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GEOMETRIC SINGULAR PERTURBATION THEORY

FOR NON-SMOOTH DYNAMICAL SYSTEMS

Pedro T. Cardin, Paulo R. da Silva, and Marco A. Teixeira

Abstract: In this article we deal with singularly perturbed Filippov systems Zε:

(1) ẋ =

{

F (x, y, ε) if h(x, y, ε) ≤ 0,

G(x, y, ε) if h(x, y, ε) ≥ 0,
εẏ = H(x, y, ε),

where ε ∈ R is a small parameter, x ∈ Rn, n ≥ 2, and y ∈ R denote the slow and
fast variables, respectively, and F , G, h, and H are smooth maps. We study the
effect of singular perturbations at typical singularities of Z0. Special attention will
be dedicated to those points satisfying q ∈ {h(x, y, 0) = 0} ∩ {H(x, y, 0) = 0} where
F or G is tangent to {h(x, y, 0) = 0}. The persistence and the stability properties of
those objects are investigated.
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1. Introduction

Non-smooth dynamical systems (or Filippov systems) occur in various
situations like mechanical systems with dry friction or with impacts.
They also appear in control theory, electronic, economics, medicine and
biology (see for instance [1], [3], [6] and [7]). All these motivational
models emerge from differential equations with discontinuous right-hand
sides.

Let U ⊂ R
n be an open set. We denote by Cr(U,Rn) the set of all

vector fields of class Cr defined on U , with r ≥ 1, endowed with the
Cr-topology.

The simplest case of a Filippov system occurs when the phase space
is composed by two domains such that for each domain a different ODE
(ordinary differential equation) governs the dynamics, namely

(2) ẋ = Z(x) =

{
F (x) if h(x) ≤ 0,

G(x) if h(x) ≥ 0.
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In equation (2), F,G ∈ Cr(U,Rn) and h : U → R is a smooth function
having 0 ∈ R as a regular value. The common boundary M = {x ∈
U | h(x) = 0} between the domains M− = {x ∈ U | h(x) ≤ 0} and
M+ = {x ∈ U | h(x) ≥ 0} is called the switching manifold. We will use
the notation Z = (F,G) to represent the Filippov system (2) and denote
by Ωr(U) the set of all vector fields Z of the form (2) defined on U .

We also use Fh(p) = F (p) · ∇h(p) to denote the scalar product in R
n

between the vector field F : U → R
n and the gradient of the function

h : U → R. For k ≥ 2, we define inductively F kh(p) = F (F k−1h)(p).
On the switching manifold M the following open sets are distin-

guished:

• Sewing region: M1 = {p ∈ M : [Fh(p)][Gh(p)] > 0}.
• Escaping region: M2 = {p ∈ M : Fh(p) < 0, Gh(p) > 0}.
• Sliding region: M3 = {p ∈ M : Fh(p) > 0, Gh(p) < 0}.
The definitions of these three regions exclude the so-called tangency

points, that is, points where one of the two vector fields F or G is
tangent to M. They are characterized by p ∈ M such that Fh(p) = 0
or Gh(p) = 0. Generically speaking, these points are on the boundary
of the regions M1, M2, and M3, which we denote by ∂M1, ∂M2,
and ∂M3, respectively. Tangency points include the case F (p) = 0 or
G(p) = 0, that is, when one of the two vector fields has an equilibrium
point at M. We define two types of tangency between a smooth vector
field and a manifold, which will be used in the paper.

Definition 1.1. We say that a smooth vector field F has a fold or
quadratic tangency with M = {h(x) = 0} at a point p ∈ M provided
Fh(p) = 0 and F 2h(p) 6= 0.

Definition 1.2. A smooth vector field F has a cusp or cubic tangency
with M = {h(x) = 0} at a point p ∈ M provided Fh(p) = F 2h(p) =
0, F 3h(p) 6= 0, and the set {∇h(p),∇(Fh)(p),∇(F 2h)(p)} is linearly
independent.

If a point of the phase space which is moving on an orbit of Z =
(F,G) falls onto M1 then it crosses M1 to another part of the space.
In M2 and M3, the definition of the local orbit is given by the Filippov
convention [5]. We consider the vector field ZS which is the linear convex
combination of F and G tangent to M, that is

(3) ẋ = ZS(x) =
[∇h(x)F (x)]G(x) − [∇h(x)G(x)]F (x)

∇h(x)[F (x) −G(x)]
.
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We call ZS the sliding vector field associated to the Filippov system (2),
independently on whether it is defined in the sliding or escaping regions
(see Figure 1). Solutions of Z = (F,G) through points of M2 ∪ M3

follow the orbit of ZS .

G(p)

F (p)

p

ZS(p)
M

Figure 1. The sliding vector field ZS .

The singularities of a Filippov vector field (2) are

• p ∈ M± such that p is an equilibrium of F or G, that is, F (p) = 0
or G(p) = 0, respectively;

• p ∈ M2∪M3 such that p is an equilibrium of ZS , that is, ZS(p)=0;

• p ∈ ∂M1 ∪ ∂M2 ∪ ∂M3, that is, the tangency points (Fh(p) = 0
or Gh(p) = 0).

Fenichel (see [4, 9]) proved that, in smooth dynamical systems, any
structure which persists under regular perturbation also persists under
singular perturbation. In [2] we extended this theory for the sliding vec-
tor field associated to the reduced problem of (1), that is, we study how
the sliding mode in Filippov systems is affected by singular perturba-
tions. In this paper we consider again systems of the form (1). Now we
analyze the effect of singular perturbations at the tangency points.

For each ε ≥ 0 we denote by Mε the set Mε = {h(x, y, ε) = 0}. Note
that Mε is the switching manifold of (1). The set S0 := {H(x, y, 0) =
0} is called the critical manifold of the singular perturbation prob-
lem (1). For ε > 0, we also use the notation Nε to denote the set
Nε = {H(x, y, ε) = 0}. Here we are supposing that M0 and S0 are in a
general position, i.e., ∇h(p) and ∇H(p) are linearly independent for any
p ∈ M0 ∩S0. Figure 2 illustrates when the manifolds M0 and S0 are in
a general position and their ε-perturbations Mε and Nε. Throughout
this article we will assume that the equation H(x, y, ε) = 0 can be solved
by y = fε(x), for all ε ≥ 0.
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x2

y

M0

Mε

S0

Nε

Figure 2. Manifolds M0 and S0 in a general position
and their ε-perturbations Mε and Nε.

