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OSCILLATORY AND FOURIER INTEGRAL
OPERATORS WITH DEGENERATE CANONICAL

RELATIONS

Allan Greenleaf and Andreas Seeger

Abstract
We survey results concerning the L2 boundedness of oscillatory
and Fourier integral operators and discuss applications. The ar-
ticle does not intend to give a broad overview; it mainly focusses
on topics directly related to the work of the authors.

1. The nondegenerate situation

1.1. Oscillatory integral operators. The main subject of the article
concerns oscillatory integral operators given by

Tλf(x) =
∫

eıλΦ(x,y)σ(x, y)f(y) dy.(1.1)

In (1.1) it is assumed that the real-valued phase function Φ is smooth
in ΩL × ΩR where ΩL, ΩR are open subsets of Rd and amplitude σ ∈
C∞

0 (ΩL × ΩR). (The assumption that dim(ΩL) = dim(ΩR) is only for
convenience; many of the definitions, techniques and results described
below have some analogues in the non-equidimensional setting.)

The L2 boundedness properties of Tλ are determined by the geometry
of the canonical relation

C = {(x,Φx, y,−Φy) : (x, y) ∈ suppσ} ⊂ T ∗ΩL × T ∗ΩR.
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The best possible situation occurs when C is locally the graph of a
canonical transformation; i.e., the projections πL, πR to T ∗ΩL, T ∗ΩR,
resp.,

C

T ∗ΩL T ∗ΩR

!
!!"

#
##$

are locally diffeomorphisms. In this case Hörmander [37], [38] proved
that the norm of Tλ as a bounded operator on L2(Rd) satisfies

‖Tλ‖L2→L2 = O(λ−d/2).(1.2)

The proof consists in applying Schur’s test to the kernel of T ∗
λTλ; see the

argument following (1.6) below.
It is also useful to study a more general class of oscillatory integrals

which naturally arises when composing two different operators Tλ, T̃λ

and which is also closely related to the concept of Fourier integral op-
erator. We consider the oscillatory integral kernel with frequency vari-
able ϑ ∈ Θ (an open subset of RN ), defined by

Kλ(x, y) =
∫

eıλΨ(x,y,ϑ)a(x, y, ϑ) dϑ(1.3)

where Ψ ∈ C∞(ΩL ×ΩR ×Θ) is real-valued and a ∈ C∞
0 (ΩL ×ΩR ×Θ).

Let Tλ be the associated integral operator,

Tλf(x) =
∫

Kλ(x, y)f(y) dy.(1.4)

Again the L2 mapping properties of Tλ are determined by the geo-
metric properties of the canonical relation

C = {(x,Ψx, y,−Ψy) : Ψϑ = 0} ⊂ T ∗ΩL × T ∗ΩR.

It is always assumed that C is an immersed manifold, which is a
consequence of the linear independence of the vectors ∇(x,y,ϑ)Ψϑi ,
i = 1, . . . , N at {Ψϑ = 0}. In other words, Ψ is a nondegenerate phase
in the sense of Hörmander [37], although Ψ is not assumed to be homo-
geneous.

As before, the best possible situation for L2 estimates arises when C is
locally the graph of a canonical transformation. Analytically this means
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that

det
(

Ψxy Ψxϑ

Ψϑy Ψϑϑ

)
'= 0.(1.5)

Under this assumption the L2 result becomes

‖Tλ‖L2→L2 ! λ−(d+N)/2(1.6)

so that we discover (1.2) when N = 0. The proof of (1.6) could be
given by using methods in [37] or alternatively by a straightforward
modification of the argument in [38]. Indeed consider the Schwartz
kernel Hλ of the operator T∗

λTλ which is given by

Hλ(u, y) =
∫∫∫

e−ıλ[Ψ(x,u,w)−Ψ(x,y,ϑ)]γ(x, u, w, y, ϑ) dw dϑ dx

where γ is smooth and compactly supported. By using partitions of
unity we may assume that σ in (1.1) has small support; thus γ has small
support. Change variables w = ϑ+h, and, after interchanging the order
of integration, integrate parts with respect to the variables (ϑ, x). Since

