A(x, y)/B(x, y) with A(x, y), B(x, y) ∈ C[x, y] and we denote
by Aa(x, y), Bb(x, y) the highest order terms of the polynomials A(x, y),
B(x, y), respectively. We have that P (∂H/∂x) + Q(∂H/∂y) ≡ 0. We
can reorder and simplify this expression to get(

P (x, y)
∂A

∂x
+Q(x, y)

∂A

∂y

)
B(x, y)

= A(x, y)

(
P (x, y)

∂B

∂x
+Q(x, y)

∂B

∂y

)
.

We equate the highest degree terms in the previous expression and we
have(

Pn(x, y)
∂Aa
∂x

+Qn(x, y)
∂Aa
∂y

)
Bb(x, y)

= Aa(x, y)

(
Pn(x, y)

∂Bb
∂x

+Qn(x, y)
∂Bb
∂y

)
,
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which implies that the quotients Aa(x, y)/Bb(x, y) and Bb(x, y)/Aa(x, y)
are also rational first integrals of system ẋ = Pn(x, y), ẏ = Qn(x, y).
We can assume that these quotients are not constant using the same
reasoning as in the proof of Proposition 1.

The statements of the corollary are direct consequences of Proposi-
tion 1 and Theorem 4.

3. Linear and quadratic homogeneous polynomial
differential systems

This section contains the characterization of the linear and quadratic
homogeneous polynomial differential systems with a rational or a poly-
nomial first integral. To do so, we shall use the canonical forms of linear
and quadratic homogeneous polynomial differential systems. Lemma 6
describes the canonical forms of linear systems of the form (1) in C2.
The canonical forms of quadratic homogeneous polynomial differential
systems are given in [10] and are done for real quadratic systems. Thus,
we give two statements: one in the real case and another one in the
complex case.

The following lemma provides the canonical forms of linear homoge-
neous differential systems of the form (1).

Lemma 6. By an affine change of variables and a rescaling of time,
any linear homogeneous differential system of the form (1) is equivalent
to one of the following linear systems:

(a) ẋ = x, ẏ = ax+ y;
(b) ẋ = x, ẏ = ay;

where a ∈ C.

Proof: In order to avoid a confusion with the names of the variables, we
start with a system with variables u and v and we apply an affine change
of variables to get one of the systems (a) or (b) of the statement. That
is, we consider constants a10, a01, b10, b01 ∈ C which are the coefficients
of a linear homogeneous differential system

(13) u̇ = a10u+ a01v, v̇ = b10u+ b01v.

We consider the homogeneous polynomial Ṽ (u, v) := v(a10u + a01v) −
u(b10u + b01v) which is an inverse integrating factor of (13). The poly-

nomial Ṽ (u, v) splits in two linear factors (equal or different) and we can
assume, by a rotation of the variables if necessary, that u is one of these
factors. Thus, we can assume that a01 = 0 without loss of generality
and since the polynomials which define system (13) are assumed to be
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coprime, we have that a10 b01 6= 0. Thus, we can take a time-rescaling
and we get the system

u̇ = u, v̇ =
b10
a10

u+
b01
a10

v.

We consider two cases, either b01 = a10 or b01 6= a10.

Case (a): If b01 = a10 we parameterize the coefficient b10 by b10 = a a10
and renaming (u, v) with (x, y) we get system (a) of Lemma 6.

Case (b): If b01 6= a10, we parameterize the coefficient b01 by b01 = a a10
and, hence, we are under the hypothesis that a 6= 1. We consider the
affine change of variables (u, v) → (x, y) with u = (1 − a)a10x, v =
b10x+ y and we get system (b) of Lemma 6.

The following proposition contains the characterization of linear ho-
mogeneous differential systems with a rational or a polynomial first in-
tegral.

Proposition 7. By an affine change of variables and a rescaling of time,
a linear homogeneous differential system of the form (1) has a rational
(resp. polynomial) first integral if and only if it is equivalent to a linear
system of the following form:

ẋ = x, ẏ = ay,

with a ∈ Q (resp. with a ∈ Q−).