For ε = 0 in (1) we have the so-called reduced problem

(4) ẋ =

{
F̃ (x) if h̃(x) ≤ 0,

G̃(x) if h̃(x) ≥ 0,
0 = H̃(x),

where F̃ (x) = F (x, f0(x), 0), G̃(x) = G(x, f0(x), 0), h̃(x) = h(x, f0(x), 0)

and H̃(x) = H(x, f0(x), 0). The reduced problem (4) is a dynamical
system defined on the manifold S0. For ε 6= 0 we can write the systems
of the form (1) in the general form given in (2), namely

(5) (ẋ, ẏ) =

{
F (x, y, ε) if h(x, y, ε) ≤ 0,

G(x, y, ε) if h(x, y, ε) ≥ 0,

where F (x, y, ε) = (F,H/ε) and G(x, y, ε) = (G,H/ε). We will use the
notation Zε = (F ,G) to represent the Filippov slow-fast system (5) and
Z0 to represent the reduced problem (4).

Definition 1.3. We say that a system of the form (1) is locally simple
at p=(x0, y0,0)∈R

n+1 × R if one of the following conditions is satisfied:

(i) ∂h
∂x

(p) 6= 0 and h(x0, y, 0) = 0, for all y close to y0; or

(ii) there exists a neighborhoodU of (x0, y0) in R
n+1 such that ∂H

∂x
(q)=

0, for all q ∈ U ∩Mε.

Remark 1. Note that for the case (i) of Definition 1.3, we can choose

local coordinates (around the point p) such that h(x, y, ε) = h(x, ε), i.e.,
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the function h does not depend on the variable y in a given neighborhood
of p.

In what follows we summarize a rough overall description of the main
results of the paper. The precise statements are given in Sections 2, 3
and 4. In all of them, we assume that the systems of the form (1) are
locally simple at the singularity.

First result (Theorem A): This result concerns singular perturba-
tions of fold-regular singularities (see Definition 2.1) of the reduced prob-
lem (4). Assuming that system (4) has a singularity of fold-regular
type p, we state that, for ε 6= 0 sufficiently small, there is a family pε
of fold-regular singularities for the corresponding system (1) such that
p0 = p. Moreover, the features of p are preserved for pε.

Second result (Theorem B): We study singular perturbations of
fold-fold singularities (see Definition 2.2) of the reduced problem (4)
with n ≥ 3. If system (4) has a singularity of fold-fold type p then, for
ε 6= 0 sufficiently small, there is a family pε of fold-fold singularities for
the corresponding system (1) such that p0 = p. Moreover, the features
of p are preserved for pε.

Third result (Theorem C): This result concerns singular perturba-
tions of cusp-regular singularities (see Definition 3.1) of system (4) with
n = 2. We prove that the persistence (or not) of tangency points is de-
termined by the sign of a continuous function depending of ε sufficiently
small.

Fourth result (Theorem D): This result concerns singular perturba-
tions of fold-cusp singularities of the reduced problem (4) with n ≥ 4.
Supposing that system (4) has a fold-cusp singularity p, we prove that,
for ε 6= 0 sufficiently small, there is a family pε of fold-cusp singularities
for the corresponding system (1) such that p0 = p.

Fifth result (Theorem E): We study singular perturbations of hyper-
bolic/equilibrium-regular singularities (see Definition 4.1) of (4) with
n = 2. If system (4) has a singularity of hyperbolic/equilibrium-regular
type p then there is a neighborhood W of p such that system (1), for
ε 6= 0 sufficiently small, has a hyperbolic equilibrium pε ∈ W . Moreover,
if pε /∈ Mε, then there exists a family {qε} of fold-regular singularities
of (1).

The paper is organized as follows. In Section 2 we study the effect
of singular perturbations at fold points. We state that fold singularities
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are persistent with respect to singular perturbations (see Theorems A
and B). In Section 3 we study the effect of singular perturbations at cusp
points in dimension two. We show, with a minimal example, that such
kind of singularities are not persistent with respect to singular pertur-
bations. In this section we also study the unfolding of cusp singularities
(see Theorem C). In Subsection 3.1, fold-cusp singularities are consid-
ered (see Theorem D). In Section 4 we study the effect of singular per-
turbation at hyperbolic points in dimension two (see Theorem E). The
proofs of the main results are in Section 5. Final remarks are presented
in Section 6.

2. Singular perturbation of fold singularities

In this section we will study the effect of singular perturbations at fold
singularities of the reduced problem (4). More precisely, by assuming
that the reduced problem (4) has fold singularities, we want to know if
they persist for the full system (5), for ε 6= 0 small. We also present an
example in dimension two showing that in general fold-fold singularities
are not persistent with respect to singular perturbations. On the other
hand, generically speaking, they are persistent in dimension three (see
Theorem B).

Definition 2.1. We say that p ∈ M is a fold-regular singularity of (2)
if

(i) Fh(p) = 0, F 2h(p) 6= 0, and Gh(p) 6= 0; or
(ii) Gh(p) = 0, G2h(p) 6= 0, and Fh(p) 6= 0.

In the first case, we say that the fold-regular singularity p ∈ M is visible
if F 2h(p) < 0 and invisible if F 2h(p) > 0. In the second case, it is visible
provided G2h(p) > 0 and invisible provided G2h(p) < 0.

Definition 2.2. Let p ∈ M be a fold-fold singularity of (2), i.e., both
vector fields F and G have a fold or quadratic tangency at the same
point p ∈ M. We distinguish the following cases:

(i) Elliptic case: F 2h(p) > 0 and G2h(p) < 0 (invisible two-fold).
(ii) Parabolic case: F 2h(p) < 0 andG2h(p) < 0 (visible fold-invisible

fold) or F 2h(p) > 0 and G2h(p) > 0 (invisible fold-visible fold).
(iii) Hyperbolic case: F 2h(p) < 0 and G2h(p) > 0 (visible two-fold).

Remark 2. We define fold-regular and fold-fold singularities for sys-
tem (4) similarly to what was done in Definitions 2.1 and 2.2, respec-
tively. We only note that system (4) is defined on the manifold S0 =
{H(x, y, 0) = 0}.
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In the theorem below we will see that fold-regular singularities are
robust with respect to singular perturbations.