∇x,ϑ[Ψ(x, u, ϑ+h)−Ψ(x, y, ϑ)]=
(

Ψxy Ψxϑ

Ψϑy Ψyy

)(
u − y

h

)
+O(|u−y|2+|h|2)

this yields, in view of the small support of γ,

|Kλ(u, y)| !
∫

(1 + λ|u − y| + λ|h|)−2M dh

! λ−N−d λd

(1 + λ|u − y|)M

if M > d. It follows that ‖T∗
λTλ‖L2→L2 ! λ−N−d and hence (1.6).

1.2. Reduction of frequency variables. Alternatively, as in the the-
ory of Fourier integral operators, one may compose Tλ with unitary
operators associated to canonical transformations, and together with
stationary phase calculations, deduce estimates for operators of the
form (1.3)–(1.4) from operators of the form (1.1), which involve no fre-
quency variables; in fact this procedure turns out to be very useful when
estimating operators with degenerate canonical relations.

We briefly describe the idea based on [37], for details see [25].
Consider the operator Tλ with kernel

∫
RN eıλφ(x,y,z)a(x, y, z) dz. Let

Ai, i = 1, 2, be symmetric d × d matrices and define

Sλ,ig(x) =
(

λ

2π

)d/2 ∫
e−ıλ[〈x,w〉+ 1

2 Aiw·w]g(w) dw;
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clearly Sλ,i are unitary operators on L2(Rd). A computation yields
that the operator λ−dSλ,1TλS∗

λ,2 can be written as the sum of an os-
cillatory integral operator with kernel Oλ(x, y) plus an operator with
L2 norm O(λ−M ) for any M . The oscillatory kernel Oλ(x, y) is again of
the form (1.3) where the phase function is given by

Ψ(x, y, ϑ) = 〈y, w̃〉 − 〈x, w〉 +
1
2
(A1w̃ · w̃ − A2w · w) + φ(w, w̃, z)

with frequency variables ϑ = (w, z, w̃) ∈ Rd×RN×Rd, and the amplitude
is compactly supported.

One can choose A1, A2 so that for tangent vectors δx, δy ∈ Rd at a
reference point the vector (δx, A1δx, δy, A2δy) is tangent to the canonical
relation C̃ associated with Sλ,1TλS∗

λ,2. Let πspace be the projection C̃ →
ΩL × ΩR which with our choice of A1, A2 has invertible differential.
Since the number of frequency variables (N +2d) minus the rank of φϑϑ

is equal to 2d − rank dπspace, we deduce that det φϑϑ '= 0.
In the integral defining the kernel of Sλ,1TλS∗

λ,2 we can now apply the
method of stationary phase to reduce the number of frequency variables
to zero, and gain a factor of λ−(2d+N)/2. Thus we may write

Sλ,1TλS∗
λ,2 = λ−N/2Tλ + Rλ

where Tλ is an oscillatory integral operator (without frequency variables)
and Rλ is an operator with L2 norm O(λ−M ) for any large M . Since
Sλ,i are unitary the L2 bounds for λN/2Tλ and Tλ are equivalent.

1.3. Fourier integral operators. The kernel of a Fourier integral op-
erator F : C∞

0 (ΩR) → D′(ΩL) of order µ, F ∈ Iµ(ΩL, ΩR; C) is locally
given as a finite sum of oscillatory integrals

∫
eıΨ(x,y,θ)a(x, y, θ) dθ,(1.7)

where now Ψ is nondegenerate in the sense of Hörmander [37], satisfies
the homogeneity condition Ψ(x, y, tθ) = tΨ(x, y, θ) for |θ| = 1 and t + 1,
and a is a symbol of order µ+(d−N)/2. We assume in what follows that
a(x, y, θ) vanishes for (x, y) outside a fixed compact set. The canonical
relation is locally given by C = {(x,Ψx, y,−Ψy), Ψθ = 0} and we assume
that