Proof: We only need to consider the canonical forms provided in Lem-
ma 6. For the system (a), we have that the polynomial V2(x, y) = ax2.
We observe that if a = 0, we have a particular system of case (b). If a 6= 0
we get that the system has no rational first integral as a consequence of
Theorem 4 because V2(x, y) is not square-free.

For system (b) in Lemma 6, we have that V2(x, y) = (a − 1)xy. If
a = 1, we see that H(x, y) = y/x is a rational first integral and there is
no polynomial first integral. If a 6= 1, as an application of Theorem 3,
we get the following first integral H(x, y) = xγy−1−γ with

γ =
a

1− a
.

Thus, the system has a rational first integral if and only if a ∈ Q by
Theorem 4. Indeed, we see that γ < 0 and −1 − γ < 0 if and only if
a < 0. Therefore, also by Theorem 4, the system has a polynomial first
integral only if a < 0.
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The following results contains the canonical forms of real quadratic
homogeneous polynomial differential systems.

Lemma 8 ([10]). Any real quadratic homogeneous polynomial differen-
tial system of the form (1) is affine-equivalent to one and only one of
the following real quadratic systems:

(i) ẋ = ax2 + xy, ẏ = (a+ 3)xy + y2;

(ii) ẋ = xy, ẏ = x2 + y2;

(iii) ẋ = −xy, ẏ = x2 − y2;

(iv) ẋ = −2xy + 2
3x(ax+ by), ẏ = x2 + y2 + 2

3y(ax+ by);

(v) ẋ = −2xy + 2
3x(ax+ by), ẏ = −x2 + y2 + 2

3y(ax+ by);

where a, b ∈ R.

As a direct consequence of this lemma, we have the following result
in the complex case.

Lemma 9. Any quadratic homogeneous polynomial differential system
of the form (1) is affine-equivalent to one and only one of the following
quadratic systems:

(a) ẋ = ax2 + xy, ẏ = (a+ 3)xy + y2;

(b) ẋ = xy, ẏ = x2 + y2;

(c) ẋ = −2xy + 2
3x(ax+ by), ẏ = x2 + y2 + 2

3y(ax+ by);

where a, b ∈ C.

Proof: In order to avoid a confusion with the names of the variables, we
start with a system with variables u and v and we apply an affine change
of variables to get one of the systems (a), (b) or (c) of the statement.
That is, we consider constants a20, a11, a02, b20, b11, b02 ∈ C which are the
coefficients of a quadratic homogeneous polynomial differential system

(14) u̇ = a20u
2 + a11u v + a02v

2, v̇ = b20u
2 + b11u v + b02v

2.

We consider the homogeneous polynomial Ṽ (u, v) := v(a20u
2 + a11u v+

a02v
2)− u(b20u

2 + b11u v + b02v
2) which is an inverse integrating factor

of (14). The polynomial Ṽ (u, v) splits in three linear factors (equal or
different) and we can assume, by a rotation of the variables if necessary,
that u is one of these factors. Thus, we can assume that a02 = 0 without
loss of generality and since the polynomials which define system (14) are
assumed to be coprime, we have that b02 6= 0. We have three possible

ways of splitting the polynomial Ṽ (u, v) taking into account the mul-
tiplicity of the factors. It may have three different linear factors, or a
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double one (which we will assume that it is u) with a simple one, or a
triple one (which we will assume that it is u).

Case (a): We assume that Ṽ (u, v) has u as a double factor, that is, we
assume that a11 = b02 and a20 − b11 6= 0. In this case, we parameterize
the coefficient b20 by a value a such that

b20 = − (a20 − b11)2

3b02
a+

a20(a20 − b11)

b02
.

We consider the affine change of variables (u, v)→ (x, y) with

u =
−3

a20 − b11
x, v =

−3b20
(a20 − b11)2

x+
1

b02
y,

and we get system (a) of Lemma 9.

Case (b): We assume that Ṽ (u, v) has u as a triple factor, that is, we
assume that a11 = b02 and b11 = a20. In this case, since the polynomials
which define system (14) are assumed to be coprime, we have that b20 6=
0. We consider the affine change of variables (u, v)→ (x, y) with

u =
1√
b02b20

x, v =
−a20

b02
√
b02b20

x+
1

b02
y,

and we get system (b) of Lemma 9.