Theorem A. Let Zε(x, y) be a Cr family defined by (1), with r ≥ 2.
Consider p = (p, f0(p), 0) ∈ S0 ∩ M0 a fold-regular singularity of the
reduced problem Z0 and suppose that Zε is locally simple at p. Then
there exists ε1 > 0 such that:

(i) There is a Cr−1 family {pε : ε ∈ (−ε1, ε1)} such that p0 = p and pε
is a fold-regular singularity of Zε.

(ii) If p is a visible (resp. invisible) fold-regular of Z0 then pε is a visible
(resp. invisible) fold-regular of Zε.

Figure 3 illustrates the case where the reduced problem Z0 has a vis-
ible fold-regular singularity p. If Zε is locally simple at p, Theorem A
ensures that Zε has a visible fold-regular singularity pε, for all ε suffi-
ciently small. Moreover, pε → p when ε → 0. Theorem A is proved in
Section 5. It is illustrated by the example below.

x1

x2

y
M0

S0

p

Figure 3. A visible fold-regular singularity p of the
reduced problem Z0.

Example 1. Consider the singularly perturbed Filippov system

(6) ẋ =

{
(x2 + y + ε, 1 + ε) if x1 − y − ε ≤ 0,

(−1− ε,−1− ε) if x1 − y − ε ≥ 0,
εẏ = y − ε,

where x = (x1, x2) ∈ R
2. The functions h(x, y, ε) and H(x, y, ε) that

define the manifolds Mε and Nε are given by h(x, y, ε) = x1 − y− ε and
H(x, y, ε) = y − ε. The critical manifold is S0 = {y = 0}. For ε = 0
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in (6) we have the reduced problem

(7) ẋ = (ẋ1, ẋ2) =

{
(x2, 1) if x1 ≤ 0,

(−1,−1) if x1 ≥ 0,
y = 0.

By denoting system (7) as in (4), we have that

F̃ h̃ = x2, F̃ 2h̃ = 1, G̃h̃ = −1.

Thus, p = (0, 0) is an invisible fold-regular singularity of (7). Now, let
us write (6) in the general form given by (5), where

F (x, y, ε) =
(
x2 + y + ε, 1 + ε,

y

ε
− 1

)

and

G(x, y, ε) =
(
−1− ε,−1− ε,

y

ε
− 1

)
.

We have that

Fh = x2 + y − y

ε
+ ε+ 1, F

2
h =

y

ε
− y

ε2
+

1

ε
+ ε, Gh = −y

ε
− ε.

By solving the system Fh(x, fε(x), ε) = 0 we obtain the ε-family pε =

(2ε,−2ε, ε). Since F
2
h(pε) = 1+ ε and Gh(pε) = −1− ε, it follows that

pε is an invisible fold-regular singularity of (6), for all ε 6= 0 small.

For systems of the form (1) which are not locally simple at p, we
cannot guarantee the validity of the statement (ii) of Theorem A.

Counter-example 1. Consider the Filippov slow-fast system in R
3

(8) (ẋ1, ẋ2) =

{
(x2, 1) if θx1 + (1− θ)y ≤ 0,

(−1,−1) if θx1 + (1− θ)y ≥ 0,
εẏ = x1 − y,

where θ is a real parameter, θ 6= 0 and 1. For ε = 0 in (8) we have the
reduced problem

(9) (ẋ1, ẋ2) =

{
(x2, 1) if x1 ≤ 0,

(−1,−1) if x1 ≥ 0,
x1 = y.

It is easy to see that (0, 0) is an invisible fold-regular singularity of (9).
Note that system (8) is not locally simple at (0, 0).
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By denoting system (8) as in (5), for ε 6= 0 we have

Fh = θx2 +
1− θ

ε
(x1 − y),

F
2
h =

1− θ

ε
x2 + θ +

θ − 1

ε2
(x1 − y),

Gh = −θ +
1− θ

ε
(x1 − y).

By solving the equation Fh(x, fε(x), ε) = 0 we see that pε = (0, 0, 0) is

a tangency point of (8) for all ε 6= 0. Moreover, F
2
h(pε) = θ and

Gh(pε) = −θ. Thus, for each θ < 0 fixed, pε is a visible fold-regular
singularity of (8). Therefore, the statement (ii) of Theorem A is not
true.

2.1. Singular perturbation of fold-fold singularities. The next
example shows that, in dimension two, fold-fold singularities are not
persistent with respect to singular perturbations.

Example 2. Consider the following system

(10) ẋ = (ẋ1, ẋ2) =

{
(x2, 1) if x1 + ε ≤ 0,

(x2 + ε,−1) if x1 + ε ≥ 0,
εẏ = y + 2ε.

The reduced problem of (10) is given by

(11) ẋ = (ẋ1, ẋ2) =

{
(x2, 1) if x1 ≤ 0,

(x2,−1) if x1 ≥ 0,
y = 0.

It is easy to see that p = (0, 0) is a fold-fold singularity of (11). By
denoting system (10) as in (5), we have that

Fh = x2, F
2
h = 1, Gh = x2 + ε, G

2
h = −1.

Thus, for all ε 6= 0, system (10) does not have fold-fold singularities in
Mε = {x1 = −ε}. The point (0, 0, 0) was unfolded by families pε =
(−ε, 0,−2ε) and qε = (−ε,−ε,−2ε) of fold singularities of the vector
fields F = (x2, 1, y/ε+ ε) and G = (x2 + ε,−1, y/ε+ ε), respectively.

On the other hand, in dimension greater than two, fold-fold singular-
ities are persistent with respect to singular perturbations.

Theorem B. Let Zε(x, y) be a Cr family defined by (1), with x ∈ R
n,

n ≥ 3 and r ≥ 2. Consider p = (p, f0(p), 0) ∈ S0 ∩ M0 a fold-fold
singularity of the reduced problem Z0 and suppose that Zε is locally simple
at p. Then there exists ε1 > 0 such that:
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(i) There is a Cr−1 family {pε : ε ∈ (−ε1, ε1)} such that p0 = p and pε
is a fold-fold singularity of Zε.

(ii) If p is either an elliptic or parabolic or hyperbolic fold-fold of Z0

then pε will be either an elliptic or parabolic or hyperbolic fold-fold
of Zε, respectively.

Theorem B is proved in Section 5. It is illustrated by the example
below.