C ⊂
(
T ∗ΩL \ 0L

)
×
(
T ∗ΩR \ 0R

)
,

where 0L, 0R denote the zero-sections in T ∗ΩL and T ∗ΩR. Staying away
from the zero sections implies

|Ψx(x, y, θ)| ≈ |θ| ≈ |Ψy(x, y, θ)|(1.8)
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for large θ (when Ψθ is small). Let β ∈ C∞
0 (1/2, 2) and

ak(x, y, θ) = β(2−k|θ|)a(x, y, θ)

and let Fk be the dyadic localization of F ; i.e. (1.7) but with a re-
placed by ak. The assumptions Ψx '= 0 and Ψy '= 0 can be used to
show that for k, l ≥ 1 the operators Fk are almost orthogonal, in the
sense that F∗

kFl and FkF∗
l have operator norms O(min{2−kM , 2−lM})

for any M , provided that |k− l| ≥ C for some large but fixed constant C.
This follows from a straightforward integration by parts argument based
on (1.8) and the assumption of compact (x, y) support. Using a change
of variable θ = λϑ the study of the L2 boundedness (and L2-Sobolev
boundedness) properties is reduced to the study of oscillatory integral
operators (1.3)–(1.4) and, in the nondegenerate case, an application of
estimate (1.2) above. The result is that if F is of order µ and if the asso-
ciated homogeneous canonical transformation is a local canonical graph,
then F maps the Sobolev space L2

α to L2
α−µ.

An important subclass is the class of conormal operators associated to
phase functions linear in the frequency variables (see [37, Section 2.4]).
The generalized Radon transforms

Rf(x) =
∫

Mx

f(y)χ(x, y) dσx(y)(1.9)

arise as model cases. Here Mx are codimension + submanifolds in
Rd, and dσx is a smooth density on Mx, varying smoothly in x, and
χ ∈ C∞

0 (ΩL × ΩR). One assumes that the Mx are sections of a man-
ifold M ⊂ ΩL × ΩR, so that the projections to ΩL and to ΩR have
surjective differential; this assumption insures the L1 and L∞ bound-
edness of the operator R. We refer to M as the associated incidence
relation.

Assuming that M is given by an R& valued defining function Φ,

M = {(x, y) : Φ(x, y) = 0},(1.10)

then the distribution kernel of R is χ0(x, y)δ(Φ(x, y)) where χ0∈C∞
0 (ΩL×

ΩR) and δ is the Dirac measure in R& at the origin. The assumptions
on the projections to ΩL, ΩR imply that rank Φx = rank Φy = + in a
neighborhood of M = {Φ = 0}. The Fourier integral description is then
obtained by writing out δ by means of the Fourier inversion formula
in R&,

χ0(x, y)δ(Φ(x, y)) = χ0(x, y)(2π)−&

∫

R!

eıτ ·Φ(x,y) dτ ;(1.11)
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this has been used in [35] where R is identified as a Fourier integral
operator of order −(d − +)/2, see also [55]. More general conormal
operators are obtained by composing Radon transforms with pseudo-
differential operators (see [37]).

The canonical relation associated to the generalized Radon transform
is the twisted conormal bundle of the incidence relation,

C = N∗M′ = {(x, τ · Φx, y,−τ · Φy) : Φ(x, y) = 0}.(1.12)

We can locally (after possibly a change of coordinates) parametrize M
as a graph so that

Φ(x, y) = S(x, y′) − y′′(1.13)

with y′ = (y1, . . . , yd−&) ∈ Rd−&, y′′ = (yd−&+1, . . . , yd) ∈ R&, S =
(S1, . . . , S&). Using (1.5) with Ψ(x, y, τ) = τ · Φ(x, y) one verifies that
the condition for N∗M′ being a local canonical graph is equivalent to
the nonvanishing of the determinant

det
(

τ · Φxy Φx
tΦy 0

)
= (−1)& det

(
τ · Sx′y′ Sx′

τ · Sx′′y′ Sx′′

)
(1.14)

for all τ ∈ S&−1. Under this condition R maps L2 to L2
(d−&)/2.

