SMOOTH POTENTIALS WITH PRESCRIBED BOUNDARY BEHAVIOUR

STEPHEN J. GARDINER AND ANDERS GUSTAFSSON

Abstract.

This paper examines when it is possible to find a smooth potential on a C^1 domain D with prescribed normal derivatives at the boundary. It is shown that this is always possible when D is a Liapunov-Dini domain, and this restriction on D is essential. An application concerning C^1 superharmonic extension is given.

1. Results

Let D be a C^1 domain in Euclidean space \mathbb{R}^n , where $n \geq 2$. Thus D is bounded, ∂D can be represented locally as the graph of a C^1 function of n-1 variables, and there is a uniquely defined inward normal n_z at each point z of ∂D . We denote by $C^1(\overline{D})$ the collection of continuous functions on \overline{D} which possess a continuous gradient on D that extends continuously to \overline{D} .

This paper is concerned with whether it is possible to find a smooth potential on D with prescribed normal derivatives on the boundary. More precisely, given a continuous function $g \colon \partial D \to (0, +\infty)$, we ask if there is a function $v \in C^1(\overline{D})$ which is superharmonic on D and satisfies the boundary conditions

$$(1) \hspace{1cm} v(z)=0 \quad \text{and} \quad \frac{\partial v}{\partial n_z}=g(z) \qquad (z\in \partial D),$$

where $\partial/\partial n_z$ denotes differentiation in the direction of the inward normal at z. The answer will be given in Theorem 1 below.

By a Dini function we mean an increasing continuous function $\varepsilon \colon (0,+\infty) \to (0,+\infty)$ such that $\varepsilon(t)/t^{\gamma}$ is decreasing on (0,1) for some $\gamma \in (0,1)$ and

(2)
$$\int_0^1 \frac{\varepsilon(t)}{t} \, dt < +\infty.$$

 $2000\ Mathematics\ Subject\ Classification.\ 31B15.$

 $\mathit{Key\ words}.$ Potential, boundary behaviour, superharmonic extension.

A C^1 domain D is called a $Liapunov\text{-}Dini\ domain\ (cf.\ [11])$ if there is a Dini function ε such that the angle between the normals n_y and n_z at any two points $y,z\in\partial D$ does not exceed $\varepsilon(\|y-z\|)$. Examples include the $C^{1,\alpha}$ -domains $(0<\alpha<1)$, which correspond to the case where $\varepsilon(t)=t^{\alpha}$.

Theorem 1. Let D be a Liapunov-Dini domain. Then, for each continuous function $g \colon \partial D \to (0, +\infty)$, there is a function $v \in C^1(\overline{D})$ which is superharmonic on D and satisfies (1).

The function v of Theorem 1 is certainly not unique: as will be clear from the proof it can be chosen to be harmonic on any predetermined open subset U of D which satisfies $\overline{U} \subset D$. We remark that Theorem 1 is related to work of Wallin [10] on the extension, in the form of potentials, of continuous functions from compact polar sets.

The example below shows the relevance of condition (2) to Theorem 1.

Example 1. Let $\varepsilon: [0, +\infty) \to [0, +\infty)$ be an increasing continuous function such that $\varepsilon(0) = 0$ and (2) fails to hold. (For example, we could choose $\varepsilon(t) = \{1 + \log^+(e/t)\}^{-1}$.) Further, let D be a C^1 domain such that

$$D \cap \{\|x\| < 1\} = \{(x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R} : x_n > -\psi(\|x'\|)\} \cap \{\|x\| < 1\}$$

where $\psi(t) = \int_0^t \varepsilon(s) ds$. Then the only function v in $C(\overline{D})$ which is superharmonic on D, valued 0 on ∂D and has a finite normal derivative at 0, is the zero function.

We give below an application of Theorem 1 to superharmonic extension.

Corollary 1. Let D be a Liapunov-Dini domain (with Dini function ε) such that $\mathbb{R}^n \setminus \overline{D}$ is connected. Suppose that $u \in C^1(\overline{D})$, where $u|_D$ is superharmonic and, for each $z \in \partial D$, there is a linear polynomial L_z such that

$$(3) |u(x) - L_z(x)| \le \varepsilon(||x - z||) ||x - z|| (x \in \partial D)$$

Then there is a superharmonic function $\overline{u} \in C^1(\mathbb{R}^n)$ such that $\overline{u} = u$ on \overline{D} .