Example 3. Consider the following system

(12) ẋ =

{
(x2 + x3, 1, 1) if x1 + ε ≤ 0,

(x2 − x3 + ε,−1, 1) if x1 + ε ≥ 0,
εẏ = y + 2ε,

where x = (x1, x2, x3) ∈ R
3. The manifolds Mε and Nε are given,

respectively, by Mε = {x1 = −ε} and Nε = {y = −2ε}. The critical
manifold is S0 = {y = 0}. On S0 we have defined the reduced problem

(13) ẋ = (ẋ1, ẋ2, ẋ3) =

{
(x2 + x3, 1, 1) if x1 ≤ 0,

(x2 − x3,−1, 1) if x1 ≥ 0,
y = 0.

By denoting system (13) as in (4), we have that

F̃ h̃ = x2 + x3, F̃ 2h̃ = 2, G̃h̃ = x2 − x3, G̃2h̃ = −2.

Thus, p = (0, 0, 0) is an elliptic fold-fold singularity of (13). Now, let us
write system (12) in the general form given by (5), where

F (x, y, ε) =
(
x2 + x3, 1, 1,

y

ε
+ ε

)

and

G(x, y, ε) =
(
x2 − x3 + ε,−1, 1,

y

ε
+ ε

)
.

We have that

Fh = x2 + x3, F
2
h = 2, Gh = x2 − x3 + ε, G

2
h = −2.

By solving the system Fh(x, fε(x), ε) = 0, Gh(x, fε(x), ε) = 0 we obtain

the ε-family pε = (−ε,− ε
2 ,

ε
2 ,−2ε). Since F

2
h(pε) = 2 and G

2
h(pε) =

−2, it follows that pε is an elliptic fold-fold singularity of (12), for all
ε 6= 0 small.

For systems of the form (1) which are not locally simple at p, we
cannot guarantee the validity of the statement (ii) of Theorem B.
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Counter-example 2. Consider the Filippov slow-fast system in R
4

(14) ẋ =

{
(x2, 1, 1) if 2y − x1 ≤ 0,

(x2 − x3 + ε,−1, 1) if 2y − x1 ≥ 0,
εẏ = y − x1,

where x = (x1, x2, x3) ∈ R
3. For ε = 0 in (14) we have the reduced

problem

(15) (ẋ1, ẋ2, ẋ3) =

{
(x2, 1, 1) if x1 ≤ 0,

(x2 − x3,−1, 1) if x1 ≥ 0,
y = x1.

It is easy to see that p = (0, 0, 0) is an elliptic fold-fold singularity of (15).
Note that system (14) is not locally simple at p.

By denoting system (14) as in (5), for ε 6= 0 we have

Fh=−x2+
2

ε
(y−x1), F

2
h=−2

ε
x2−1+

2

ε2
(y−x1),

Gh=−x2+x3−ε+
2

ε
(y−x1), G

2
h=−2

ε
(x2−x3+ε)+2+

2

ε2
(y−x1).

By solving the system Fh(x, fε(x), ε) = 0, Gh(x, fε(x), ε) = 0 we obtain

the ε-family pε = (0, 0, ε, 0). Since F
2
h(pε) = −1 and G

2
h(pε) = 2, it

follows that pε is a hyperbolic fold-fold singularity of (14), for all ε 6= 0
small. Therefore, the statement (ii) of Theorem B is not true.

3. Singular perturbation of cusp singularities

In this section we study the effect of singular perturbations at the
singularities of the kind cusp of the reduced problem (4). We restrict
our attention to the case n = 2, that is, we consider families of systems
of the form (1) where x = (x1, x2) ∈ R

2 and y ∈ R.

Definition 3.1. We say that p ∈ M is a cusp-regular singularity of (2)
if

(i) Fh(p) = F 2h(p) = 0, F 3h(p) 6= 0 and Gh(p) 6= 0; or
(ii) Gh(p) = G2h(p) = 0, G3h(p) 6= 0 and Fh(p) 6= 0.

Unlike the fold-regular singularities, the cusp-regular ones are not
persistent with respect to singular perturbations. In order to prove this
statement, consider the following example.

Example 4. Consider the following Filippov slow-fast system in R
3

(16) ẋ = (ẋ1, ẋ2) =

{
(−1,−x2

1 + ε) if x2 ≤ 0,

(1, 1) if x2 ≥ 0,
εẏ = y.
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The reduced problem of (16) is given by

(17) ẋ = (ẋ1, ẋ2) =

{
(−1,−x2

1) if x2 ≤ 0,

(1, 1) if x2 ≥ 0,
y = 0.

It is easy to see that p = (0, 0) is a cusp-regular singularity of (17). By
denoting system (16) as in (5), we have

Fh = −x2
1 + ε, F

2
h = 2x1, F

3
h = −2, Gh = 1.

Thus, for all ε 6= 0, the vector field F does not have cusp singularities in
Mε = {x2 = 0}. For ε > 0, the cusp-regular point (0, 0) is unfolded by
families pε = (

√
ε, 0, 0) and qε = (−√

ε, 0, 0) of fold-regular singularities
of (16). If ε < 0, system (16) does not have tangency points on Mε.

We have the following result.

Theorem C. Let Zε(x, y) be a Cr family defined by (1), with x ∈ R
2 and

r ≥ 3. Consider p = (p, f0(p), 0) ∈ S0∩M0 a cusp-regular singularity of

the reduced problem Z0 with F̃ (p)G̃(p) 6= 0 and suppose that Zε is locally
simple at p. Then, there exist ε0 > 0, a neighborhood W of p, and a
Cr−1 function g : (−ε0, ε0) → R, such that:

(i) g(ε) = 0 if and only if Zε has a cusp-regular singularity at the
point pε.

(ii) If g(ε) 6= 0, there are two possibilities: If g(ε) > 0, then Zε does
not have tangency points on Mε. If g(ε) < 0, then p is unfolded
by two distinct points pε and qε which are fold-regular singularities
of Zε.

Theorem C is proved in Section 5. Note that we can choose g(ε) = −ε
in Example 4.

