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VANISHING RESULTS FOR THE COHOMOLOGY OF
COMPLEX TORIC HYPERPLANE COMPLEMENTS

M. W. DAVIS AND S. SETTEPANELLA

Abstract: Suppose R is the complement of an essential arrangement of toric hyper-
lanes in the complex torus (C*)™ and 7 = 71(R). We show that H*(R; A) vanishes
except in the top degree n when A is one of the following systems of local coefficients:
(a) a system of nonresonant coefficients in a complex line bundle, (b) the von Neu-
mann algebra N, or (c) the group ring Zr. In case (a) the dimension of H™ is |e(R)|
where e(R) denotes the Euler characteristic, and in case (b) the n* ¢2 Betti number
is also |e(R)].
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1. Introduction

A complex toric arrangement is a family of complex subtori of a com-
plex torus (C*)™. The study of such objects is a relatively recent topic.
Different versions of these arrangements, also known as toral arrange-
ments, have been introduced and studied in works of Lehrer [16], [17],
Dimca-Lehrer [11], Douglass [12], Looijenga [18], and Macmeikan [20],
[21].

The foundation of the topic can be traced to the paper [10] by De
Concini and Procesi. There the main objects are defined and the coho-
mology of the complement of a toric arrangement is studied. An explicit
goal of [10] is to generalize the theory of hyperplane arrangements. (For
an extensive account of the work of De Concini and Procesi see [9].)

The next step is the work of Moci, in particular his papers [22], [23],
and [24], developing the theory with a special focus on combinatorics.
In [25] Moci and the second author study the homotopy type of the
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complement of a special class of toric arrangements which they call thick.
In [3] d’Antonio and Delucchi generalize results in [25] to a wider class
of toric arrangements which they call complexified because of structural
affinity with the case of hyperplane arrangements. They also prove that
complements of complexified toric arrangements are minimal (see [4]).

In this paper we generalize to toric arrangements a well known result
for affine arrangements: vanishing conditions for the cohomology of the
complement M (A) of an arrangement A with coefficients in a complex
local system A. Necessary conditions for H*(M (A); A) = 0if k # n, i.e.,
for the cohomology to be concentrated in top dimension, have been deter-
mined by a number of authors, including Kohno [15], Esnault, Schecht-
man and Viehweg [13], Davis, Januszkiewicz, and Leary [5], Schechtman,
Terao and Varchenko [28], and Cohen and Orlik [2]. In particular, in [28]
(see also [2]) it is proved that the cohomology of the complement M (A)
of an arrangement with coefficients in a complex local system is concen-
trated in top dimension provided certain nonresonance conditions for
monodromies are fulfilled for a certain subset of edges (i.e., intersections
of hyperplanes) that are called denses.

In order to generalize the above results we use techniques developed
by the first author in a joint work with Januszkiewicz, Leary, and Okun,
[5], [6], [7], [8]. One considers an open cover of the complement M
by “small” open sets each homeomorphic to the complement of a cen-
tral arrangement. In the cases of nonresonant rank one local coefli-
cients or ¢2 coefficients, the E; page of the resulting Mayer-Vietoris
spectral sequence is nonzero only along the bottom row, where it can
be identified with the simplicial cochains with constant coefficients on a
pair (N (U), N (Using)), which is homotopy equivalent to (C™, X) where
Y is the union of all hyperplanes in the arrangement. (The simplicial
complex N(U) is the nerve of an open cover of C™ and N (Using) is a
subcomplex.)

It follows that the Eo page can be nonzero only in position ({,0). One
also can prove that for an affine hyperplane arrangement of rank [ only
the I*® ¢2-Betti number of the complement M can be nonzero and that it
is equal to the rank of the reduced (I — 1)-homology of ¥ (cf. [5]). Simi-
larly, with coefficients in the group ring, Zr, for m# = w1 (M), H*(M; Zr)
is nonzero only in degree ! (cf. [6]). We generalize all three of these
vanishing results to the toric case in Theorems 5.1, 5.2 and 5.3.