We note that the determinant in (1.14) vanishes for some τ if + < d/2.
In particular if + = d− 1 then the expression (1.14) is a linear functional
of τ and thus, if (x, y) is fixed, it vanishes for all τ in a hyperplane.
Therefore degeneracies always occur for averaging over manifolds with
high codimension, in particular for curves in three or more dimensions.

2. Finite type conditions

2.1. Finite type. Different notions of finite type are useful in different
situations. Here we shall restrict ourselves to maps (or pairs of maps)
which have corank ≤ 1.

Let M , N be n-dimensional manifolds, P ∈ M and Q ∈ N , and let
f : M → N be a C∞ map with f(P0) = Q0. A vector field V is a kernel
field for the map f on a neighborhood U of P0 if V is smooth on U
and if there exists a smooth vector field W on f(U) so that DfP V =
det(DfP )Wf(P ) for all P ∈ U . If rankDfP0 ≥ n − 1 then it is easy to
see that there is a neighborhood of P and a nonvanishing kernel vector
field V for f on U . Moreover if Ṽ is another kernel field on U then
Ṽ = αV − det(Df)W in some neighborhood of P0, for some vector
field W and smooth function α. If Df =

(
A b
ct d

)
with A an invertible
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(n− 1)× (n− 1) matrix, then detDf = det A(d− ctA−1b) and a choice
for the kernel vector field is

V =
∂

∂xd
− A−1b ·∇x′ .(2.1)

Definition. Suppose that M and N are smooth n-dimensional mani-
folds and that f : M → N is a smooth map with dim ker(Df) ≤ 1 on M .
We say that f is of type k at P if there is a nonvanishing kernel field V
near P so that V j(det Df)P = 0 for j < k but V k(det Df)P '= 0.

This definition was proposed by Comech [12], [14] who assumes in
addition that Df drops rank simply on the singular variety {det Df =
0}.

The finite type condition is satisfied for the class of Morin singularities
(folds, cusps, swallowtails,. . . ) which we shall now discuss.

2.2. Morin singularities. We consider as above maps f : M → N
of corank ≤ 1. We say that f drops rank simply at P0 if rankDfP0 =
n − 1 and if d(det Df)P '= 0. Then near P0 the variety S1(f) = {x :
rankDf = n − 1} is a hypersurface and we say that f has an S1 singu-
larity at P with singularity manifold S1(f).

Next let S be a hypersurface in a manifold U and let V be a vector field
defined on S with values in TU (meaning that vP ∈ TPU for P ∈ S).
We say that v is transversal to S at P ∈ S if vP /∈ TP S. We say
that v is simply tangent to S at P0 if there is a one-form ω annihilating
vectors tangent to S so that 〈ω, v〉

∣∣
S

vanishes of exactly first order at P0.
This condition does not depend on the particular choice of ω. Next let
P → +(P ) ⊂ TP (V ) be a smooth field of lines defined on S. Let v
be a nonvanishing vector field so that +(P ) = RvP . The definitions of
transversality and simple tangency carry over to field of lines (and the
notions do not depend on the particular choice of the vector field).

Next consider F : U → N where dimU = k ≥ 2 and dimN = n ≥ k
and assume that rankDF ≥ k − 1. Suppose that S is a hypersurface
in U such that rankDF = k − 1 on S. Suppose that KerDF is simply
tangent to S at P ∈ S. Then there is a neighborhood U of P in S
such that the variety {Q ∈ U : rankDF

∣∣
TQS

= k − 2} is a smooth
hypersurface in S.