3.1. Singular perturbation of fold-cusp singularities. It is not
difficult to show that fold-cusp singularities are not persistent with re-
spect to singular perturbations in dimensions two and three. On the
other hand, in dimension four they are persistent. In fact,

ẋ = (ẋ1, ẋ2) =

{
(1, x1) if x2 ≤ 0,

(−1,−x2
1 + ε) if x2 ≥ 0,

εẏ = y,

and

ẋ = (ẋ1, ẋ2, ẋ3) =

{
(1, x1 − x3,−1) if x2 ≤ 0,

(−1,−x2
1 + ε, 1) if x2 ≥ 0,

εẏ = y,

provide counter-examples for n = 2 and n = 3 respectively.
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Theorem D. Let Zε(x, y) be a Cr family defined by (1), with x ∈ R
n,

n ≥ 4 and r ≥ 3. Consider p = (p, f0(p), 0) ∈ S0 ∩ M0 a fold-cusp
singularity of the reduced problem Z0 and suppose that Zε is locally simple
at p. Then there are ε1 > 0 and a Cr−1 family {pε : ε ∈ (−ε1, ε1)} such
that p0 = p and pε is a fold-cusp singularity of Zε.

Theorem D is proved in Section 5. It is illustrated by the example
below.

Example 5. Consider the following Filippov slow-fast system in R
5

(18) ẋ =

{
(1, x1 − x3,−1− ε, 1 + ε) if x2 + ε ≤ 0,

(−1,−x2
1 − x4 + ε, 1, 1) if x2 + ε ≥ 0,

εẏ = y + 2ε,

where x = (x1, x2, x3, x4) ∈ R
4. The reduced problem associated to (18)

is given by

(19) ẋ =

{
(1, x1 − x3,−1, 1) if x2 ≤ 0,

(−1,−x2
1 − x4, 1, 1) if x2 ≥ 0,

y = 0.

By denoting system (19) as in (4), we have

F̃ h̃=x1 − x3, F̃ 2h̃=2, G̃h̃=−x2
1 − x4, G̃2h̃=2x1 − 1, G̃3h̃=−2.

Thus, p = (1/2, 0, 1/2,−1/4, 0) is a fold-cusp singularity of (19). Now,
by denoting system (18) as in (5), we have

Fh = x1 − x3, F
2
h = 2 + ε,

Gh = −x2
1 − x4 + ε, G

2
h = 2x1 − 1, G

3
h = −2.

By solving the system

Fh(x, fε(x), ε) = 0,

Gh(x, fε(x), ε) = 0,

G
2
h(x, fε(x), ε) = 0,

we obtain the ε-family pε=(1/2,−ε, 1/2, ε− 1/4,−2ε). Since F
2
h(pε)=

2 + ε and G
3
h(pε) = −2, it follows that pε is a fold-cusp singularity

of (18) for all ε 6= 0 small.

4. Singular perturbation of hyperbolic singularities

In this section we study the effect of singular perturbations at hyper-
bolic singularities of the reduced problem (4). We restrict our attention
to the case n = 2.
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Definition 4.1. We say that p ∈ M is a hyperbolic/equilibrium-regular
singularity of (2) provided F (p) = 0, Gh(p) 6= 0, and DF (p) has eigen-
values λ1 and λ2 with nonzero real parts. Or, G(p) = 0, Fh(p) 6= 0
and DG(p) has eigenvalues λ1 and λ2 with nonzero real parts.

Remark 3. We define hyperbolic/equilibrium-regular singularity for sys-
tem (4) similarly to what was done in Definition 4.1. We note that
system (4) is defined on the manifold S0 = {H(x, y, 0) = 0}.

We have the following result.

Theorem E. Let Zε(x, y) be a Cr family defined by (1), with x ∈ R
2 and

r > 2. Consider p = (p, f0(p), 0) ∈ S0∩M0 a hyperbolic/equilibrium-reg-
ular singularity of the reduced problem Z0. Suppose that Zε is locally
simple at p and that the eigenspaces of Z0 are transverse to M0. Then,
there exist ε0 > 0, a neighborhood W of p such that:

(i) Each Zε = (F ,G), with ε ∈ (−ε0, ε0), has a hyperbolic equilib-
rium point pε ∈ W such that p0 = p. Moreover, the hyperbolic
equilibrium pε is of the same kind as p.

(ii) If pε /∈ Mε ∩W , then there exists a family {qε : ε ∈ (−ε0, ε0)} of
fold-regular singularities of Zε such that q0 = p.

Theorem E is proved in Section 5. It is illustrated by the example
below.

Example 6. Consider the following Filippov slow-fast system in R
3

(20) ẋ =

{
(0, 1) if x1 + x2 ≤ 0,

(x1,−x2 + ε) if x1 + x2 ≥ 0,
εẏ = y,

where x = (x1, x2) ∈ R
2. For ε = 0 in (20) we have the reduced problem

(21) ẋ =

{
(0, 1) if x1 + x2 ≤ 0,

(x1,−x2) if x1 + x2 ≥ 0,
y = 0.

It is easy to see that p = (0, 0) is a saddle-regular singularity of (21).
For all ε 6= 0, the point pε = (0, ε, 0) is a saddle for the vector field
F = (x1,−x2 + ε, y/ε), and note that pε /∈ Mε = {x1 + x2 = 0}. Thus,
system (20) does not have saddle-regular singularities on the switching
manifold Mε. For ε 6= 0, there exists the family qε = (−ε/2, ε/2, 0) of
fold-regular singularities of (20). For ε > 0, the point qε is an invisible
fold for the vector field F = (x1,−x2 + ε, y/ε). If ε < 0, then qε is a
visible fold for F (see Figure 4).
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p

x1

x2

y

x1 + x2 = 0

x2

x1

y

x1 + x2 = 0

x2

x1

y

x1 + x2 = 0

ε>
0

ε<0

qε

qε

pε

pε

Figure 4. Unfolding of the saddle-regular singularity p
of the reduced problem (21) of Example 6.

5. Proofs of Theorems A, B, C, D, and E

In this section we prove Theorems A, B, C, D, and E. In all these
proofs we will use the following result.

Lemma 5.1. Suppose that system (1) is locally simple at p=(p,f0(p),0)∈
S0 ∩M0. Then, for all i ∈ N,

F̃ ih̃(p) = F ih(p, f0(p), 0) and G̃ih̃(p) = Gih(p, f0(p), 0).

Proof: Suppose that i = 1. Since F̃ (x) = F (x, f0(x), 0) and h̃(x) =
h(x, f0(x), 0), it follows by the Chain’s rule that

(22) F̃ h̃(p) =
∂h̃

∂x
(p) · F (p) =

[
∂h

∂x
· F +

∂h

∂y

(
∇f0 · F

)]
(p).