Corollary 1 is related to a question raised by Verdera, Mel'nikov and Paramonov [9] concerning C^1 extension of superharmonic functions. We do not know if condition (3) can be omitted.

We will establish Theorem 1, Example 1 and Corollary 1 in Sections 3–5 respectively, following some preliminary material in Section 2.

Acknowledgement. This work was supported by EU Research Training Network Contract HPRN-CT-2000-00116.

2. Preliminaries

We write C_a for a positive constant, depending at most on a, not necessarily the same on any two occurrences, and assume, without loss of generality, that $0 \in D$. We write $\delta(x)$ for the distance of a point x from ∂D , denote the Green function for D by $G_D(\cdot, \cdot)$, and define

$$M(z,y) = \lim_{x \to z, x \in D} \frac{G_D(x,y)}{G_D(x,0)} \qquad (z \in \partial D; y \in D).$$

(This is the "Martin kernel" for D; see [2, Chapter 8].)

Lemma A. Let D be a Liapunov-Dini domain. Then:

- (i) $G_D(x,0) \le C_D \delta(x) ||x||^{1-n} \quad (x \in D);$
- (ii) $G_D(\cdot, y) \in C^1(\overline{D} \setminus \{y\}) \quad (y \in D);$
- (iii) for each $y \in D$ the function $z \mapsto \frac{\partial}{\partial n_z} G_D(\cdot, y)$ is positive and continuous on ∂D ;
- (iv) $M(x^*,x) \geq C_D\{\delta(x)\}^{1-n}$ $(x \in D)$, where x^* is any point of ∂D satisfying $||x-x^*|| = \delta(x)$.

When $n \geq 3$ assertions (i)–(iii) above may be found in Theorems 2.3–2.5 of [11], and (iv) follows from an estimate on p. 28 of that paper. In two dimensions the lemma can be verified using a conformal mapping argument, even under somewhat weaker hypotheses on D (cf. [7, Theorem 3.5] for the case where D is simply connected).

The next result is a special case of Theorem 1 of [1]. As usual, B(x,r) denotes the open ball of centre x and radius r in \mathbb{R}^n .

Lemma B (Boundary Harnack Principle). There are constants R > 0, $a_0 > 1$ and $c_0 > 1$, depending only on D, with the following property: if $z \in \partial D$ and 0 < r < R, and h_1 , h_2 are positive harmonic functions on $D \cap B(z, a_0 r)$ that vanish continuously on $\partial D \cap B(z, a_0 r)$, then

$$\frac{h_1(x)}{h_2(x)} \le c_0 \frac{h_1(y)}{h_2(y)} \qquad (x, y \in D \cap \overline{B(z, r)}).$$

3. Proof of Theorem 1

For each $y \in D$ let $B_y = B(y, \delta(y)/2)$, and let

$$D(r) = \{x \in D : \delta(x) < r\}$$
 $(r > 0).$

We note that

(4)
$$||x - y|| \ge \frac{\delta(x)}{3} (x \in D \setminus B_y),$$

for otherwise there exists $x \in D \backslash B_y$ such that

$$||z - x|| - ||z - y|| < \frac{\delta(x)}{3}$$
 $(z \in \mathbb{R}^n),$

whence

$$||z - y|| > \frac{2\delta(x)}{3}$$
 $(z \in \partial D)$

and we obtain the contradictory conclusion that

$$\delta(y) \ge \frac{2\delta(x)}{3} > 2 \|x - y\|.$$

Now let R, a_0 and c_0 be as in Lemma B (we choose R small enough so that $2a_0R < \delta(0)$), and let $y \in D(R/2)$. We claim that

(5)
$$\frac{G_D(x,y)}{G_D(x,0)} \le C_D M(x^*,y) \qquad (x \in D(R) \backslash B_y),$$

where x^* denotes any point of ∂D satisfying $||x - x^*|| = \delta(x)$. To see this we define

$$\rho = \min \left\{ \delta(x), \frac{\|x^* - y\|}{a_0} \right\},\,$$

whence $\rho < R$. The choice of ρ and R ensure that the functions $G_D(\cdot, y)$ and $G_D(\cdot, 0)$ are harmonic on $D \cap B(x^*, a_0 \rho)$, so we can apply the boundary Harnack principle to see that