With these notions we can now recall the definition of Morin singu-
larities [78], [47].

Definition. Let 1 ≤ r ≤ n. Let S1, . . . ,Sr be submanifolds of an open
set U ⊂ M so that Sk is of dimension n − k in V and S1 ⊃ S2 ⊃ · · · ⊃
Sr; we also set S0 := U .
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We say that f has an S1r singularity in U , with a descending flag of
singularity manifolds (S1, . . . ,Sr) if the following conditions hold in U .

(i) For P ∈ U , either DfP is bijective or f drops rank simply at P .
(ii) For 1 ≤ i ≤ r, rankD(f

∣∣
Si−1

)P = n − i + 1 for all P ∈ Si−1 \ Si.
(iii) For 2 ≤ i ≤ r− 1, Ker D(f

∣∣
Si−1

) is simply tangent to Si at points
in Si+1.

Definition. We say that f has an S1r,0 singularity at P , if the following
conditions hold.

(i) There exists a neighborhood U of P submanifolds Sk of dimen-
sion n − k in U so that P ∈ Sr ⊂ Sr−1 ⊂ · · · ⊂ S1 and so
that f : U → N has an S1r singularity in U , with singularity man-
ifolds (S1, . . . ,Sr).

(ii) KerDfP ∩ TP (Sr) = {0}.

The singularity manifolds Sk are denoted by S1k(f) in singularity
theory (if the neighborhood is understood). An S1,0 (or S11,0) singularity
is a Whitney fold; an S1,1,0 (or S12,0) singularity is referred to as a
Whitney or simple cusp.

If f is given in adapted coordinates vanishing at P , i.e.

f : t 1→ (t′, h(t))(2.2)

then f has an S1r singularity in a neighborhood of P = 0 if and only if

(∂/∂tn)kh(0) = 0, 1 ≤ k ≤ r,(2.3)

and the gradients

∇t

(
∂kh

∂tkn

)
, k = 1, . . . , r − 1,(2.4)

are linearly independent at 0. Moreover f has an S1r,0 singularity at P
if in addition

(∂/∂tn)r+1h(0) '= 0.(2.5)

The singularity manifolds are then given by

S1k(f) = {t : (∂/∂tn)jf(t) = 0, 1 ≤ j ≤ k}.
In these coordinates the kernel field for f is ∂/∂tn and the map f is of
type r at P .

Normal forms of S1r singularities are due to Morin [47], who showed
that there exists adapted coordinate systems so that (2.2) holds with

h(t) = t1tn + t2t
2
n + · · · + tr−1t

r−1
n + tr+1

n .(2.6)
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Finally we mention the situation of maximal degeneracy for S1 singu-
larities which occurs when the kernel of Df is everywhere tangential to
the singularity surface S1(f). In this case we say that f is a blowdown;
see Example 2.3.3 below.

2.3. Examples. We now discuss some model examples. The first set of
examples concern translation invariant averages over curves, the second
set restricted X-ray transforms for rigid line complexes. The map f above
will always be one of the projections πL : C → T ∗ΩL or πR : C → T ∗ΩR.
Note that S1(πL) = S1(πR).

2.3.1. Consider the operator on functions in Rd

Af(x) =
∫

f(x + Γ(α))χ(α) dα(2.7)

where α → Γ(α) is a curve in Rd so that Γ′(α), Γ′′(α), . . . ,Γ(d)(α) are
linearly independent. Then the canonical relation is given by

C = {(x, ξ; x + Γ(α), ξ) : 〈ξ,Γ′(α)〉 = 0}.

Consider the projection πL then it is not hard to see that S1k(πL) is the
submanifold of C where in addition 〈ξ,Γ(j)(α)〉 = 0 for 2 ≤ j ≤ k + 1.
Clearly then S1d−1(πL) = ∅ so that we have an S1d−2,0 singularity. The
behavior of πR is of course exactly the same; moreover for small pertur-
bations the projections πL and πR still have at most S1d−2,0 singulari-
ties. Note that in the translation invariant setting we have S1k(πL) =
S1k(πR), but for small variable perturbations the manifolds S1k(πL),
S1k(πR) are typically different if k ≥ 2.

