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ATOMIC DECOMPOSITION OF REAL-VARIABLE

TYPE FOR BERGMAN SPACES IN THE UNIT BALL

OF Cn

Zeqian Chen and Wei Ouyang

Abstract: In this paper we show that, for any 0 < p ≤ 1 and α > −1, every

(weighted) Bergman space Apα(Bn) admits an atomic decomposition of real-variable

type. More precisely, for each f ∈ Apα(Bn) there exist a sequence of (p,∞)α-atoms ak
with compact support and a scalar sequence {λk} such that f =

∑
k λkak in the sense

of distribution and
∑
k |λk|p . ‖f‖pp,α; and moreover, f =

∑
k λkPα(ak) in A

p
α(Bn),

where Pα is the orthogonal projection from L2
α(Bn) onto A2

α(Bn). The proof is con-

structive and our construction is based on analysis inside the unit ball Bn associated

with a quasimetric.
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1. Introduction

Let Bn be the unit ball of Cn. Given α > −1 and p > 0, the (weighted)
Lebesgue space Lpα(Bn) consists of measurable functions f on Bn such
that

‖f‖p,α =

(∫
Bn
|f(z)|p dvα(z)

) 1
p

<∞,

where the weighted Lebesgue measure dvα on Bn is defined by

dvα(z) = cα(1− |z|2)α dv(z)

and cα = Γ(n + α + 1)/[n! Γ(α + 1)] is a normalizing constant so that
dvα is a probability measure on Bn. The (weighted) Bergman space Apα
on Bn is then defined by

Apα = H(Bn) ∩ Lpα(Bn),

where H(Bn) is the space of all holomorphic functions in Bn. When
α = 0 we simply write Ap for Ap0. These are the usual Bergman spaces.
Note that for 1 ≤ p <∞, Apα is a Banach space under the norm ‖ ‖p,α.
If 0 < p < 1, the space Apα is a quasi-Banach space with p-norm ‖f‖pp,α.
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There is a well known atomic decomposition for Apα with non-com-
pactly supported atoms established by Coifman and Rochberg [3]. How-
ever, to the best of our knowledge, an atomic decomposition of these
spaces with compactly supported atoms is presented in the literature
only for the case p = 1 (see e.g. [4]). Recently, the present authors [2]
proved an atomic decomposition of these spaces in terms of compactly
supported atoms with respect to Carleson tubes again for p = 1. But
the approaches in [2, 4] are both based on duality and therefore, are not
constructive and cannot be applied to the case 0 < p < 1.

The aim of this paper is to prove an atomic decomposition of Apα
with compactly supported atoms for all 0 < p < 1, through using a
constructive method. This is the analogous of the one of Hardy spaces
in the complex ball presented in [7] (see [8, 9] for the more general and
complicated setting). However, our proof is based on analysis inside the
complex ball instead of the sphere for Hardy spaces (cf. [7]). This par-
ticularly includes the pointwise estimates for the Bergman kernel and its
derivatives in place of the ones for the Szegö kernel associated with Hardy
spaces, and some geometrical properties of the complex ball associated
with a quasimetric which are different from the ones of the sphere with
the nonisotropic metric involved for Hardy spaces. We remark that the
framework of this proof is suited for the more general domains such as
strictly pseudoconvex domains (see [8, 9] for the case of Hardy spaces),
but for simplicity, we focus on the case of the complex ball.

As a straightforward application of this atomic decomposition, we can
characterize the dual space of Apα as a Lipschitz type space of integral
form for all 0 < p < 1, as done in [7, Theorem 6] for Hardy spaces.
Further applications of this result to the regularity of small Hankel op-
erators and a factorization theorem on Apα are in order, just to name a
few (see e.g. [9] in the case of Hardy spaces).

The paper is organized as follows. In Section 2, we present prelim-
inaries and, in particular we introduce local coordinates which reflect
the complex structure and define real-variable Bergman spaces. In Sec-
tion 3, we introduce several maximal functions associated with Bergman
spaces, the analogous of the ones for Hardy spaces. In Section 4, we state
the corresponding atomic decomposition and prove some auxiliary lem-
mas. Finally, Section 5 is devoted to the proof of the associated atomic
decomposition.

For two nonnegative (possibly infinite) quantities X and Y, by X . Y
we mean that there exists a positive constant C such that X ≤ CY, and
by X ≈ Y that X . Y and Y . X. Here, the constant C does not
depend on the important parameters on which X and Y depend. Any
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notation and terminology not otherwise explained, are as used in [12]
for spaces of holomorphic functions in the unit ball of Cn.

2. Preliminaries and notation

2.1. Homogeneous spaces. Define

%(z, w) =


∣∣|z| − |w|∣∣+

∣∣∣∣1− 1

|z||w|
〈z, w〉

∣∣∣∣ , if z, w ∈ Bn\{0},

|z|+ |w|, otherwise.

Then % is a quasimetric on Bn, i.e.,

(1) %(z, w) = 0 if and only if z = w;
(2) %(z, w) = %(w, z);
(3) there exists a positive constant K ≥ 1 such that

(2.1) %(z, w) ≤ K[%(z, u) + %(u,w)], ∀ z, w, u ∈ Bn,

(the quasi-triangular inequality with K = 2 in the present case).

For any z ∈ Bn and r > 0, the set B%(z, r) = {w ∈ Bn : %(z, w) < r}
is called a %-ball of center z and radius r. Moreover, (Bn, %, dvα) is a
homogeneous space for α > −1, that is,

• for each z ∈ Bn, the balls B%(z, r) form a basis of open neighborhoods
of z and, also, vα(B%(z, r)) > 0 whenever r > 0;

• (doubling property) there exists a constantA > 0 such that for each z∈
Bn and r > 0, one has

(2.2) vα(B%(z, 2r)) ≤ Avα(B%(z, r)).

We refer to [1, 11] for the details.
The following are some basic properties of the quasimetric % which

will be used later.

Lemma 2.1 (cf. [11, Lemma 2.10]). Let α > −1. For z ∈ Bn \ {0} and
0 < r < 3,

vα
(
B%(z, r)

)
≈ rn+1[max(r, 1− |z|)]α,

where “≈” depends only on α and n.

Lemma 2.2 (cf. [11, Lemma 2.12]). For z ∈ Bn and 0 < r0 < 1, if
z0 = (r0, 0, . . . , 0) one has

• |1− r0z1| ≥ 1
3%(z, z0);

• |z1 − r0| ≤ %(z, z0);
•
∑n
j=2 |zj |2 ≤ 2%(z, z0);

• |1− 〈z, z0〉| ≤ 1− r2
0 + %(z, z0).
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Lemma 2.3. Let α > −1 and 0 < p <∞. For every γ > 0 there exists
a constant C > 0 such that for any f ∈ H(Bn),

|f(z)|p ≤ C

(1− |z|2)n+1+α

∫
B%(z,γ(1−|z|))

|f(w)|p dvα(w), ∀ z ∈ Bn.