Case (c): We assume that Ṽ (u, v) has three different linear factors, that
is, we assume that a11 6= b02 and ∆ := (a20− b11)2 + 4(a11− b02)b20 6= 0.
We consider the affine change of variables (u, v)→ (x, y) with

u =
2
√
−3√
∆

x, v =

√
−3(b11 − a20)√

∆
x− 3

a11 − b02
y.

Indeed, we parameterize the coefficients a11 and b11 by values a and b
such that b 6= −3/2 and (a, b) 6= (0, 3) with

a11 = 2b02
b− 3

3 + 2b
, b11 =

a20(b+ 6) + a
√
−3∆

b− 3
,

and we get system (c) of Lemma 9. We note that if b = −3/2 or (a, b) =
(0, 3) we have that the polynomials which define system (c) of Lemma 9
are not coprime, in contradiction with our hypothesis.

The following results establish all the real quadratic homogeneous
polynomial differential systems with a rational or a polynomial first in-
tegral.
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Proposition 10. A real quadratic homogeneous polynomial differential
system of the form (1) has a rational first integral if and only if it is
affine-equivalent to one and only one of the following forms:

(a) ẋ = −2xy + 2
3x(ax + by), ẏ = x2 + y2 + 2

3y(ax + by), with a = 0
and b ∈ Q.

(b) ẋ = −2xy+ 2
3x(ax+by), ẏ = −x2+y2+ 2

3y(ax+by), with a =
√

3 c
and b, c ∈ Q.

In what follows, as usual, we denote by i =
√
−1 the imaginary unit.

Proof of Propostion 10: By an affine change of variables, we only need
to consider the five families of systems detailed in Lemma 8. In the fam-
ily (i) we have that the homogeneous polynomial V3(x, y) = −3x2y which
is not square-free and, thus, the system has no rational first integral. In
the families (ii) and (iii), the inverse integrating factor is V3(x, y) = −x3
which is neither square-free and the same conclusion follows.

In the family (iv):

(15) ẋ = −2xy +
2

3
x(ax+ by), ẏ = x2 + y2 +

2

3
y(ax+ by),

with a, b ∈ R, we have that the inverse integrating factor is V3(x, y) =
−x(x2 + 3y2). In order to compute the values of the γi for the three
points on the exceptional divisor provided by the factors of V3(x, y) we
consider the change of variables (x, y) → (u, v) with x = uv and y = v.
We take this blow-up because x is a divisor of V3(x, y) and y is not
a divisor of this homogeneous polynomial. This blow-up leads to the
system

u̇ = −u(3 + u2), v̇ =
1

3

(
3 + 2b+ 2au+ 3u2

)
v.

This system has the singular points p1 = (0, 0), p2 = (i
√

3, 0) and p3 =

(−i
√

3, 0) on the exceptional divisor v = 0. The matrices associated to
the linear part of the system on each of these points are:

Ap1 =

(
−3 0
0 1

3 (3 + 2b)

)
,

Ap2 =

(
6 0

0 2
3 (−3 + i

√
3a+ b)

)
,

Ap3 =

(
6 0

0 2
3 (−3− i

√
3a+ b)

)
.
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For each singular point, we define its eigenvalues λi and µi, where λi is
the eigenvalue whose eigenvector is orthogonal to the exceptional divisor
and µi is the eigenvalue whose eigenvector is tangent to the exceptional
divisor. Then we compute γi = λi/µi and we have that

γ1 = −3 + 2b

9
, γ2 =

1

9

(
−3 + i

√
3a+ b

)
, γ3 =

1

9

(
−3− i

√
3a+ b

)
.

By Theorem 4, the necessary and sufficient condition for system (15) to
have a rational first integral is that γ1, γ2, γ3 ∈ Q which implies that
b ∈ Q and a = 0. In this case, a rational first integral is

H(x, y) =
(
x3+2b

(
x2 + 3y2

)3−b)m
,

where m is the denominator of the rational number b.
In the family (v):

(16) ẋ = −2xy +
2

3
x(ax+ by), ẏ = −x2 + y2 +

2

3
y(ax+ by),

with a, b ∈ R, we have that the homogeneous polynomial V3(x, y) =
x(x2 − 3y2) is square-free. As in the previous case, we consider the
change of variables (x, y) → (u, v) with x = uv and y = v which leads
to the system

u̇ = u(u2 − 3), v̇ =
1

3

(
3 + 2b+ 2au− 3u2

)
v.