Since system (1) is locally simple at p, one of the following conditions is
satisfied: ∂h

∂x
(p) 6= 0 and h(p, y, 0) = 0, or ∂H

∂x
(p) = 0. In the first case, by

Remark 1, it follows that ∂h
∂y

(p) = 0. The second case implies∇f0(p) = 0.

In both cases, the relation (22) summarizes to F̃ h̃(p) = Fh(p, f0(p), 0).
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For i = 2 we have

F̃ 2h̃(p)= F̃ (p)[F̃ h̃(p)]=F (p, f0(p), 0)[Fh(p, f0(p), 0)]=F 2h(p, f0(p), 0).

By induction we can prove that F̃ ih̃(p) = F ih(p, f0(p), 0), for all i ∈ N.

The second relation G̃ih̃(p) = Gih(p, f0(p), 0) follows of similar way.

First we prove Theorem A.

Proof of Theorem A: We suppose that p = (p, f0(p), 0) is a fold for the

vector field F̃ and regular for G̃. The opposite case is similar. The
fold-regular point p satisfies the following conditions

F̃ h̃(p) = 0, F̃ 2h̃(p) 6= 0, and G̃h̃(p) 6= 0.

Since Zε is locally simple at p, by Lemma 5.1, these conditions are
equivalent to

Fh(p) = 0, F 2h(p) 6= 0, and Gh(p) 6= 0.

On the other hand, for each ε 6= 0 small, the vector field F (x, y, ε) =
(F,H/ε) has a tangency at a point q if, and only, if such point satisfies
the equation Fh(x, y, ε) = 0, that is equivalent to

(23) Fh(x, y, ε) +
∂h

∂y

H

ε
(x, y, ε) = 0.

In order to obtain a family pε of tangency points such that p0 = p we
need to solve the equation (23) restricted to the manifold y = fε(x).
Since H(x, fε(x), ε) = 0, it is enough to solve the following equation

Fh(x, fε(x), ε) = 0.

We have F 2h(p, f0(p), 0) 6= 0. But, F 2h = F (Fh) = ∂(Fh)
∂x

· F . So, in

particular, ∂(Fh)
∂x

(p, f0(p), 0) 6= 0. By the Implicit Function Theorem,
for each ε 6= 0 sufficiently small there exists a unique x = x(ε) such that
Fh(x(ε), fε(x(ε)), ε) = 0. Take pε = (x(ε), fε(x(ε)), ε). Thus, pε is a
family of tangency points of Zε such that p0 = p.

For a fold-regular singularity of Zε, pε, we need to prove that
[
F · ∂

∂x

(
∂h

∂x
· F +

∂h

∂y

H

ε

)
+

H

ε

∂

∂y

(
∂h

∂x
· F +

∂h

∂y

H

ε

)]
(pε) 6= 0

and (
∂h

∂x
·G+

∂h

∂y

H

ε

)
(pε) 6= 0.
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Similarly as above since we are restricted to the manifold y = fε(x) and
H(x, fε(x), ε) = 0, we obtain

F 2h(pε) 6= 0 and Gh(pε) 6= 0.

Since p = (p, f0(p), 0) is a fold-regular singularity of Z0 we have that

F̃ 2h̃(p) = F 2h(p, f0(p), 0) 6= 0 and G̃h̃(p) = Gh(p, f0(p), 0) 6= 0. From
the continuity of the functions F 2h and Gh, it follows that F 2h(q) 6=0
and Gh(q) 6=0 for all q in a given neighborhood of p. In particular, for
each ε 6= 0 sufficiently small, F 2h(pε) 6= 0 and Gh(pε) 6= 0, i.e., pε is a
fold-regular singularity of Zε.

In order to prove the statement (ii), suppose that the fold-regular p

is visible. So, F̃ 2h̃(p) = F 2h(p, f0(p), 0) < 0. Again, by continuity, we
can conclude that F 2h(pε) < 0, for each ε 6= 0 sufficiently small, i.e.,
pε is a visible fold-regular singularity of Zε. Similarly, if p is an invisible
fold-regular singularity of Z0, then pε will also be an invisible fold-regular
singularity of Zε.

Now we prove Theorem B.

Proof of Theorem B: The fold-fold singularity p of Z0 satisfies the fol-
lowing conditions

F̃ h̃(p) = G̃h̃(p) = 0, F̃ 2h̃(p) 6= 0, and G̃2h̃(p) 6= 0.

Since Zε is locally simple at p, by Lemma 5.1, these conditions are
equivalent to

Fh(p) = Gh(p) = 0, F 2h(p) 6= 0, and G2h(p) 6= 0.

In order to obtain a family pε of tangency points of F and G such that
p0 = p we need to solve the system

Fh(x, y, ε) +
∂h

∂y

H

ε
(x, y, ε) = 0,

Gh(x, y, ε) +
∂h

∂y

H

ε
(x, y, ε) = 0,

restricted to the manifold y = fε(x). Since H(x, fε(x), ε) = 0, it is
enough to solve the following system

Fh(x, fε(x), ε) = 0,

Gh(x, fε(x), ε) = 0.

Let Σ1, Σ2, Σ
ε
1, and Σε

2 be the n-dimensional manifolds in R
n+1 given

by {Fh(x, f0(x), 0) = 0}, {Gh(x, f0(x), 0) = 0}, {Fh(x, fε(x), ε) = 0},
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and {Gh(x, fε(x), ε) = 0}, respectively. The fact that p is a tangency

point of the vector fields F̃ and G̃ means that the manifolds S0, M0,
Σ1, and Σ2 intersect transversally at p. Since transversal intersection
is a stable property, small perturbations of the manifolds S0, M0, Σ1,
and Σ2 still produce a transversal intersection. So we can conclude that
the manifolds Nε, Mε, Σ

ε
1, and Σε

2 intersect transversally for all ε 6= 0
sufficiently small. Moreover, dim(Nε ∩ Mε ∩ Σε

1 ∩ Σε
2) = n − 3. This

means that, for each ε 6= 0 sufficiently small, there exists a point pε such
that p0 = p and pε is a tangency point for the vector fields F = (F,H/ε)
and G = (G,H/ε). Note that when n = 3, the tangency point pε is
isolated but if n > 3 it is not.