This mean-value inequality with the quasi-metric % should be well-
known, although we have no concrete reference. The proof can be done
as in [12, Lemma 2.24].

2.2. Local coordinates. For z ∈ Bn and ξ ∈ Cn a unit vector, we
denote by τ(z, ξ) the distance from z to the boundary Sn along the
complex line determined by ξ. For each z0 ∈ Bn there exists a special set
of real coordinate basis {v1(z0), τ1(z0), . . . , vn(z0), τn(z0)} in R2n = Cn
defined as follows, which we call τ -extremal. The first vector

v1(z0) =


z0

|z0|
, if z0 6= 0,

1, if z0 = 0,

where 1 = (1, 0, . . . , 0). v1(z0) is clearly the direction transversal to the
boundary Sn, in the sense that the shortest distance from z0 to Sn is
attained in the complex line determined by v1(z0). The vector v2(z0)
is chosen among the vectors orthogonal to v1(z0) in such a way that
τ(z0, v2(z0)) is maximal. The vector v3(z0) is chosen among the vectors
orthogonal to both v1(z0) and v2(z0) such that τ(z0, v3(z0)) is max-
imal. We repeat this process until we obtain an orthonormal basis
{v1(z0), . . . , vn(z0)} in Cn. Put

τj(z0) = ivj(z0), j = 1, . . . , n.

Then {v1(z0), τ1(z0), . . . , vn(z0), τn(z0)} is an orthonormal basis in R2n.
For w ∈ Bn, if

w − z0 = α1v1(z0) + β1τ1(z0) + · · ·+ αnvn(z0) + βnτn(z0),

we denote by (α1, β1, . . . , αn, βn) the real coordinates of w with respect
to this basis. Precisely, we define a mapping Θ: Bn × Bn → R2n such
that if

w − z = α1v1(z) + β1τ1(z) + · · ·+ αnvn(z) + βnτn(z)

then Θ(z, w) = (α1, β1, . . . , αn, βn). One can easily verify that this coor-
dinate mapping Θ is a C∞ diffeomorphism.

For a multi-index J = (j1, j2, j3, . . . , j2n) of non negative integers, let

d(J) = j1 + j2 +
j3
2

+ · · ·+ j2n
2
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and |J | = j1 + · · · + j2n. For any f ∈ C∞(Bn) and z ∈ Bn, we define a
differential operator

DJ
z f(w) =

∂j1+···+j2n

∂αj11 ∂β
j2
1 · · · ∂α

j2n−1
n ∂βj2nn

f
(
z + α1v1(z) + β1τ1(z) + · · ·

· · ·+ αnvn(z) + βnτn(z)
)
,

whenever Θ(z, w) = (α1, β1, . . . , αn, βn). Let Ω be a domain in Bn, we
say f ∈ CN (Ω) if for each z ∈ Ω and J with |J | ≤ N , DJ

z f(w) exists and
is continuous in a neighborhood of z.

2.3. Real-variable Bergman spaces. Let 0 < p ≤ 1 and α > −1.
Set

Np,α = max

{[
2(n+ 1)

(
1

p
− 1

)]
,

[
2(n+ 1 + α)

(
1

p
− 1

)]}
+ 1,

where [x] denotes the greatest integer less than x. Let z0 ∈ Bn and r0 >
0. For any φ ∈ C∞(B%(z0, r0)), we define the quantity for a nonnegative
integer N ,

‖φ‖SN (B%(z0,r0)) :=
∑
|J|=N

r
d(J)
0

∥∥DJ
z0φ
∥∥
L∞(B%(z0,r0))

.

Definition 2.1. Let 0 < p ≤ 1 and α > −1. Let N ≥ Np,α be an
integer. A measurable function a on Bn is a (p,∞, N)α-atom if there
exist z0 ∈ Bn and r0 > 0 such that

(1) a is supported in B%(z0, r0);

(2) |a(z)| ≤ vα(B%(z0, r0))−
1
p for all z ∈ Bn;

(3)
∫
Bn a(z) dvα(z) = 0;

(4) for all φ ∈ C∞(B%(z0, r0)),∣∣∣∣∫
Bn
a(z)φ(z) dvα(z)

∣∣∣∣ ≤ ‖φ‖SN (B%(z0,r0))vα(B%(z0, r0))1− 1
p .

Any bounded function a with ‖a‖L∞ ≤ 1 is also considered to be a
(p,∞, N)α-atom.

We regard a (p,∞, Np,α)α-atom as a (p,∞)α-atom.

Remark 2.1. (i) As in the case of Hardy spaces (cf. [7, Section 4]), it
seems necessary to consider all bounded functions a with ‖a‖L∞ ≤
1 as atoms in the complex ball.

(ii) We remark that condition (4) replaces the classical higher moment
condition and is similar to the one found in [8, 9].



358 Z. Chen, W. Ouyang

(iii) Let 1 ≤ q < ∞ and p < q. Replacing condition (2) by ‖a‖q,α ≤
vα(B%(z0, r0))

1
q−

1
p , we get the concept of (p, q)α-atoms. A (p,∞)α-

atom is necessarily a (p, q)α-atom. Hence, atomic decomposition
in terms of (p,∞)α-atoms implies the one involving (p, q)α-atoms.

For 0 < p ≤ 1 and α > −1, the real-variable (atomic) Bergman space
Ap
α(Bn) is defined to be the space of distributions f on Bn which can

be written as f =
∑
j λjaj , where

∑
j |λj |p < ∞, the aj ’s are (p,∞)α-

atoms, and the series is assumed to converge in the sense of distributions.
As usual, we put

‖f‖Apα = inf

{(∑
j

|λj |p
) 1
p

: f =
∑
j

λjaj

}
,

where the infimum is taken over all decompositions of f described above.
We note that A1

α(Bn) is a Banach space and for any 0 < p < 1, Ap
α(Bn)

is a complete metric space under the metric d(f, g) = ‖f − g‖p
Apα

.

Let Pα be the orthogonal projection from L2
α(Bn) onto A2

α, given by

Pαf(z) =

∫
Bn
Kα(z, w)f(w) dvα(w), ∀ f ∈ L1(Bn, dvα),

where the Bergman kernel function Kα(z, w) is expressed as

Kα(z, w) =
1(

1− 〈z, w〉
)n+1+α , z, w ∈ Bn.

Proposition 2.1. Let 0 < p ≤ 1 and α > −1. Then PαAp
α(Bn) ⊂

Apα(Bn). More precisely, there exists a constant C such that ‖Pα(f)‖p,α≤
C‖f‖Apα for all f ∈ Ap

α(Bn).

The proof of this proposition is based on the following lemma.