This system has three singular points on v = 0 which are p1 = (0, 0),

p2 = (
√

3, 0) and p3 = (−
√

3, 0). By analogous computations as the ones
performed in the previous case, we get that the quotients of eigenvalues
for each singular point are

γ1 = −1

9
(3 + 2b), γ2 =

1

9

(√
3a+ b− 3

)
, γ3 =

1

9

(
−
√

3a+ b− 3
)
.

By Theorem 4, system (16) has a rational first integral if and only if
γ1, γ2, γ3 ∈ Q. We note that γ1 ∈ Q iff b ∈ Q. If we substract γ2 − γ3
we get 2

√
3a/9 which also needs to be a rational number. Therefore we

conclude that a =
√

3 c with c ∈ Q. A rational first integral in this case
is:

H(x, y) =

(
x3+2b

(
x+
√

3y
)3−b+3c (

x−
√

3y
)3−b−3c)m

,

where m is the least common multiple of the denominators of {3+2b, 3−
b+ 3c, 3− b− 3c} with b, c ∈ Q.
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Proposition 11. A real quadratic homogeneous polynomial differential
system of the form (1) has a polynomial first integral if and only if it is
affine-equivalent to one and only one of the following forms:

(a) ẋ = −2xy + 2
3x(ax + by), ẏ = x2 + y2 + 2

3y(ax + by), with a = 0,
b ∈ Q and −3/2 < b < 3.

(b) ẋ = −2xy+ 2
3x(ax+by), ẏ = −x2+y2+ 2

3y(ax+by), with a =
√

3 c,
b, c ∈ Q and (b, c) belong to the triangle b > −3/2, b < 3 − 3c,
b < 3 + 3c.

Proof: If a system of the form (1) has a polynomial first integral, in par-
ticular it has a rational first integral. Thus we are under the hypothesis
of Proposition 10.

We recall that system (15) has the associated quotients of eigenvalues
of singular points in the exceptional divisor

γ1 = −3 + 2b

9
, γ2 =

1

9

(
−3 + i

√
3a+ b

)
, γ3 =

1

9

(
−3− i

√
3a+ b

)
as we have seen in the proof of Proposition 10. We have that a = 0 and
b ∈ Q by Proposition 10. As a consequence of Theorem 4 we have that
γi ∈ Q− for i = 1, 2, 3 is the necessary and sufficient condition to have a
polynomial first integral. This fact implies that −3/2 < b < 3.

For system (16) we have the associated values

γ1 = −1

9
(3 + 2b), γ2 =

1

9

(√
3a+ b− 3

)
, γ3 =

1

9

(
−
√

3a+ b− 3
)
,

as we have seen in the proof of Proposition 10. We have that a =
√

3 c
and b, c ∈ Q again by Proposition 10. To have a polynomial first integral,
we need that γi ∈ Q− for i = 1, 2, 3, which implies that (b, c) belong to
the triangle b > −3/2, b < 3− 3c, b < 3 + 3c.

The following results establish all the complex quadratic homogeneous
polynomial differential systems with a rational or a polynomial first in-
tegral.

Proposition 12. A quadratic homogeneous polynomial differential sys-
tem of the form (1) has a rational first integral if and only if it is affine-
equivalent to a quadratic system of the following form

ẋ = −2xy +
2

3
x(ax+ by), ẏ = x2 + y2 +

2

3
y(ax+ by),

with a = i
√

3 c and b, c ∈ Q.