In order to prove that pε is a fold-fold singularity of Zε we need to
prove that F 2h(pε) 6= 0 and G2h(pε) 6= 0. Since p = (p, f0(p), 0) is a fold-

fold singularity of Z0 we have that F̃ 2h̃(p) = F 2h(p, f0(p), 0) 6= 0 and

G̃2h̃(p) = G2h(p, f0(p), 0) 6= 0. From the continuity of the functions F 2h
and G2h, it follows that F 2h(q) 6= 0 and G2h(q) 6= 0 for all q in a
given neighborhood of p. In particular, for each ε 6= 0 sufficiently small,
F 2h(pε) 6= 0 and G2h(pε) 6= 0, i.e., pε is a fold-fold singularity of Zε.

In order to prove the statement (ii), suppose that the fold-fold p is el-

liptic. So, F̃ 2h̃(p)=F 2h(p, f0(p), 0) > 0 and G̃2h̃(p)=G2h(p, f0(p), 0) <
0. Again, by continuity, we can conclude that F 2h(pε)>0 and G2h(pε)<
0, for each ε 6= 0 sufficiently small, i.e., pε is an elliptic fold-fold singular-
ity of Zε. Similarly, if p is a parabolic (resp. hyperbolic) fold-fold of Z0,
then pε will be a parabolic (resp. hyperbolic) fold-fold of Zε.

Now we prove Theorem C.

Proof of Theorem C: We suppose that p = (p, f0(p), 0) is a cusp for the

vector field F̃ and regular for G̃, i.e, F̃ h̃(p) = F̃ 2h̃(p) = 0, F̃ 3h̃(p) 6= 0,

and G̃h̃(p) 6= 0. The opposite case is similar. Since F̃ (p) 6= 0 and G̃(p) 6=
0 we can choose ε1 > 0 and a neighborhood W of p in R

3 such that
F (q) 6= 0 and G(q) 6= 0, for all q ∈ W and all Zε = [(F,H/ε), (G,H/ε)]
with ε ∈ (−ε1, ε1). In order to prove statements (i) and (ii) of Theo-
rem C, we restrict our attention on the manifold Nε = {H(x, y, ε) = 0}.
We define K : (−ε1, ε1)× R → R by

K(ε, α) =
[
F (rε(α)) ∧ r′ε(α)

][
G(rε(α)) ∧ r′ε(α)

]
,

where rε : R → Mε is an imbedding such that r0(0) = p, and “∧” is the
product (a, b) ∧ (c, d) = ad− bc, where (a, b), (c, d) ∈ R

2.
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Calling

(I)=
d

dα
[F (rε(α))] ∧ r′ε(α) − F (rε(α)) ∧ r′′ε (α),

(II)=
d

dα
[G(rε(α))] ∧ r′ε(α)−G(rε(α)) ∧ r′′ε (α),

(III)=
d2

dα2
[F (rε(α))]∧r′ε(α)−2

d

dα
[F (rε(α))]∧r′′ε (α)+F (rε(α))∧r′′′ε (α),

(IV )=
d2

dα2
[G(rε(α))]∧r′ε(α)−2

d

dα
[G(rε(α))]∧r′′ε (α)+G(rε(α))∧r′′′ε (α),

we have that

∂K

∂α
(ε, α) = (I)

[
G(rε(α)) ∧ r′ε(α)

]
+ (II)

[
F (rε(α)) ∧ r′ε(α)

]

and

∂2K

∂α2
(ε, α) = (III)

[
G(rε(α))∧r′ε(α)

]
+(IV )

[
F (rε(α))∧r′ε(α)

]
+2(I)(II).

By a direct calculation we obtain

∂K

∂α
(0, 0) = 0 and

∂2K

∂α2
(0, 0) 6= 0.

In the above statements we used the fact that p is a cusp singularity

of F̃ , regular for G̃, and the hypothesis that Zε is locally simple at p

(Lemma 5.1 states that F ih(p) = F̃ ih̃(p) and Gih(p) = G̃ih̃(p)).
By the Implicit Function Theorem, there exist 0 < ε0 < ε1, a neigh-

borhood J of 0 in R, and a Cr−1 function ξ : (−ε0, ε0) → J such that
∂K
∂α

(ε, ξ(ε)) = 0 and ∂2K
∂α2 (ε, α) 6= 0, for all (ε, α) ∈ (−ε0, ε0)×J . Assume

for simplicity that ∂2K
∂α2 (0, 0) > 0. The other case is similar. Choose ε0

and J such that ∂2K
∂α2 (ε, α) > 0, for all (ε, α) ∈ (−ε0, ε0)× J .

For each ε ∈ (−ε0, ε0), consider the function fε : J → R given by
fε(α) = K(ε, α). Thus, for each ε ∈ (−ε0, ε0), ξ(ε) is a minimum point
of fε. Moreover:

(i) If fε(ξ(ε)) > 0 then fε(α) > 0, for all α ∈ J . This means that
Zε is transverse to Mε around p. Thus, Zε does not have tangency
points on Mε.

(ii) If fε(ξ(ε)) = 0, then fε(α) = 0 if, and only if, α = ξ(ε).
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(iii) If fε(ξ(ε)) < 0 then by the Intermediate Value Theorem there exist
α1, α2 ∈ J , with α1 < ξ(ε) < α2 such that fε(α1) = fε(α2) = 0,
however ∂K

∂α
(ε, αi) 6= 0, i = 1, 2. This means that the contact of

the vector field F with Mε at rε(α1) and rε(α2) is quadratic and
the vector field G is regular at rε(α1) and rε(α2). So p is unfolded
by two distinct points {pε = rε(α1)} and {qε = rε(α2)} which are
fold-regular singularities of Zε.

Define g : (−ε0, ε0) → R by g(ε) = K(ε, ξ(ε)). This completes the
proof of Theorem C.

Now we prove Theorem D.

Proof of Theorem D: We suppose that p = (p, f0(p), 0) is a fold singu-

larity for the vector field F̃ and a cusp singularity for G̃. The other
case is similar. The fold-cusp singularity p of Z0 satisfies the following
conditions

F̃ h̃(p) = G̃h̃(p) = G̃2h̃(p) = 0, F̃ 2h̃(p) 6= 0, and G̃3h̃(p) 6= 0.

Since Zε is locally simple at p, by Lemma 5.1, these conditions are
equivalent to

Fh(p) = Gh(p) = G2h(p) = 0, F 2h(p) 6= 0, and G3h(p) 6= 0.