(6)
$$\frac{G_D(z,y)}{G_D(z,0)} \le c_0 M(x^*,y) \qquad (z \in D \cap \overline{B(x^*,\rho)}).$$

If $\delta(x) \leq \|x^* - y\|/a_0$, then $\rho = \delta(x)$ and the inequality in (5) clearly holds. It remains to consider the case of (5) where $\delta(x) > \|x^* - y\|/a_0$, and so

(7)
$$||x - y|| > \frac{||x^* - y||}{3a_0} = \frac{\rho}{3},$$

by (4). Let

$$z_1 \in D \cap B(x^*, \rho)$$
 and $z_2 \in D \cap \partial B(y, \rho/3)$.

Then

$$||z_1 - z_2|| \le ||z_1 - x^*|| + ||x^* - y|| + ||y - z_2|| \le (a_0 + 4/3)\rho$$

and

$$||z_1 - y|| \ge ||y - x^*|| - ||z_1 - x^*|| > (a_0 - 1)\rho,$$

whence $z_1 \notin B(y, \rho/3)$ provided we arrange that $a_0 > 4/3$. We note that $\delta(z_1), \delta(z_2) \in (0, \rho(a_0 + 1/3)]$, so $z_1, z_2 \notin B(0, R)$ in view of our choice of R. Since D is C^1 , we can join z_1 to z_2 by a curve γ in $D \setminus [B(y, \rho/3) \cup B(0, R)]$, of length at most $C_D \rho$. Further, we can choose $c_1 > 0$, depending only on D, such that, for each $z \in \gamma$, either

$$B(z, 2c_1\rho) \subset D \setminus \{0, y\}$$

or

$$B(z, c_1 \rho) \subset B(z^*, 3c_1 \rho)$$
 and $0, y \notin B(z^*, 3a_0c_1 \rho)$.

Thus (6), together with repeated use of Harnack's inequalities and the boundary Harnack principle as appropriate, yields

$$\frac{G_D(z_2, y)}{G_D(z_2, 0)} \le C_D M(x^*, y) \qquad (z_2 \in D \cap \partial B(y, \rho/3)),$$

and it follows from the minimum principle that

$$C_D M(x^*, y) G_D(\cdot, 0) - G_D(\cdot, y) > 0$$
 on $D \setminus B(y, \rho/3)$.

The claim (5) now holds in view of (7).

Using (4) and a well known consequence of Harnack's inequalities (see [2, Corollary 1.4.2]), we observe that

(8)
$$\|\nabla_x G_D(x,y)\| \le \frac{3n}{\delta(x)} G_D(x,y) \qquad (x \in D \setminus B_y),$$

and hence

(9)
$$\|\nabla_x G_D(x,y)\| \le C_D \frac{G_D(x,y)}{G_D(x,0)} \qquad (x \in D(R) \backslash B_y),$$

by Lemma A(i). Now let v_y denote the (Green) potential on D of normalized Lebesgue measure on B_y . By the mean value property of harmonic functions, (9) and then (5) we see that

(10)
$$\|\nabla_x v_y(x)\| = \|\nabla_x G_D(x, y)\| \le C_D M(x^*, y)$$
 $(x \in D(R) \setminus B_y).$

Further, if we define $v_y = 0$ on ∂D , then it follows from Lemma A(ii) (and [2, Theorem 4.5.3]) that $v_y \in C^1(\overline{D})$, and

$$\|\nabla_x v_y(x)\| \le C_n \{\delta(y)\}^{1-n} \qquad (x \in \partial B_y)$$

in view of (8). Since $\Delta v_y = -C_n \{\delta(y)\}^{-n}$ on B_y , the components of $\nabla_x v_y$ are harmonic there, and so

$$\|\nabla_x v_y(x)\| \le C_n \{\delta(y)\}^{1-n} \qquad (x \in B_y).$$

From Lemma A(iv) and Harnack's inequalities we see that

$$\|\nabla_x v_y(x)\| \le C_D M(x^*, x) \le C_D M(x^*, y) \qquad (x \in B_y).$$

Combining this with (10) we obtain

(11)
$$\|\nabla_x v_y(x)\| \le C_D M(x^*, y) \qquad (x \in D(R)),$$

whence

(12)
$$v_y(x) \le C_D \delta(x) M(x^*, y) \qquad (x \in D(R)).$$

Now let $g: \partial D \to (0, +\infty)$ be continuous. By Lemma A(iii) and a special case of Theorem 3 in [6] (cf. [3, Theorem 10]), there are sequences (y_k) in D(R/2) and (a_k) in $[0, +\infty)$ such that