Lemma 2.4. Let N be a nonnegative integer. Let z0 ∈ Bn and J =
(j1, j2, j3, . . . , j2n) be a multi-index such that |J | = N. If %(w, z0) <
1
4%(z, z0), then there exists a constant CN,n,α depending only on N , n, α
such that ∣∣DJ

z0

(
Kα(z, ·)

)
(w)
∣∣ ≤ CN,n,α

%(z, w)d(J)vα(B%(w, %(z, w)))
.

This lemma is a special case of a classical result of C. Fefferman [5]
about the pointwise estimates of the Bergman kernel and its derivatives
in smooth strictly pseudoconvex domains in Cn. Thanks to the explicit
formula of the Bergman kernel in the complex ball, it can be proved by
a straightforward computation. We omit the details.
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We now can proceed with the proof of Proposition 2.1 as done in the
one of [8, Theorem 2.2] but with the help of Lemma 2.4 in place of the
estimates for the Szegö kernel and its derivatives. We do not repeat the
details here. The goal of this paper is to prove the converse inclusion
Apα(Bn) ⊂ PαAp

α(Bn).

3. Maximal functions

In order to prove the atomic decomposition of Bergman spaces Apα
for all 0 < p ≤ 1, we need to introduce some maximal functions. These
maximal functions are variants of the ones used for Hardy spaces (see
e.g. [8, 9, 10]).

Let δ > 0 and z ∈ Bn. The ‘approach region’ Aδ(z) is defined by

Aδ(z) =
{
w ∈ Bn : %(z, w) < δ(1− |w|)

}
.

For any f ∈ H(Bn), we define respectively the non-tangential maximal
function

f?δ (z) := sup
w∈Aδ(z)

|f(w)|

and the tangential function

f??M (z) := sup
w∈Bn

(
1− |w|

1− |w|+ %(z, w)

)M
|f(w)|,

where M is a positive constant.
We need also to introduce the so-called grand maximal functions.

Given z ∈ Bn, we denote by GLδ (z) the space of smooth bump functions
at z for δ and L, that consists of all functions g ∈ C∞(Bn) for which
there exist z0 ∈ Bn and r0 > 0 such that

supp g ⊂ B%(z0, r0), %(z, z0) < δr0, and ‖g‖L,z0,r0 ≤ 1,

where

‖g‖L,z0,r0 = vα(B%(z0, r0)) sup
|J|≤L

r
d(J)
0 ‖DJ

z0g‖L∞(B%(z0,r0)).

Recall that d(J)=j1+j2+ 1
2 (j3+· · ·+j2n) with J=(j1, j2, . . . , j2n−1, j2n).

The grand maximal function on Bn is then defined as

Kδ,L(f)(z) = sup
g∈GLδ (z)

∣∣∣∣∫
Bn
f(w)g(w) dvα(w)

∣∣∣∣ .
The following lemma is a straightforward consequence of Lemma 2.3

and of the boundedness of the Hardy–Littlewood maximal operator on L2

(see e.g. [6]).
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Lemma 3.1. Let 0 < p < ∞ and α > −1. Then ‖f?δ ‖p,α . ‖f‖p,α for
all f ∈ Apα.

By adapting the classical argument of [6, Lemma VI.1], we immedi-
ately obtain the following lemma.

Lemma 3.2. Let 0 < p <∞ and α > −1. If M is a constant such that
Mp > n+ 1 + α, then ‖f??M ‖p,α . ‖f‖p,α for all f ∈ Apα.

In the sequel, we mainly prove the following lemma.

Lemma 3.3. Let 0 < p < ∞ and δ > 0. Let L > M be an integer,
where M is a constant such that Mp > n+ 1 + α. Then

Kδ,L(f)(z) . f?3+2δ(z) + f??M (z), ∀ f ∈ H(Bn),

for all z∈Bn. Consequently, ‖Kδ,L(f)‖Lp(Bn,dvα).‖f‖p,α for all f ∈ Apα.

Proof: This lemma can be proved by using the argument of [9, The-
orem 3.2], but geometrical properties of the complex ball instead of
the sphere are involved. For the sake of convenience, we present the
details. We want to estimate

∣∣∫
Bn f(w)g(w) dvα(w)

∣∣ for g ∈ GLδ (z).

Given such a function g, there exist z0 ∈ Bn and r0 > 0 such that
supp g ⊂ B%(z0, r0), %(z, z0) < δr0, and ‖g‖L,z0,r0 ≤ 1. Note that∫
Bn
f(w)g(w) dvα(w)

= 2n

∫ 1

0

r2n−1(1− r2)α
(∫

Sn
f(rξ)g(rξ) dσ(ξ)

)
dr

= 2n

∫ 1

0

r2n−1(1− r2)α
(∫

Sn
[f(rξ)− f(rξ − r0rξ)]g(rξ) dσ(ξ)

)
dr

+ 2n

∫ 1

0

r2n−1(1− r2)α
(∫

Sn
f(rξ − r0rξ)g(rξ) dσ(ξ)

)
dr

, I1+I2.

We need to estimate I1 and I2.

We first estimate I2. Since rξ ∈ B%(z0, r0), it follows that

%(rξ, z) ≤ 2[%(rξ, z0) + %(z0, z)] ≤ (2 + 2δ)r0,

and

%(rξ − r0rξ, z) ≤
∣∣|rξ − r0rξ| − |rξ|

∣∣+ %(rξ, z) ≤ (3 + 2δ)r0.
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Also, 1− |rξ − r0rξ| > r0. Hence, rξ − r0rξ ∈ A(3+2δ)(z). Therefore,

|I2| =
∣∣∣∣2n∫ 1

0

r2n−1(1− r2)α
(∫

Sn
f(rξ − r0rξ)g(rξ) dσ(ξ)

)
dr

∣∣∣∣
≤

f?3+2δ(z)

vα(B%(z0, r0))
2n

∫ 1

0

r2n−1(1− r2)α

(∫
{ξ∈Sn:%(rξ,z0)<r0}

1 dσ(ξ)

)
dr

≤ f?3+2δ(z).

In what follows, we estimate the term I1. First of all, for a differential
operator Y` of order ` defined as

Y` =
∑

k1+···+kn
+m1+···+mn=`

Ck1,...,kn,m1,...,mn(w)
∂k1+···+kn+m1+···+mn

∂xk11 ∂y
m1
1 · · · ∂xknn ∂ymnn

with smooth coefficients Ck1,...,kn,m1,...,mn , where w = (x1 +iy1, . . . , xn+
iyn), one has

(3.1) ‖Y`g‖L∞(B%(z0,r0)) .
∑
|J|=`

1

r
d(J)
0 vα(B%(z0, r0))

, ∀ ` ≤ L,

for all g ∈ GLδ (z). The proof can be done by the chain rule and change
of coordinates.