In recent work [27], Papadima and Suciu generalize the result in [2] to
arbitrary minimal CW-complex, i.e., a complex having as many k-cells
as the k-th Betti number. It would be very interesting to decide if the
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complement of toric arrangement also could be minimal. In this case
Theorem 5.1 would be a consequence of minimality.

Our paper begins with a review of some background about toric and
affine arrangements. Then, in Section 3, we give a brief account of open
covers by “small” convex sets. In Section 4 we recall basic definitions on
systems of local coefficients. Finally in Section 5 we prove that the co-
homology of the complement of a toric arrangement with coefficient in a
local system A vanishes except in the top degree when A is a nonresonant
local system, the von Neumann algebra N7 or the group ring Zm.

2. Affine and toric hyperplane arrangements

Affine hyperplanes arrangements. A hyperplane arrangement A is
a finite collection of affine hyperplanes in C". A subspace of A is a
nonempty intersection of hyperplanes in .A. Denote by L(.A) the poset of
subspaces, partially ordered by inclusion, and let L(A) := L(A) U {C"}.
An arrangement is central if L(A) has a minimum element. Given G €
L(A), its rank, tk(G), is the codimension of G in C". The minimal
elements of L(A) form a family of parallel subspaces and they all have
the same rank. The rank of an arrangement A is the rank of a minimal
element in L(A). A is essential if rk(A) = n.

The singular set ¥(A) of A is the union of hyperplanes in A. The
complement of ¥(A) in C™ is denoted M (A).

Toric arrangements. Let T = (C*)™ be a complex torus and let A =
Hom(T,C*) denote the group of characters of T. Then A = Z". A
character is primitive if it is a primitive vector in A. Given a primitive
character y and an element a € C* put

Hy,,={teT|x(t) =a}

The subtorus H, , is a toric hyperplane. A finite subset X C A x C*
defines a toric arrangement,

TX = {HX7G}(X,a)€X'

The projection of X onto the first factor is denoted p(X) and is called
the character set of Tx. (Thus, p(X) := {x | (x,a) € X}.) The sin-
gular set, X x, is the union of toric hyperplanes in the arrangement. Its
complement, T — Y x, is denoted Rx. The intersection poset Lx is the
set of nonempty intersections of toric hyperplanes and Lx = Lx U {T'}.
Ly is partially ordered by inclusion. The rank of the arrangement is
the dimension of the linear subspace of A ®z R spanned by p(X). The
arrangement is essential if its rank is n.
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Suppose G € Lx. Choose a point x € G. The tangential arrangement
along G is the arrangement Aq of linear hyperplanes which are tangent
to the complex toric hyperplanes containing G (i.e., all hyperplanes of
the form T, (H,y,q) where T(G) C Tx(Hy,q)). It is a central hyperplane
arrangement of rank equal to n — dim G.

Given a toric arrangement Tx of rank [, let Kx denote the identity
component of the intersection of all kernels in p(X), i.e., Kx is the
identity component of

(| Kerx={teT|x(t)=1VxepX)}
XEP(X)

Put Tx :=T/Kx. Thus, Kx and Tx are tori of dimensions n—[ and [,
respectively. (Kx = (C*)"~! and Ty = (C*)!.) Let Xx denote the
image of Xx in Ty. Since T — T/Kx is a trivial Kx-bundle, we have
a homeomorphism of pairs,

(1) (T,Xx) = Kx x (Tx,Xx).

In other words, the arrangement in 7" is just the product of the arrange-
ment in T x with the torus Kx. We call 7 x the essentialization of Tx.
So, it is not restrictive to consider essential toric arrangements.

Lemma 2.1 (cf. [5, Proposition 2.1]). Suppose Tx is an essential toric
arrangement on T and ¥ = ¥x. Then H.(T,X) is free abelian and
concentrated in degree n.