(13)
$$\frac{g(z)}{\frac{\partial}{\partial n_z} G_D(\cdot, 0)} = \sum_{k=1}^{\infty} a_k M(z, y_k) \qquad (z \in \partial D),$$

and the convergence is uniform on ∂D in view of Dini's theorem. It follows from (12) that the series $\sum a_k v_{y_k}$ converges (uniformly) on $\overline{D(R)}$, and hence on \overline{D} by the maximum principle (each v_{y_k} is harmonic on $D\backslash \overline{D(R)}$). We denote the sum of this series by v. By (11) the series $\sum a_k \|\nabla v_{y_k}\|$ also converges uniformly on \overline{D} . It follows that $v \in C^1(\overline{D})$ and that

$$\begin{split} \frac{\partial v}{\partial n_z} &= \sum a_k \frac{\partial}{\partial n_z} v_{y_k} \\ &= \sum a_k \frac{\partial}{\partial n_z} G_D(\cdot, y_k) \\ &= \left\{ \sum a_k M(z, y_k) \right\} \frac{\partial}{\partial n_z} G_D(\cdot, 0) \\ &= g(z) \qquad \qquad \text{when } z \in \partial D, \end{split}$$

by (13). Thus (1) holds, since clearly v = 0 on ∂D in view of (12). Finally, each v_{y_k} is superharmonic on D, so the same is true of v. Theorem 1 is now proved.

4. Details of Example 1

Let D be as stated in Example 1 and let $z_t = (0, \dots, 0, t)$. The failure of (2) to hold implies that

(14)
$$\frac{G_D(z_t, z_{1/2})}{t} \to +\infty \qquad (t \to 0+)$$

(see [4, Corollary 4.3]; cf. [8, p. 377] when n=2). Now suppose that $v \in C(\overline{D})$ and that v is superharmonic on D and valued 0 on ∂D . By the Riesz decomposition theorem v is of the form $v(x) = \int G_D(x, \cdot) d\mu$

on D for some measure μ . If $\mu \neq 0$, then Harnack's inequalities, applied to $G_D(x,\cdot)$, show that there are positive constants a, c such that

$$v(z_t) \ge cG_D(z_t, z_{1/2})$$
 $(0 < t < a),$

and it follows from (14) that v does not have a finite normal derivative at 0.

5. Proof of Corollary 1

Let D and u be as in the statement of Corollary 1, and let $\Omega = \mathbb{R}^n \setminus \overline{D}$. By hypothesis Ω is connected. In view of condition (3) and [11, Theorem 2.4], the solution w to the Dirichlet problem in Ω , with boundary data u on ∂D and 0 at ∞ , satisfies $w \in C^1(\overline{\Omega})$, where w = u on ∂D .

If $n \geq 3$, then we define h_0 to be the harmonic measure of $\{\infty\}$ in Ω ; if n = 2, then we define h_0 to be the Green function for $\Omega \cup \{\infty\}$ with pole at ∞ . In either case we define $h_0 = 0$ on ∂D and note from Lemma A and the Kelvin transform that $h_0 \in C^1(\overline{\Omega})$ and $-\partial h_0/\partial n_z$ is a positive continuous function of z in ∂D . (We always use n_z to denote the inward normal at z relative to D.)

We now choose a > 0 large enough so that the continuous function

$$(15) \hspace{1cm} g(z) = \frac{\partial w}{\partial n_z} - \frac{\partial u}{\partial n_z} - a \frac{\partial h_0}{\partial n_z} \hspace{1cm} (z \in \partial D)$$

is positive on ∂D . By Theorem 1 and inversion there is a function $v \in C^1(\overline{\Omega})$ such that $v|_{\Omega}$ is superharmonic on Ω and

(16)
$$v(z) = 0 \text{ and } -\frac{\partial v}{\partial n_z} = g(z) \quad (z \in \partial D).$$

For each $b \geq a$, let

$$u_b(x) = \begin{cases} u(x) & (x \in \overline{D}) \\ w(x) + v(x) - bh_0(x) & (x \in \Omega) \end{cases}.$$