For 0 < r < 1 and ξ ∈ Sn, we put

Gr(w) =

{
g(rw)g1(1− |w|), if 1− 2r0 ≤ |w| ≤ 1,

0, if |w| < 1− 2r0,

where g1 ∈ C∞0 ([0, 2r0]), g1 = 1 if 0 ≤ t ≤ r0 and |g(j)
1 | ≤ cjr

−j
0

(cj depending only on j). Then, by (3.1) we have

(3.2) |Y`Gr(w)| .
∑̀
k=0

1

rk0
|(Y`−kg)(rw)| ≤ c`

r`0vα(B%(z0, r0))
.

Now, denote by vξ the unit outward vector at ξ ∈ Sn, we have

I1 =2n

∫ 1

0

r2n−1(1− r2)α
(∫

Sn
[f(rξ)− f(rξ − r0rξ)]g(rξ) dσ(ξ)

)
dr

=2n

∫ 1

0

r2n−1(1− r2)α
(∫

Sn

[∫ r0

0

− df

dr1
(rξ − r1rξ) dr1

]
g(rξ) dσ(ξ)

)
dr

=2n

∫ 1

0

r2n−1(1− r2)α
∫ r0

0

r

(∫
Sn

df

dvξ
(rξ − r1rξ)Gr(ξ) dσ(ξ)

)
dr1 dr.
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By applying the Green’s formula, we have

I1 = 2n

∫ 1

0

r2n−1(1− r2)α
∫ r0

0

r

(∫
Sn
f(rξ − r1rξ)

dGr(ξ)

dvξ
dσ(ξ)

)
dr1 dr

+ 2n

∫ 1

0

r2n−1(1− r2)α
∫ r0

0

r

(∫
Bn
4f(rw−r1rw)Gr(w) dv(w)

)
dr1 dr

− 2n

∫ 1

0

r2n−1(1− r2)α
∫ r0

0

r

(∫
Bn
f(rw−r1rw)4Gr(w) dv(w)

)
dr1 dr

= I11 + 0− I12,

since f(rw − r1rw) is holomorphic in Bn. Let Y2Gr(w) , 4Gr(w). We
rewrite I12 = I121 + I122, where

I121 =2n

∫ 1

0

∫ r0

0

r2n−1(1−r2)αr

∫
Bn\D1−r0

f(rw−r1rw)Y2Gr(w) dv(w) dr1 dr

and

I122 =2n

∫ 1

0

∫ r0

0

r2n−1(1−r2)αr

∫
D1−r0

f(rw−r1rw)Y2Gr(w) dv(w) dr1 dr.

Hereafter, Dr = {z ∈ Cn : |z| < r} for 0 < r < 1. For the term I122,
since w ∈ D1−r0 we have

%(rw − r1rw, z) < (3 + 2δ)r0 < (3 + 2δ)(1− |rw − r1rw|).

Then

|I122| = 2n

∣∣∣∣∫ 1

0

r2n−1(1− r2)α
∫ r0

0

r

∫ 1−r0

1−2r0

2ns2n−1

×
(∫

Sn
f(rsξ − r1rsξ)Y2Gr(sξ) dσ(ξ)

)
ds dr1 dr

∣∣∣∣
.

f?3+2δ(z)r0

r2
0vα(B%(z0, r0))

2n

∫ 1

0

r2n−1(1− r2)α

×

(∫ 1−r0

1−2r0

2ns2n−1

∫
{ξ∈Sn:%(rsξ,z0)<r0}

1 dσ(ξ) ds

)
dr

. f?3+2δ(z).
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Therefore, we have∣∣∣∣∫
Bn
f(w)g(w) dvα(w)

∣∣∣∣ . f?3+2δ(z)

+

∣∣∣∣∫ 1

0

r2n−1(1− r2)α
∫ r0

0

r

(∫
Sn
f(rξ − r1rξ)

dGr(ξ)

dvξ
dσ(ξ)

)
dr1 dr

∣∣∣∣
+

∣∣∣∣∫ 1

0

r2n−1(1− r2)α
∫ r0

0

(∫
Bn\D1−r0

f(rw−r1rw)Y2Gr(w) dv(w)

)
dr1 dr

∣∣∣∣
=f?3+2δ(z)

+

∣∣∣∣∫ 1

0

r2n−1(1− r2)α
∫ r0

0

∫
Sn
f
(
(1− r1)rξ

)
Y1Gr(ξ) dσ(ξ) dr1 dr

∣∣∣∣
+

∣∣∣∣∫ 1

0

r2n−1(1−r2)α
∫ r0

0

∫ 1

1−r0

∫
Sn
f
(
(1−r1)rs1ξ

)
Y2Gr(s1ξ) dσ(ξ) ds1 dr1 dr

∣∣∣∣,
where Y1Gr(ξ) , r dGr(ξ)

dvξ
and we write Y2Gr(s1ξ) by abuse of notation

for 2ns2n−1
1 Y2Gr(s1ξ) up to a change of the constant in Y2.

By using (3.2) and repeating the method used in the estimations of I1
and I2, we obtain the following estimate∣∣∣∣∫

Bn
f(w)g(w) dvα(w)

∣∣∣∣ . f?3+2δ(z)

+
∑

0≤k≤`

∫ 1

0

r2n−1(1− r2)α
∫ r0

0

∫ r0

r1

· · ·
∫ r0

r`−1

∫ 1

1−r0
· · ·
∫ 1

1−r0

×
∣∣∣∣∫

Sn
f
(
(1− r`)rs1 · · · skξ

)
Y`+kGr(s1 · · · skξ) dσ(ξ)

∣∣∣∣
× dsk · · · ds1 dr` · · · dr1 dr.

Notice that

∣∣f((1− r`)rs1 · · · skξ
)∣∣ ≤ f??M (z)

(
1 +

%
(
(1− r`)rs1 · · · skξ, z

)
1− (1− r`)rs1 · · · sk

)M

≤ f??M (z)

(
1 +

(3 + 2δ)r0

r`

)M

≤ f??M (z)(4 + 2δ)M
(
r0

r`

)M
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and

%(rξ, z0) ≤ |r − rs1 · · · sk|+ %(rs1 · · · skξ, z0)

≤ |r − rs1|+
k−1∑
i=1

|rs1 · · · si − rs1 · · · sisi+1|+ %(rs1 · · · skξ, z0)

≤ kr0 + r0 ≤ (k + 1)r0.