Proof: We follow the “deletion-restriction” argument in [5, Proposi-
tion 2.1]) using induction on Card(7x). Choose a toric hyperplane
H e Tx. Let T' = Tx — {H} and let 7" be the restriction of Tx
to H,ie., T"={HNH' | H € Tx}. Let ¥ and ¥” denote the singu-
lar sets of 77 and T, respectively. Consider the exact sequence of the
triple (T, %,%),

(2) — H(T,%¥) = H(T,%) —» H, 1(X,Y) —
There is an excision, H,—1(X,%") & H,_1(H,%X"). The rank of 7" is

either n or n — 1, while the rank of 7" is always n — 1. The argument
breaks into two cases depending on the rank of 7.

Case 1: the rank of 7' is n. By induction, H.(T,%’) and H.(H, HNX)
are free abelian and concentrated in degrees n and n — 1, respectively.
So, (2) becomes

0— H,(T,Y) - H,(T,%) - H,_1(H,HNY') - 0
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and all other terms are 0. Therefore, H, (T, Y) is concentrated in degree n
and H,(T,Y) is free abelian.

Case 2: the rank of 7’ is n — 1. Then the projection T — T takes H
isomorphically onto T and the arrangement 7" on H maps isomorphi-
cally to the arrangement 7 x on 7. So, (H,H N¥') = (T,%). By (1),
(T,Y) 2 Kx x(H,HNY') 2 C*x (H, HNY'). By the Kiinneth Formula,
H.(T,Y)> H.(C*)® H.(H,HNYX). So,

Hy,_1(T,5) = Hy(C*)® Hy_y(H,HNY') and
H,(T,%) = H,(C*) ® H,_,(H, HNX);

moreover, the first isomorphism is induced by the inclusion (H, HNY') —
(T,X'). So, (2) becomes

0— Hy(C*)® Hy_1(H,HNY') = Hy(T,%) = Hy_1(H,HNY')
— Ho(C*) @ H,_y(H,HN'Y')

where the last map is an isomorphism. It follows that H,_1(7,%) =0
and that H,(T,X) & H1(C*) ® H,_1(H, H N %), which, by inductive
hypothesis, is free abelian. This proves the lemma. O

Complexified toric arrangements. In [3] d’Antonio-Delucchi con-
sider the case of “complexified toric arrangements.” This means that for
each (x,a) € X, the complex number a has modulus 1 (where X C AxC*
is a set defining a toric arrangement Ty ). Let TP* = (S1)™ C C" be the
compact torus. Then for each H € Tx, H NT°P! is a compact subtorus
of T°Pt. The set of subtori, Tx*" := {H NS | H € T}, is called the
associated compact arrangement.

Let X' := Xy N T'. We note that (7,Xx) deformation retracts
onto (TPt ¥:PY). Here are a few obervations.

(i) The universal cover of TP is R™ (actually the subspace iR™ C C™).
Let m: R™ — T°P' be the covering projection. Then for each HP' €
Xpt7 each component of 7~ }(HP) is an affine hyperplane and

the collection of these hyperplanes is a periodic affine hyperplane

arrangement in R”.
(ii) If Tx is essential, then 3Pt cuts T°P* into a disjoint union of convex

polytopes, called chambers (see [25]) . The inverse images of these
polytopes under 7 give a tiling of R™.
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(iii) When Ty is essential, it follows from (ii) that for n > 2, Xt is
connected and that for n > 3, w1 (XPY) = my (T°PY).

(iv) It is easy to prove Lemma 2.1 in the case of a compact arrange-
ment. We have an excision H, (TP*, 2PY) = H ([ [(P;, 0P;)) where
each chamber P; is an n-dimensional convex polytope. Hence,
H,(TP* 3°PY) is concentrated in degree n and is free abelian.
Moreover, the rank of H,(T°P!,XP') is the number of chambers.

(v) Let 3Pt denote the inverse image of X' in R™ and let £x be the
induced cover of X x. Suppose Tx is essential. Then Pt cuts R™
into compact chambers. It follows that Pt (and hence, §~]) is
homotopy equivalent to a wedge of (n — 1)-spheres.