Let Σ1, Σ2, Σ3, Σ
ε
1, Σ

ε
2, and Σε

3 be the n-dimensional manifolds in R
n+1

given by {Fh(x, f0(x), 0)=0}, {Gh(x, f0(x), 0)=0}, {G2h(x, f0(x), 0)=
0}, {Fh(x, fε(x), ε) = 0}, {Gh(x, fε(x), ε) = 0}, and {G2h(x, fε(x), ε) =
0}, respectively. The fact that p is a fold-cusp singularity of Z0 means
that the manifolds S0, M0, Σ1, Σ2, and Σ3 intersect transversally at p
and that F 2h(p) 6= 0 and G3h(p) 6= 0. Since transversal intersection is
a stable property, we can conclude that the manifolds Nε, Mε, Σ

ε
1, Σ

ε
2,

and Σε
3 intersect transversally for all ε 6= 0 sufficiently small. Moreover,

dim(Nε ∩Mε ∩Σε
1 ∩Σε

2 ∩Σε
3) = n− 4. This means that, for each ε 6= 0

sufficiently small, there exists a point pε ∈ Nε ∩ Mε ∩ Σε
1 ∩ Σε

2 ∩ Σε
3.

Clearly, pε → p when ε → 0. By the continuity of the functions F 2h
and G3h, we have that F 2h(pε) 6= 0 and G3h(pε) 6= 0, for each ε 6= 0
sufficiently small. Therefore, pε is a fold-cusp singularity of Zε.

Note that when n = 4 the fold-cusp point pε is isolated but if n > 4
it is not.

We prove below Theorem E.

Proof of Theorem E: In order to prove statements (i) and (ii) of Theo-
rem E, we restrict our attention on the manifold Nε = {H(x, y, ε) = 0}.



Singularly Perturbed Filippov Systems 131

We suppose that p is a hyperbolic equilibrium point for the vector field F̃

and regular for G̃. Thus, F̃ (p) = F (p) = 0, DF̃ (p) has eigenvalues λ1

and λ2 with nonzero real parts and G̃h̃(p) = Gh(p) 6= 0. Let V be a

neighborhood of p in R
2 such that p is the unique singularity of F̃|V .

It is known that there are ε1 > 0 and a neighborhood W of p in R
3

such that each vector field F (x, y, ε), with ε ∈ (−ε1, ε1), has one unique
hyperbolic singularity pε in W and this singularity is of the same kind
as p.

First we consider the case where λ1 and λ2 are real eigenvalues with
λ1 6= λ2. We can choose local coordinates x = (x1, x2) around p such

that the components of F̃ , F̃1, and F̃2, satisfy

∂F̃1

∂x1
(p) = λ1,

∂F̃2

∂x2
(p) = λ2, and

∂F̃1

∂x2
(p) =

∂F̃2

∂x1
(p) = 0.

Define K : (−ε1, ε1)× R → R by

K(ε, α) = F (rε(α)) ∧ r′ε(α),

where rε : R → Mε is an imbedding such that r0(0) = p, and “∧” is the
product (a, b) ∧ (c, d) = ad− bc, where (a, b), (c, d) ∈ R

2.
Note that K(0, 0) = 0. If rε(α) = (r1ε(α), r

2
ε (α)), by hypothesis we

have (r10)
′(0) 6= 0 and (r20)

′(0) 6= 0. Thus

K(ε, α) = F1(rε(α)) ∧ (r2ε)
′(α) − F2(rε(α)) ∧ (r1ε )

′(α)

and, by direct computation, we obtain

∂K

∂α
(0, 0) = (r10)

′(0)(r20)
′(0)(λ1 − λ2).

Since λ1 6= λ2, then
∂K
∂α

(0, 0) 6= 0. By the Implicit Function Theorem,

there exist 0 < ε0 < ε1, a neighborhood J of 0 in R and a Cr−1 function
ξ : (−ε0, ε0) → J such that K(ε, ξ(ε)) = 0 and ∂K

∂α
(ε, α) 6= 0, for all

(ε, α) ∈ (−ε0, ε0)× J .
If qε := F (rε(ξ(ε))) 6= 0, then this vector and r′ε(ξ(ε)) are linearly

dependent because K(ε, ξ(ε)) = 0. Define qε =: (qε, fε(qε), ε). This
means that {qε : ε ∈ (−ε0, ε0)} is a family of tangency points of Zε.
Moreover, the condition ∂K

∂α
(ε, ξ(ε)) 6= 0 imply that the contact of the

vector field F with Mε at qε is quadratic.



132 P. T. Cardin, P. R. da Silva, M. A. Teixeira

Since G̃h̃(p) = Gh(p, f0(p), 0) 6= 0, from the continuity of the func-
tion Gh, it follows that Gh(qε) 6= 0 for all ε 6= 0 sufficiently small, i.e.,
qε is regular for the vector field G. This completes the proof in this case.

Now consider the case where λ1 = α + iα1 and λ2 = β + iβ1 are
complex eigenvalues with α 6= 0 and β 6= 0. Let x = (x1, x2) be a system
of coordinates around p such that

∂F̃1

∂x1
(p) =

∂F̃2

∂x2
(p) = α and

∂F̃1

∂x2
(p) = −∂F̃2

∂x1
(p) = β.

Then, this case follows in a similar way as the first part.

6. Closing remarks

Non-smooth singularly perturbed systems were studied in this paper.
We investigated the effect of singular perturbations at tangency points.
We proved that singularities of the type fold are robust with respect
to singular perturbations. On the other hand, cusp singularities are
not robust with respect to singular perturbations. We also study the
unfolding of cusp singularities and hyperbolic equilibria. In short we
proved that:

• for any n ≥ 2, fold-regular singularities are persistent;
• for n = 2, cusp-regular singularities are not persistent;
• for n = 2, fold-fold singularities are not persistent but for n ≥ 3
they are;

• for n = 2, 3, fold-cusp singularities are not persistent but for n ≥ 4
they are;

• for n = 2, hyperbolic/equilibrium-regular singularities are not per-
sistent.

Some open questions still remain. In [8], Sieber and Kowalczyk stud-
ied the robustness of periodic motion with sliding. They considered
periodic orbits with an infinitesimally small sliding segment, that is,
close to a grazing-sliding bifurcation, and proved that the local return
map around the grazing periodic orbit develops a discontinuity if the
condition on the existence of an attracting sliding region is violated.
The question now is: If a sliding mode is persistent, can we develop a
Fenichel’s theory for this case?

Another open problem, similar to the one described in the previous
paragraph, is the study of the robustness of the periodic motion with
sewing with respect to singular perturbations.
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