Thus, fix ` = L > M, we have∣∣∣∣∫
Bn
f(w)g(w) dvα(w)

∣∣∣∣
. f?3+2δ(z)+f??M (z)

∑
0≤k≤`

∫ 1

0

r2n−1(1− r2)α
∫ r0

0

∫ r0

r1

· · ·
∫ r0

r`−1

∫ 1

1−r0
· · ·
∫ 1

1−r0

×
∫
{ξ∈Sn:%(rs1···skξ,z0)<r0}

(
r0

r`

)M
1

r`+k0 vα(B%(z0, r0))
dσ(ξ)

× dsk · · · ds1 dr` · · · dr1 dr

. f?3+2δ(z)+
∑

0≤k≤`

f??M (z)rk+M
0

r`+k0 vα(B%(z0, r0))

∫ 1

0

r2n−1(1− r2)α
∫ r0

0

∫ r0

r1

· · ·
∫ r0

r`−1

×
∫
{ξ∈Sn:%(rξ,z0)<(k+1)r0}

(
1

r`

)M
dσ(ξ) dr` · · · dr1 dr

. f?3+2δ(z) + f??M (z).

This completes the proof.

4. The main result and auxiliary lemmas

The following is the main result of this paper.

Theorem 4.1. Let 0 < p ≤ 1 and α > −1. Let N ≥ Np,α be a integer. If
f ∈ Apα, then there exist a scalar sequence {λj} in C with

∑
j |λj |p <∞,

and a sequence of (p,∞, N)α-atoms {aj} such that f =
∑
j λjaj in the

sense of distributions and
(∑

j |λj |p
) 1
p . ‖f‖p,α.
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Moreover, f =
∑
j λjPα(aj), i.e., the series

∑
j λjPα(aj) converges f

in Apα. Consequently, for any f ∈ Apα one has

‖f‖p,α ≈ inf

{(∑
j

|λj |p
) 1
p

: f =
∑
j

λjPα(aj)

}
,

where the infimum is taken over all decompositions of f described above.

To prove Theorem 4.1, we need some auxiliary lemmas.

Lemma 4.1. Let O ( Bn be an open set. Then there are a sequence of
balls {B%(zi, ri)} in Bn, positive constants µ > 1 > ν > λ > 0 and N0

depending only on n such that

(1) for any i,

ri =
1

2K
%(zi,Oc),

where K is the constant occurring in the quasi-triangular inequal-
ity (2.1) satisfied by the quasi-metric %;

(2) O =
⋃
iB

%(zi, νri);
(3) for each i, B%(zi, µri) ∩ Oc 6= ∅;
(4) the balls B%(zi, λri) are pairwise disjoint;
(5) no point in O lies in more than N0 of the ball B%(zi, ri).

Proof: See [11, Lemma 2.4] for the details.

Lemma 4.2. Let O ( Bn be an open subset. Then there exist a col-
lection of balls B%(zi, ri), a sequence of functions ϕi ∈ C∞(Bn) (i =
1, 2, . . . ), and a constant µ > 1 depending only on n, such that

(1) 0 ≤ ϕi ≤ 1;
(2) suppϕi ⊂ B%(zi, ri);
(3)

∑∞
i=1 ϕi = χO;

(4) for any nonnegative integer L there is a constant cL > 0 depending
only on L and n such that for each i and any wi ∈ B%(zi, µri)∩Oc,

cL
‖ϕi‖1,α

ϕi ∈ GLµ (wi).

Proof: See Section 3 for the definition of GLµ (w). Then, the proof pro-
ceeds as the one of [9, Lemma 4.3] with the help of Lemma 4.1.

Let f ∈ Apα and µ > 1 be the constant appearing in Lemma 4.1.
Given an integer N ≥ Np,α, let L ≥ max

{
N,
[

1
p (n+ 1 + α)

]
+ 1
}

be an

integer. By Lemmas 3.1 and 3.3, we have

Kµ,L(f) + f?δ ∈ Lp(Bn, dvα).
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Let k0 be the least integer such that∥∥Kµ,L(f) + f?δ
∥∥
Lpα(Bn)

≤ 2k0 .

For any nonnegative integer k, we define

Ok =
{
z ∈ Bn : Kµ,L(f)(z) + f?δ (z) > 2k0+k

}
.

Then Ok ( Bn for any k = 0, 1, . . . . For each k we fix the Whitney type
covering {B%(zki , rki )}∞i=1 and the partition of unity {ϕki } with respect
to Ok, as constructed in Lemma 4.2.

For each i and k, we denote by L2
α,ϕki

(Bn) the L2-space with respect

to the probability measure dvα,ϕki :=
ϕki

‖ϕki ‖1,α
dvα. The norm on this

space will be denoted by ‖ · ‖α,ϕki . Then we define a subspace V L
ϕki

(zki )

of L2
α,ϕki

(Bn) consisting of ‘polynomials’ of the form

P (z) =
∑
|J|≤L

cJΘ(zki , z)
J ,

where

Θ(zki , z)
J = αj11 β

j2
1 · · ·α

j2i−1

i βj2ii · · ·α
j2n−1
n βj2nn

when Θ(zki , z) = (α1, β1, . . . , αn, βn) and J = (j1, j2, . . . , j2n−1, j2n). It
is clear that V L

ϕki
(zki ) is a finite-dimensional Hilbert space.

Let πJ(z) (|J | ≤ L) be an orthonormal basis for V L
ϕki

(zki ).

Lemma 4.3. Let L be a nonnegative integer. Then there is a con-
stant cL > 0 depending only on L and n such that

(4.1)
cL

‖ϕki ‖1,α
πJϕ

k
i ∈ GLµ (wki ),

for all wki ∈ B%(zki , µrki ) ∩ Ock.

Proof: The proof of this lemma follows the argument of Claim 1 in the
proof of [9, Lemma 4.6], but some additional properties of the quasi-
metric % in Bn are involved. For simplicity, by replacing Θ(zki , z)

J with
Θ(z)J , we let

πJ(z) =
∑

|I|≤|J|≤L

aJ,IΘ(z)I .

Then we will prove that

(4.2) |aJ,I | ≤ cJ(rki )−d(I), |I| ≤ |J | ≤ L,

by mathematical induction, where the positive constant cJ depending
only on J and n.
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To this end, we introduce a linear order ≺ on the multi-indices set {J :
|J | ≤ L} such that |I| < |J | implies I ≺ J . Note that the orthonormal
basis πJ can be constructed by the Gram–Schmidt process beginning
with π0 = 1, and then

(4.3) πJ(z) =
Θ(z)J −

∑
I≺J πI(z)

∫
Θ(w)JπI(w) dvα,ϕki (w)∥∥∥Θ(z)J −

∑
I≺J πI(z)

∫
Θ(w)JπI(w) dvα,ϕki (w)

∥∥∥
α,ϕki

.

Using mathematical induction, we assume that if O � I ≺ J then

|aI,O| ≤ cI(rki )−d(O).