3. Certain covers and their nerves

Equip the torus T'= (C*)™ with an invariant metric. This lifts to a
Euclidean metric on C" induced from an inner product. Hence, geodesics
in T lift to straight lines in C™ and each component of the inverse image
of a subtorus of T is an affine subspace of C™. A convex subset of T means
a geodesically convex subset. Thus, each component of the inverse image
of a convex subset of T is a convex subset of C™.

The intersection of an open convex subset of T" with the toric hyper-
planes in Ty is equivalent to an affine arrangement. An open convex
subset U C T is small (with respect to Tx) if this affine arrangement is
central. In other words, U is small if the following two conditions hold
(cf. [5], [6]):

(i) {G € L(Tx) | GNU # 0} has a unique minimum element, Min(U).

(ii) A toric hyperplane H € Tx has nonempty intersection with U if
and only if Min(U) C H.
If (i) and (ii) hold, then the arrangement in U is equivalent to the tan-
gential arrangement along Min(U), which we denote by Apgin@y. The
intersection of two small convex open sets is also a small convex set;
hence, the same is true for any finite intersection of such sets.
Let YU = {U;}ics be an open cover of T' by small convex sets, put

using :{UGU|UQE)(7E@}

Given a nonempty subset o C I, put Uy := [, Us. The nerve N(U)
of U is the simplicial complex defined as follows. Its vertex set is I and
a finite, nonempty subset o C I spans a simplex of N () if and only if
U, is nonempty. We have the following lemma.
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Lemma 3.1. Suppose Tx is essential. N(U) is homotopy equivalent to T
and N(Using) is a subcomplex homotopy equivalent to Xx. Moreover,
H,(NU), N(Using)) is concentrated in degree n and H,,(N(U), N Using))
18 free abelian.

Proof: Using is an open cover of a neighborhood of ¥ x which deformation
retracts onto Xx. For each simplex o of N(U), U, is contractible (in
fact, it is a small convex open set). By a well-known result (see [14,
Corollary 4G.3 and Example 4G(4)]) N(U) is homotopy equivalent to T'
and N (Using) is homotopy equivalent to Xx. The last sentence of the
lemma follows from Lemma 2.1. U

Definition 3.2. 3(7x) is the rank of H,(N(U), N(Uising))-

Equivalently, 8(7x) is the rank of H,, (T, Xx). It is not difficult to see
that, for essential arrangements, (—1)"5(Tx) = e(T,Xx) = —e(E¥x) =
e(Rx), where e( ) denotes Euler characteristic.

4. Local coefficients

Generic and nonresonant coefficients. Consider an affine arrange-
ment A. The fundamental group 7 of its complement, M (A), is gener-
ated by loops ay for H € A, where the loop ag goes once around the hy-
perplane H in the “positive” direction. Let ay denote the image of ay
in Hi(M(A)). Then H;(M(A)) is free abelian with basis {ag}meca.
So, a homomorphism H;(M(A)) — C* is determined by an .A-tuple
A € (C)A, where A = (Ag)gea corresponds to the homomorphism
sending ay to Ag. Let ¢p: m — C* be the composition of this homo-
morphism with the abelianization map © — H; (M (A)). The resulting
rank one local coeflicient system on M (A) is denoted Ajy.

Returning to the case where Ty is a toric arrangement, for each sim-

-~

plex o in N(U), let A, := Awmin(w,) be the corresponding central ar-
rangement (so that U, = M(A,)). Given A, € (C*)A=, put

)\a = H )\H
HeA,

Let Ap, € Hom(H;(Rx),C*) be a local coefficient system on Rx. The
localization of Aj, on the open set (70 has the form A, _, where A, is
a As-tuple in C*. We call Ap generic if A, # 1 for all 0 € N (Using)-
We call Ap nonresonant if A, is nonresonant in the sense of [2] for all
0 € N(Using) i.e., if the Betti numbers of M (A,) with coefficients in Ax,
are minimal.
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£2-cohomology and coeffiicients in a group von Neumann alge-
bra. For a discrete group , £?7 denotes the Hilbert space of complex-
valued, square integrable functions on w. There are unitary m-actions
on 0?7 by either left or right multiplication; hence, Cr acts either from
the left or right as an algebra of operators. The associated von Neumann
algebra N'm is the commutant of Cr (acting from, say, the right on £27).