By Fourier transform arguments and van der Corput’s lemma it is
easy to see that A maps L2(Rd) to the Sobolev-space L2

1/d(Rd) and it
is conjectured that this estimate remains true for variable coefficient
perturbations. This is known in dimensions d ≤ 4 (cf. Section 5 below).

2.3.2. Consider the example (2.7) with d = 3 and

Γ(α) =
(

α,
αm

m
,
αn

n

)

where m, n are integers with 1 < m < n.
The canonical relation C is given as the set of (x, ξ, y, ξ) where x2 −

y2−(x1−y1)m/m = 0, x3−y3−(x1−y1)n/n = 0, and ξ = (ξ1(λ, µ), λ, µ)
so that

ξ1 = −(x1 − y1)m−1λ − (x1 − y1)n−1µ

with (λ, µ) '= (0, 0).
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C is thus parametrized by (x1, x2, x3, λ, µ, y1) and the singular vari-
ety S1(πL) is given by the equation

(m − 1)(x1 − y1)m−2λ + (n − 1)(x1 − y1)n−2µ = 0.

Note that ∂/∂y1 is a kernel vector field and hence πL is of type at
most n − 2 everywhere. Note that S1(πL) is a smooth submanifold
only if m = 2. The case m = 2, n = 3 corresponds to the situation
considered above (now πL is a fold). If m = 2, n = 4 we have a simple
cusp (S1,1,0) singularity and S1,1(πL) is the submanifold of S1(πL) on
which x1 = y1. If m ≥ 3, n > m then the singular variety is not
a smooth manifold but the union of the two transverse hypersurfaces
{(m − 1)λ + (n − 1)(x1 − y1)n−mµ = 0} and {x1 = y1}.

2.3.3. For an example for a one-sided behavior we consider the re-
stricted X-ray transform

Rf(x′, xd) = χ0(xd)
∫

f(x′ + tγ(xd), t)χ(t) dt(2.8)

where γ is now the regular parametrization of a curve in Rd−1 and χ0,
χ are smooth and compactly supported. We say that R is associated to
a d dimensional line complex which is referred to as rigid because of the
translation invariance in the x′ variables.

The canonical relation is now given by

C =
{(

x′, xd, τ, ydτ · γ′(xd); x′ + ydγ(xd), yd, τ, τ · γ(xd)
)}

and the singular set S1(πL) = S1(πR) is the submanifold on which
τ · γ′(xd) = 0. One computes that VL = ∂/∂yd is a kernel vector field
for πL and VR = ∂/∂xd is a kernel vector field for πR . Clearly VL is
tangential to S1(πL) everywhere so that πL is a blowdown. The behavior
of the projection πR depends on assumptions on γ. The best case occurs
when γ′(xd), . . . , γ(d−1)(xd) are linearly independent everywhere. The
singularity manifolds Sk = S1k(πR) are then given by the equations

τ · γ(j)(xd) = 0, j = 1, . . . , k,

and thus S1d−1(πR) = ∅ and πR has (at most) S1d−2,0 singularities.
For the model case given here it is easy to derive the sharp L2-Sobolev

estimates. Observe that

R∗Rf(w) = χ(wd)
∫∫

f(w′ + sγ(α), wd + s)|χ0(α)|2χ(s) ds dα
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defines (modulo the cutoff function) a translation invariant operator. By
van der Corput’s Lemma it is easy to see that

∣∣∣∣
∫∫

e−ıs(ξ′·γ(α)+ξd)|χ0(α)|2χ(s) ds dα

∣∣∣∣ ! (1 + |ξ|)−
1

d−1

and one deduces that R maps L2 to L2
1/(2d−2).