Because, for any O � I we have
∣∣Θ(z)Oϕki (z)

∣∣ ≤ (rki )d(O), it follows that

πI(z)ϕ
k
i (z) ≤ cI . Therefore, in the numerator of (4.3), the coefficient of

Θ(z)I (I � J) is dominated by cJ(rki )d(J)−d(I).
In the following, we shall estimate the denominator of (4.3). Recalling

the constant ν in Lemma 4.1, we claim that there exists a constant C =
C(ν, n) such that

(4.4)
(1− |z|)α

vα(B%(zki , r
k
i ))

&
C

(rki )n+1
, ∀ z∈

{
w ∈ Bn : %(zki , w) <

1

4
νrki

}
.

Indeed, since 1 − |zki | = %
( zki
|zki |

, zki
)
> νrki , the proof of (4.4) can be

divided into two cases: 0 ≤ α <∞ and −1 < α < 0.

• Case 0 ≤ α < ∞. Suppose z ∈ {w ∈ Bn : %(zki , w) < 1
4νr

k
i }. If

rki ≥ 1− |zki |, we have

1− |z| ≥ νrki − %(zki , z) ≥
1

2
νrki ,

consequently,

(1− |z|)α

vα(B%(zki , r
k
i ))

&
C(rki )α

(rki )n+1+α
≥ C

(rki )n+1
;

if rki < 1− |zki |, we also have

1− |z| ≥ 1− |zki | − %(zki , z) ≥ 1− |zki | −
1

4
νrki ≥

(
1− 1

4
ν

)
(1− |zki |),

hence,

(1− |z|)α

vα(B%(zki , r
k
i ))

&
C(1− |zki |)α

(rki )n+1(1− |zki |)α
≥ C

(rki )n+1
.
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• Case −1 < α < 0. Let z ∈ {w ∈ Bn : %(zki , w) < 1
4νr

k
i }. If rki ≥ 1−|zki |,

we have

1− |z| ≤ 1− |zki |+ %(zki , z) . rki ,

therefore,
(1− |z|)α

vα(B%(zki , r
k
i ))

&
(rki )α

(rki )n+1+α
≥ C

(rki )n+1
;

if rki < 1− |zki |, we also have

1− |z| ≤ 1− |zki |+ %(zki , z) . 1− |zki |,
hence,

(1− |z|)α

vα(B%(zki , r
k
i ))

&
C(1− |zki |)α

(rki )n+1(1− |zki |)α
≥ C

(rki )n+1
.

In summary, (4.4) is proved.

We now come back to estimate the denominator of (4.3). Let

Ft =
{

(α, β) , (α1, . . . , βn) : |α1|, |β1| < t; α2
2 + · · ·+ β2

n < t
}
.

Then, by (4.4) we have∥∥∥∥∥Θ(z)J −
∑
I≺J

πI(z)

∫
Θ(w)JπI(w) dvα,ϕki (w)

∥∥∥∥∥
2

α,ϕki

&
1

vα(B%(zki , r
k
i ))

∫
B%(zki ,νr

k
i )

∣∣∣∣∣Θ(z)J−
∑
I≺J

πI(z)

∫
ΘJπI dvα,ϕki

∣∣∣∣∣
2

ϕki dvα(z)

&
1

(rki )n+1

∫
{z∈Bn:%(zki ,z)<

1
4νr

k
i }

∣∣∣∣∣Θ(z)J−
∑
I≺J

πI(z)

∫
ΘJπI dvα,ϕki

∣∣∣∣∣
2

dv(z)

=

∫
F 1

4
ν

∣∣∣∣∣(rki )d(J)(α, β)J −
∑
I≺J

πI
(
rki α1, r

k
i β1, (r

k
i )

1
2α2, . . . , (r

k
i )

1
2 βn

)
×
∫

ΘJπI dvα,ϕki

∣∣∣∣∣
2

dv(α, β),

in the last equality we have made the change of variables

(α1, β1, α2, β2, . . . , αn, βn)→

(
α1

rki
,
β1

rki
,
α2

(rki )
1
2

,
β2

(rki )
1
2

, . . . ,
αn

(rki )
1
2

,
βn

(rki )
1
2

)
.
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We continue to estimate the last integral, which is equal to

(rki )2d(J)

∫
F 1

4
ν

∣∣∣∣(α, β)J−
∑
I≺J

1

(rki )d(J)
πI
(
rki α1, r

k
i β1, (r

k
i )

1
2α2, . . . , (r

k
i )

1
2 βn

)

×
∫

ΘJπI dvα,ϕki

∣∣∣∣2 dv(α, β)

& (rki )2d(J)

∫
F 1

4
ν

|(α, β)J − PJ(α, β)|2 dv(α, β) ≥ cJ(rki )2d(J),

where PJ(α, β) is the projection of (α, β)J into the Hilbert space of
polynomials spanned by {(α, β)I : I ≺ J} with the norm

‖P‖ =
(∫
F 1

4
ν

|P (α, β)|2 dv(α, β)
) 1

2 . Combining this estimation on the

denominator of (4.3) with the previous estimation for its numerator
yields that the coefficient of Θ(z)I (I � J) is dominated by cJ(rki )−d(I),
i.e.,

|aJ,I | ≤ cJ(rki )d(J)−d(I)(rki )−d(J) = cJ(rki )−d(I), I � J.

Therefore, the claim (4.2) is proved.

Now we return to the proof of (4.1). Indeed, by the Leibniz rule and
the fact cL

‖ϕki ‖1,α
ϕki ∈ GLµ (wki ), we have

cL(rki )−d(I)

‖ϕki ‖1,α
Θ(zki , z)

Iϕki ∈ GLµ (wki ), |I| ≤ L.

Thus, by (4.2) we also have

cL
‖ϕki ‖1,α

πJϕ
k
i ∈ GLµ (wki ), |J | ≤ L.

This completes the proof.

Lemma 4.4. Let Pϕki be the orthogonal projection of L2
ϕki

(Bn) onto

V L
ϕki

(zki ). With the notation introduced above, there exists a constant C >

0 such that for f ∈ Apα,

(4.5)
∣∣∣Pϕki (f)(z)ϕki (z)

∣∣∣ ≤ C2k0+k,

and

(4.6)
∣∣∣Pϕk+1

j

(
[f − Pϕk+1

j
(f)]ϕki

)
(z)ϕk+1

j (z)
∣∣∣ ≤ C2k0+k+1,

for all i, j, k.
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Proof: With the help of Lemma 4.3, the proof proceeds as the one of [8,
Lemma 5.2].

5. Proof of the main result

This section is devoted to the proof of Theorem 4.1 by using a con-
structive method. The proof proceeds essentially as the ones in [8, 9],
but some analysis inside the complex ball is involved. For the sake of
completeness, we include the details.

Proof of Theorem 4.1: Let f ∈ Apα. Given an integer N ≥ Np,α, let
L ≥ max

{
N,
[

1
p (n+ 1 + α)

]
+ 1
}

be an integer. Recall that

Ok =
{
z ∈ Bn : Kµ,L(f)(z) + f?δ (z) > 2k0+k

}
, k = 0, 1, . . . .