Given a finite CW complex Y with fundamental group 7, the space of
£%-cochains on the universal cover Y is equal to C*(Y'; ¢*7), the cochains
with local coefficients in ¢27. The image of the coboundary map need
not be closed; hence, H*(Y; £>7) need not be a Hilbert space. To rem-
edy this, one defines the reduced ¢*>-cohomology H (Y;¢*) to be the
quotient of the space of cocycles by the closure of the space of cobound-
aries. The von Neumann algebra admits a trace. Using this, one can
attach a “dimension,” dima/, V, to any closed, m-stable subspace V of a
finite direct sum of copies of £ (it is the trace of orthogonal projection
onto V). The nonnegative real number dimp,(H” ,(Y;¢?7)) is the p't
(2-Betti number of Y.

A technical advance of Liick [19, Chapter 6] is the use local coefficients
in N7 in place of the previous version of £2-cohomology. He shows there
is a well-defined dimension function on AN'7r-modules, A — dimpar A,
which gives the same answer for £2-Betti numbers, i.e., for each p one
has that dimpr. HP(Y;N'7) = dimpr HE (Y %7).

Group ring coeffiicients. Let Y be a connected CW complex, 7 =
m(Y) and r: Y — Y the universal cover. There is a well-defined action
of 7 on Y and hence, on the cellular chain complex of Y. Given the left
m-module Z, define the cochain complex with group ring coefficients

C*(Y; Zr) := Hom, (C.(Y), Z).
Taking cohomology gives H*(Y'; Z).

5. The Mayer-Vietoris spectral sequence

Statements of the main theorems. Suppose Tx is an essential toric
arrangement in 7' and 7 = 7 (Rx).

Theorem 5.1. Let Ap be a generic X -tuple with entries in k*. Then
H*(Rx; An,) is concentrated in degree n and

dimy H"(Rx; Apy) = B(Tx).
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Theorem 5.2 (cf. [7]). The (*-Betti numbers of Rx are 0 except in
degree n and (?b,(Rx) = B(Tx).

Theorem 5.3 (cf. [6], [8]). H*(Rx;Zm) vanishes except in degree n
and H"(Rx;Zw) is free abelian.

Remark 5.4. Suppose W is a Euclidean reflection group acting on R™
and that Z™ C W is the subgroup of translations. The quotient W’ :=
W/Z™ is a finite Coxeter group. The reflection group W acts on the
complexification C™ and W’ acts on the torus T' = C"/Z"™. The image
of the affine reflection arrangement in C" gives a toric arrangement 7Tx
in T. The fundamental group of Ry is the Artin group A associated
to W and Rx is the Salvetti complex associated to A. The quotient
of the compact torus by W’ can be identified with the fundamental
simplex A of W on R™. (If W is irreducible, then A is a simplex.) It
follows that 8(7,) is the order of W’ (i.e., the index of Z"™ in W). So,
in this case Theorem 5.2 is a special case of the main result of [7] and
Theorem 5.3 is a special case of a result of [8, Theorem 4.1].

Lemma 5.5. Suppose A is a finite, central arrangement of affine hy-
perplanes. Let ©' = m(M(A)). Then

(i) (Cf. [28], [2], [B].) For any generic system of local coefficients A,
H*(M(A); A) vanishes in all degrees.
(i) (Cf. [5].) H*(M(A); N7') vanishes in all degrees. Hence, all £*-
Betti numbers are 0.
(iii) (Cf.[6].) If the rank of A isl, then H*(M(A); Zn'") vanishes except
in the top degree, .