Proof: We only need to consider the systems appearing in the statement
of Lemma 9. In the case (a) the polynomial V3(x, y) is −3x2y and in
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the case (b) it is −x3. Since these polynomials are not square-free, we
discard these two systems by Theorem 4. For system (c):

(17) ẋ = −2xy +
2

3
x(ax+ by), ẏ = x2 + y2 +

2

3
y(ax+ by),

with a, b ∈ C, we have that V3(x, y) = −x(x2 +3y2) which is square-free.
Indeed, as we have seen in the proof of Proposition 10, we have that the
quotients of eigenvalues of the singular points in the exceptional divisor
are

γ1 = −3 + 2b

9
, γ2 =

1

9

(
−3 + i

√
3a+ b

)
, γ3 =

1

9

(
−3− i

√
3a+ b

)
.

By Theorem 4, system (17) has a rational first integral if and only if
γi ∈ Q for i = 1, 2, 3. We observe that γ1 ∈ Q if and only if b ∈ Q.
If we consider γ2 − γ3 = 2i

√
3a/9, we see that a needs to be of the

form a = i
√

3 c with c ∈ Q. We denote by m the least common multiple
of the denominators of {3 + 2b, 3 − b + 3c, 3 − b − 3c}. A rational first
integral in this case is:

H(x, y) =

(
x3+2b

(
x− i

√
3y
)3−b+3c (

x+ i
√

3y
)3−b−3c)m

.

Proposition 13. A quadratic homogeneous polynomial differential sys-
tem of the form (1) has a polynomial first integral if and only if it is
affine-equivalent to a quadratic system of the following form

ẋ = −2xy +
2

3
x(ax+ by), ẏ = x2 + y2 +

2

3
y(ax+ by),

with a = i
√

3 c, b, c ∈ Q and (b, c) belong to the triangle b > −3/2,
b < 3− 3c, b < 3 + 3c.

Proof: If a complex quadratic homogeneous polynomial differential sys-
tem has a polynomial first integral, then in particular it has a rational
first integral. Thus, we are under the hypothesis of Proposition 12. We
consider system (17) with a = i

√
3 c and b, c ∈ Q. Thus, the values

of the quotients of eigenvalues of the singular points on the exceptional
divisor are:

γ1 = −3 + 2b

9
, γ2 =

1

9
(−3− 3c+ b) , γ3 =

1

9
(−3 + 3c+ b) ,

as we have seen in the proof of Proposition 10 and where we have sub-
stituted a = i

√
3 c. By Theorem 4, system (17) has a polynomial first

integral if and only if γi ∈ Q− for i = 1, 2, 3, which implies that (b, c)
belong to the triangle b > −3/2, b < 3− 3c, b < 3 + 3c.
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boux integrability and the inverse integrating factor, J. Differential
Equations 194(1) (2003), 116–139. DOI: 10.1016/S0022-0396(03)

00190-6.
[7] J. Chavarriga, H. Giacomini, and M. Grau, Necessary con-

ditions for the existence of invariant algebraic curves for planar
polynomial systems, Bull. Sci. Math. 129(2) (2005), 99–126. DOI:
10.1016/j.bulsci.2004.09.002.

[8] C. Christopher, J. Llibre, C. Pantazi, and X. Zhang,
Darboux integrability and invariant algebraic curves for planar
polynomial systems, J. Phys. A 35(10) (2002), 2457–2476. DOI:

10.1088/0305-4470/35/10/310.

http://dx.doi.org/10.1016/j.jde.2008.12.010
http://dx.doi.org/10.1016/j.jde.2008.12.010
http://dx.doi.org/10.2307/2007013
http://dx.doi.org/10.5802/aif.1278
http://dx.doi.org/10.1142/S0218127401002390
http://dx.doi.org/10.1006/jdeq.1998.3621
http://dx.doi.org/10.1016/S0022-0396(03)00190-6
http://dx.doi.org/10.1016/S0022-0396(03)00190-6
http://dx.doi.org/10.1016/j.bulsci.2004.09.002
http://dx.doi.org/10.1016/j.bulsci.2004.09.002
http://dx.doi.org/10.1088/0305-4470/35/10/310
http://dx.doi.org/10.1088/0305-4470/35/10/310


Polynomial and Rational First Integrals 277
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Universitat de Lleida

Avda. Jaume II, 69
25001 Lleida

Spain
E-mail address: gine@matematica.udl.cat

E-mail address: mtgrau@matematica.udl.cat

Jaume Llibre:
Departament de Matemàtiques
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