For each k we fix the Whitney type covering {B%(zki , rki )}∞i=1 and the
partition of unity {ϕki } with respect to Ok, as constructed in Lemma 4.2.
Then, we can write

f =

(
f −

∞∑
i=1

fϕki

)
+

∞∑
i=1

fϕki = hk +

∞∑
i=1

(
f − Pϕki (f)

)
ϕki ,

where

(5.1) hk =

(
f −

∞∑
i=1

fϕki

)
+

∞∑
i=1

Pϕki (f)ϕki .

Also, by (4.5) one has

(5.2)

∣∣∣∣∣
∞∑
i=1

Pϕki (f)(z)ϕki (z)

∣∣∣∣∣ ≤ c2k0+k,

because no point in Ok lies in more than N0 of the balls B%(zki , r
k
i ). Note

that

supp

( ∞∑
i=1

[
f − Pϕki (f)

]
ϕki

)
⊂ Ok.

This implies that
∑∞
i=1

[
f−Pϕki (f)

]
ϕki → 0 as k →∞ almost everywhere

on Bn. Hence, by (5.1) one concludes that f − hk → 0 as k → ∞ for
almost all z ∈ Bn. This implies that

(5.3) f = h0 +

∞∑
k=0

(
hk+1 − hk

)
, a.e. z ∈ Bn.
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Now, since

∞∑
i=1

Pϕk+1
j

([
f−Pϕk+1

j
(f)
]
ϕki

)
=Pϕk+1

j

([
f − Pϕk+1

j
(f)
]
χOk

)
=Pϕk+1

j

[
fχOk

]
−Pϕk+1

j

[
Pϕk+1

j
(f)χOk

]
=0,

we can write

hk+1−hk=
(
f − hk

)
−
(
f − hk+1

)
=

∞∑
i=1

[
f − Pϕki (f)

]
ϕki −

∞∑
j=1

[
f − Pϕk+1

j
(f)
]
ϕk+1
j

=

∞∑
i=1

[
f − Pϕki (f)

]
ϕki

−
∞∑
j=1

∞∑
i=1

{[
f−Pϕk+1

j
(f)
]
ϕki −Pϕk+1

j

([
f−Pϕk+1

j
(f)
]
ϕki

)}
ϕk+1
j

=:

∞∑
i=1

bki ,

where

bki =
[
f − Pϕki (f)

]
ϕki

−
∞∑
j=1

{[
f−Pϕk+1

j
(f)
]
ϕki − Pϕk+1

j

([
f−Pϕk+1

j
(f)
]
ϕki

)}
ϕk+1
j .

(5.4)

Put

a0 =
1

λ0
h0 with λ0 = ‖h0‖L∞(Bn),

and

aki =
1

λki
bki with λki = 2k0+k+1vα(B%(zki , Cr

k
i ))

1
p ,

where C is a constant which will be fixed later. Therefore, we can write
formally

(5.5) f = λ0a0 +

∞∑
k=0

∞∑
i=1

λki a
k
i .
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This is the desired atomic decomposition. For clarity, we check it in
several steps as follows.

I. Support of the bki ’s. We note that the first term in (5.4) is clearly
supported in B%(zki , r

k
i ). Note that if the terms in the series (5.4) are

not identically 0, then the condition

B%(zki , r
k
i ) ∩B%(zk+1

j , rk+1
j ) 6= ∅

must be satisfied for some j. We claim that there is a constant C > 0
depending only on % such that rk+1

j ≤ Crki . Assuming this claim, we

conclude that B%(zk+1
j , rk+1

j ) ⊂ B%(zki , Cr
k
i ). Thus bki is supported in

B%(zki , Cr
k
i ) and so does aki .

To prove the previous claim, denote by K be the constant occurring in
the quasi-triangle inequality satisfied by %. By Lemma 4.1, we know that
rki = 1

2K %(zki ,Ock) for all i and k. Let w ∈ B%(zki , rki ) ∩ B%(zk+1
j , rk+1

j ).
Since Ok+1 ⊂ Ok, we have

rk+1
j ≤ 1

2
rk+1
j +

1

2
%(w,Ock) ≤ 1

2
rk+1
j +

1

2
K
[
%(w, zki ) + %(zki ,Ock)

]
.

Then,

rk+1
j ≤ Krki +K%(zki ,Ock) ≤ Krki + 2K2rki ≤ K(1 + 2K)rki ,

and so the claim is proved.

II. Size estimates for h0 and bki ’s. Firstly, by (5.1) and (5.2) we have

|h0| =

∣∣∣∣∣fχOc0 +

∞∑
i=1

Pϕ0
i
(f)ϕ0

i

∣∣∣∣∣ r ≤ ‖f?δ ‖L∞(Oc0) +

∣∣∣∣∣
∞∑
i=1

Pϕ0
i
(f)ϕ0

i

∣∣∣∣∣ ≤ c2k0 .
Thus ‖h0‖L∞ ≤ c2k0 , so a0 is a (p,∞, N)α-atom.

On the other hand, by (5.4) we have

|bki | ≤
∣∣∣∣[f − Pϕki (f)

]
ϕki −

∞∑
j=1

[
f − Pϕk+1

j
(f)
]
ϕki ϕ

k+1
j

∣∣∣∣
+

∣∣∣∣ ∞∑
j=1

Pϕk+1
j

([
f − Pϕk+1

j
(f)
]
ϕki

)
ϕk+1
j

∣∣∣∣.
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The second term on the right hand side is bounded by c2k0+k+1 by (5.2),
while the first term is equal to

∣∣∣∣[f−Pϕki (f)
]
ϕki χOck+1

+

∞∑
j=1

([
f − Pϕki (f)

]
−
[
f − Pϕk+1

j
(f)
])
ϕki ϕ

k+1
j

∣∣∣∣
≤
∣∣fχOk\Ok+1

∣∣+
∣∣Pϕki (f)ϕki

∣∣+

∣∣∣∣ ∞∑
j=1

Pϕk+1
j

(f)ϕk+1
j

∣∣∣∣+
∣∣Pϕki (f)ϕki

∣∣
≤ f?δ χOk\Ok+1

+ c2k0+k+1 . 2k0+k+1,

where we have used Lemma 4.4. Thus, |bki | . 2k0+k+1.

III. Vanishing condition. Notice that 1 ∈ V L
ϕki

(zki ) ∩ V L
ϕk+1
j

(zk+1
i ). Then,

∫
Bn

[
f − Pϕki (f)

]
ϕki dvα = 0

and∫
Bn

([
f − Pϕk+1

j
(f)
]
ϕki − Pϕk+1

j

([
f − Pϕk+1

j
(f)
]
ϕki

))
ϕk+1
j dvα = 0.