Proofs using the Mayer-Vietoris spectral sequence. The proofs
of these three theorems closely follow the argument in [7], [5] and par-
ticularly, in [6]. For m = m (R x), let A denote one of the left 7-modules
in Section 4.

Let U = {U;} be an open cover of T by small convex sets. We may
suppose that U is finite and that it is closed under taking intersections.
For each G € Lx, put

Ug :=={U €U | Min(U) < G},
USME = (U e U | Min(U) < G} = {U €U | UNSx NG # 0}

The open cover U restricts to an open cover Zj ={U - Xx}veu of Rx.

Any element U=U-% x of the cover is homotopy equivalent to the
complement of a central arrangement M (Apgin(ty)-
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Suppose N (U) is the nerve of i and N (Ug) is the subcomplex defined
by Ug. Since N (Ug) and N (U;"®) are nerves of covers of G and £ x NG,
respectively, by contractible open subsets, we have that for each G €

L(A),
3) HY(N(Ua), NQUE™)) = H*(G.5(Tx N G)).
For each k-simplex o = {ig, ..., i} in N(U), let

Uy, :=U,N---NU;,

denote the corresponding intersection.

Let r: ﬁx — Rx be the universal cover. The induced open cover
{r~(U)} of Rx has the same nerve N(U) (= N(U)). We have the
Mayer-Vietoris double complex,

Cij= P ;0 (T,
ceEN®)

where N denotes the set of i-simplices in N (U) (cf. [1, Chapter VTI].)
We get a corresponding double cochain complex,

(4) Ey7 = Hom,(C; ;, A),

where m = 11 (R x ). The filtration on the double complex gives a spectral
sequence converging to the associated graded module for cohomology:

GrH™(Rx;A) = B = @ EZ.
i+j=m
By first using the horizontal differential, there is a spectral sequence
with Fq page
By = CHNU); HI(A))
where H7(A) is the coefficient system on N (U) defined by
o — HI(U,; A),

where U, = M(Awmin(u,)). For A = Ap, or A = N these coefficients
are 0 for G # T. For A = Znr, they are 0 for j # dim(G). Hence,
in all cases, for any coface ¢’ of o, if G' := Min(U,/) < G, the coeffi-
cient homomorphism H? (M (Ag); A) — HI (M (Acr); A) is the zero map.
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Moreover, the F; page of the spectral sequence decomposes as a direct
sum (cf. [8, Lemma 2.2]). In fact, for a fixed j, by using Lemma 5.5, we
see that the E]” term decomposes as
B = @ C(NWUe), NUG™); H (M(Ac): A)),
GeLy ™’
where we have constant coefficients in each summand. Hence, at Es we
have

Eyl = @ H'(NUc), NU™); B (M(Ag); A)
GeT™
@ HY(G,Yx NG; H (M(Ag); A)),

Gerl

()

where the second equation follows from (3).

When A = Ap,. or A = N, all summands vanish for G # T and j #
0. So, we are left with E;’O = H"(T,Xx; A), which is isomorphic to the
tensor product free abelian group of rank §(7x) with A. It follows that
H*(Rx;A) is concentrated in degree n and that dimc H"(Rx; Ar,) =
B(Tx) = dimpr H*(Rx; N7). This proves Theorems 5.1 and 5.2.

Consider formula (5) for A = Zr. By Lemma 2.1, H(G,Xx N G) is
concentrated in degree dimG = n — j. Hence, E;j is nonzero (and
free abelian) only for i + j = n. It follows that the spectral sequence
degenerates at Es, i.e., F5 = E,. This proves Theorem 5.3.

Remark 5.6. Let us remark that the statement of Theorem 5.1 holds even
if the local system Ap is nonresonant or if it verifies the Schechtman,
Terao and Varchenko nonresonance conditions in all small open convex
sets , i.e. A, verifies the nonresonance conditions in [28] for all o €
N (Using)- Indeed under these conditions Lemma 5.5 holds.
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