Since $v - bh_0 = 0$ on ∂D , the functions u_b are continuous on \mathbb{R}^n . Further, by (16) and then (15),

$$\frac{\partial}{\partial n_z}(w+v-ah_0) = \frac{\partial w}{\partial n_z} - g(z) - a\frac{\partial h_0}{\partial n_z} = \frac{\partial u}{\partial n_z} \qquad (z \in \partial D),$$

so $u_a \in C^1(\mathbb{R}^n)$. It remains to establish the superharmonicity of u_a . Clearly, it will be enough to check the superharmonicity of u_b when b > a, and then let $b \to a+$. Further, since we know that u_b is superharmonic both on D and on Ω , we need only verify the superharmonic mean value inequality at points of ∂D .

We will do this using an argument of Carroll [5], which we include here for the sake of completeness. Let $z \in \partial D$ and r > 0, and let h be the harmonic extension of u_b from $\partial B(z,r)$ to $\overline{B(z,r)}$. Further, let c denote the minimum value of $u_b - h$ on $\overline{B(z,r)}$, and suppose, for the sake of contradiction, that c < 0. Then the value c is attained by $u_b - h$ at some point $y \in B(z,r)$. The minimum principle, applied on $B(z,r) \setminus \partial D$, shows that $y \in \partial D \cap B(z,r)$. By considering $u_b - h$ separately on \overline{D} and on $\overline{\Omega}$, we obtain

$$\frac{\partial}{\partial n_y}(u_a - h) \ge 0 \ge \frac{\partial}{\partial n_y}(u_a - h) - (b - a)\frac{\partial h_0}{\partial n_y},$$

which contradicts the fact that $\partial h_0/\partial n_y < 0$. Thus c = 0, and $u_b \ge h$ on B(z,r), whence $u_b(z) \ge h(z)$, as required. Corollary 1 is now established.

References

- [1] H. AIKAWA, Boundary Harnack principle and Martin boundary for a uniform domain, *J. Math. Soc. Japan* **53(1)** (2001), 119–145.
- [2] D. H. Armitage and S. J. Gardiner, "Classical potential theory", Springer Monographs in Mathematics, Springer-Verlag, London, 2001.
- [3] F. F. Bonsall and D. Walsh, Vanishing l^1 -sums of the Poisson kernel, and sums with positive coefficients, *Proc. Edinburgh Math. Soc.* (2) **32(3)** (1989), 431–447.
- [4] K. Burdzy, Brownian excursions and minimal thinness. II. Applications to boundary behavior of the Green function, in: "Seminar on stochastic processes, 1985" (Gainesville, Fla., 1985), Progr. Probab. Statist. 12, Birkhäuser, Boston, MA, 1986, pp. 35–62.
- [5] T. F. CARROLL, A classical proof of Burdzy's theorem on the angular derivative, *J. London Math. Soc.* (2) **38(3)** (1988), 423–441.
- [6] S. J. GARDINER AND J. PAU, Approximation on the boundary and sets of determination for harmonic functions, *Illinois J. Math.* 47(4) (2003), 1115–1136.
- [7] CH. POMMERENKE, "Boundary behaviour of conformal maps", Grundlehren der Mathematischen Wissenschaften 299, Springer-Verlag, Berlin, 1992.
- [8] M. TSUJI, "Potential theory in modern function theory", Reprinting of the 1959 original, Chelsea Publishing Co., New York, 1975.
- [9] J. VERDERA, M. S. MEL'NIKOV AND P. V. PARAMONOV, C^1 -approximation and the extension of subharmonic functions, (Russian),

- *Mat. Sb.* **192(4)** (2001), 37–58; translation in: *Sb. Math.* **192(3–4)** (2001), 515–535.
- [10] H. Wallin, Continuous functions and potential theory, Ark. Mat. 5 (1963), 55–84.
- [11] K.-O. WIDMAN, Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations, *Math. Scand.* **21** (1967), 17–37.

Stephen J. Gardiner:
Department of Mathematics
University College Dublin
Dublin 4
Ireland

 $E ext{-}mail\ address: stephen.gardiner@ucd.ie}$

Anders Gustafsson: Current address: Institutionen för kemi och biomedicinsk vetenskap Högskolan i Kalmar 391 82 Kalmar Sweden

 $E\text{-}mail\ address: \verb"anders.gustafsson@math.umu.se"$

Rebut el 18 de juliol de 2003.