Therefore,
∫
Bn b

k
i dvα = 0 and so

∫
Bn a

k
i dvα = 0.

IV. Moment condition. We shall prove that∣∣∣∣∫
Bn
bki (z)Φ(z) dvα(z)

∣∣∣∣ . 2k0+k+1vα(B%(zki , Cr
k
i )) ‖Φ‖SN (B%(zki ,Cr

k
i ))

for any Φ ∈ C∞(B%(zki , Cr
k
i )). To this end, we first note that there

exists a unitary operator Uzki such that Uzki z
k
i = (|zki |, 0, . . . , 0). For any

z ∈ B%(zki , Crki ) we assume Uzki z = (x1 + iy1, . . . , xn + iyn). Then, by

Lemma 2.2 we have

∣∣x1 + iy1 − |zki |
∣∣ ≤ %(zki , z) and

n∑
j=2

|xj + iyj |2 ≤ 2%(zki , z).
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Hence, |x1 − |zki ||, |y1| . rki and |xj |, |yj | .
√
rki for j ≥ 2. Thus, if

Θ(zki , z) = (α1, β1, . . . , αn, βn),

|α1|, |β1| . rki and |αj |, |βj | .
√
rki for j ≥ 2.

Using local coordinates (α1, β1, . . . , αn, βn), we denote by PΦ
zik,N

the

Taylor expansion of order N − 1 of Φ around zki on B%(zki , Cr
k
i ), i.e.,

PΦ
zik,N

(z) =
∑

|J|≤N−1

cJ
∂k1+···+kn+m1+···+mnΦ

∂αk11 ∂β
m1
1 · · · ∂αknn ∂βmnn

(zki )Θ(zki , z)
J ,

where J = (k1,m1, . . . , kn,mn). Note that PΦ
zik,N

is in V L
ϕki

(zki ). Then, we

have ∥∥∥Φ− PΦ
zik,N

∥∥∥
L∞(B%(zki ,Cr

k
i ))

.
∥∥Φ
∥∥
SN (B%(zki ,Cr

k
i ))
.

In addition, if B%(zki , r
k
i ) ∩ B%(zk+1

j , rk+1
j ) 6= ∅, there exists a con-

stant C > 0 such that rk+1 ≤ Crki and so B%(zk+1
j , rk+1

j ) ⊂ B%(zki , Crki )

(see Step I). In this case, for all |J | ≤ N − 1 we make the change of

variable such that Θ(zki , z)
J becomes the element in V L

ϕk+1
j

(zk+1
j ) and its

order is still less than N − 1. Therefore,∣∣∣∣∫
Bn
bki (z)Φ(z) dvα(z)

∣∣∣∣= ∣∣∣∣∫
Bn
bki (z)

(
Φ(z)− PΦ

zik,N

)
dvα(z)

∣∣∣∣
≤2k0+k+1vα(B%(zki , Cr

k
i ))
∥∥∥Φ−PΦ

zki ,N

∥∥∥
L∞(B%(zki ,Cr

k
i ))

.2k0+k+1vα(B%(zki , Cr
k
i ))
∥∥Φ
∥∥
SN (B%(zki ,Cr

k
i ))
,

by the size estimate for bki ’s as above. Thus,∣∣∣∣∫
Bn
aki (z)Φ(z) dvα(z)

∣∣∣∣ . ‖Φ‖SN (B%(zki ,Cr
k
i ))vα(B%(zki , Cr

k
i ))1− 1

p ,

and so aki is a (p,∞, N)α-atom.

V. Convergence in the sense of distributions. In order to show that (5.5)
holds in the sense of distributions, it suffices to verify that

∑m
k=0

∑∞
i=1 b

k
i

convergence in the sense of distributions. Let Ψ ∈ C∞(Bn). By the
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estimate of bki in Step IV, we have for any m > n,∣∣∣∣∫
Bn

m∑
k=n

∞∑
i=1

bki Ψ dvα

∣∣∣∣ ≤ m∑
k=n

∞∑
i=1

∣∣∣∣∫
Bn
bki Ψ dvα

∣∣∣∣
.

m∑
k=n

∞∑
i=1

2k0+k+1vα
(
B%(zki , Cr

k
i )
)(
rki
)N

2 ‖Ψ‖CN (Bn)

.
m∑
k=n

∞∑
i=1

2k0+k+1vα
(
B%(zki , r

k
i )
) 1
p ‖Ψ‖CN (Bn) ,

where we use the fact N ≥ Np,α and Lemma 2.1. Hence, since 1
p ≥ 1 we

have∣∣∣∣∫
Bn

m∑
k=n

∞∑
i=1

bki (z)Ψ(z) dvα(z)

∣∣∣∣
.

m∑
k=n

2k0+k+1

( ∞∑
i=1

vα
(
B%(zki , r

k
i )
)) 1

p

‖Ψ‖CN (Bn)

≤

(
m∑
k=n

2(k0+k+1)pvα(Ok)

) 1
p

‖Ψ‖CN (Bn)

.‖Ψ‖CN (Bn)

(
m∑
k=n

∫ 2k0+k

2k0+k−1

tp−1vα{z∈Bn :Kµ,L(f)(z)+f?δ (z)>t} dt

)1
p

=

(∫
On−1

|Kµ,L(f) + f?δ |p dvα

) 1
p

‖Ψ‖CN (Bn) ,

which tends to 0 as n → ∞. Thus, the equality (5.5) holds in the sense
of distributions.

VI. Coefficients in `p. Indeed,

∞∑
k=0

∞∑
i=1

|λki |p =

∞∑
k=0

∞∑
i=1

2(k0+k+1)pvα(B%(zki , Cr
k
i ))

.
∞∑
k=0

∞∑
i=1

2(k0+k+1)pvα(B%(zki , r
k
i )) .

∞∑
k=0

2(k0+k+1)pvα(Ok)

.
∫ ∞

2k0
tp−1vα {z ∈ Bn : Kµ,L(f)(z) + f?δ (z) > t} dt

. ‖Kµ,L(f) + f?δ ‖pp,α . ‖f‖pp,α.
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In conclusion, we have shown that the representation (5.5) is an
atomic decomposition for f .

VII. Completion of the proof of Theorem 4.1. It remains to prove that
f =

∑
j λjPα(aj) in Apα. Indeed, assuming that f ∈ Apα ∩ A2

α with

f =
∑
j λjaj in the sense of distributions, we have

f(z) = Pα(f)(z) =

〈∑
j

λjaj ,Kα(·, z)
〉

=
∑
j

λjPα(aj)(z).

Therefore, f =
∑
j λjPα(aj) for f ∈ Apα ∩ A2

α. Since Apα ∩ A2
α is dense

in Apα, by a standard argument we conclude the assertion for all f ∈ Apα.
This completes the proof of Theorem 4.1.
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