It is conjectured that the X-ray transform for general well-curved line
complexes

Rf(x′, α) = χ(x′, α)
∫

f(x′ + sγ(x′, α), s)χ(s) ds(2.9)

satisfies locally the same estimate; here the support of χ is supported
in (−ε, ε) for small ε and it is assumed that for each fixed x′ the vec-
tors (∂/∂α)jγ, j = 1, . . . , d−1 are linearly independent. The sharp L2 →
L2

1/(2d−2) estimate is currently known in dimension d ≤ 5 (cf. Sec-
tions 4–5 below).

2.4. Strong Morin singularities. We now discuss the notion of strong
Morin singularities, or S+

1r
singularities for maps into a fiber bundle W

over a base manifold B, with projection πB . Here it is assumed that
dim W = n and dim(B) = q ≤ n − r, so that the fibers Wb = π−1

B b are
n − q dimensional manifolds (see [26]). The relevant W is T ∗ΩR, the
cotangent bundle of the base B = ΩR.

Definition. Let b = πB(f(P )) and let Wb = π−1
B b be the fiber through

f(P ). The map f has an S+
1r,0 singularity at P if

(i) f intersects Wb transversally, so that there is a neighborhood U
of P such that the preimages f−1Wb ∩ U are smooth manifolds of
dimension n − q,

and if
(ii) f

∣∣
f−1(Wb)∩U

has an S1r,0 singularity at P .

Now let C ⊂ T ∗ΩL ×T ∗ΩR be a canonical relation, consider πL : C →
T ∗ΩL and use the natural fibration πΩL : T ∗ΩL → ΩL. If πL : C → T ∗ΩL

has an S+
1r,0 singularity at c ∈ C, c = (x0, ξ0, y0, η0) then near c we can

restrict πL to π−1
ΩL

({y0}) and define πL,y0 as the restriction of πL to
π−1

ΩL
({y0}) and πL,y0 has an S1r,0 singularity at c.

We remark that for the examples in 2.3.1 both πL and πR have strong
Morin singularities while for the example in 2.3.3 πR has strong Morin
singularities. This remains true for small perturbations of these exam-
ples.
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In order to verify the occurrence of strong Morin singularities for
canonical relations which come up in studying averages on curves the
following simple lemma is useful.

Lemma. Let I be an open interval, let ψ : I → Rn be a smooth parame-
trization of a regular curve not passing through 0 and let

M = {(t, η) ∈ I × Rn : η · ψ(t) = 0, some t ∈ I}.

Let π : M → Rn be defined by π(t, η) = η.
Then π has singularities at most S1n−2,0 if and only if {ψ(t), ψ̇(t), . . . ,

ψ(n−1)(t)} is a linearly independent set for all t ∈ I.

For the proof assume first the linear independence of ψ(j)(t). We may
work near t = 0 and by a linear change of variables, we may assume that
ψ(j)(t0) = ej+1, 0 ≤ j ≤ n − 1, where {ej}n

j=1 is the standard basis of
Rn. Thus

η · ψ(t) =
n−1∑

j=0

ηj+1
tj

j!
(1 + O(|t|))

= η1(1 + O(|t|)) +
n∑

j=2

ηj
tj−1

(j − 1)!
(1 + O(|t|))

with η = (η1, η′). We can solve η · ψ(t) = 0 for η1 = η1(η′, t),

η1 = −
n∑

j=2

ηj
tj−1

(j − 1)!
(1 + O(|t|)).

Hence, (η′, t) and (ξ′, ξ1) form adapted coordinates (cf. (2.2)) for the
map π, and in these coordinates

π(η′, t) = (η′, φ(η′, t)) =



η′,−
n∑

j=2

ηj
tj−1

(j − 1)!
(
1 + O(|t|)

)




where φ satisfies

∂jφ

∂tj
(0, 0) = 0, 1 ≤ j ≤ n − 2,

∂n−1φ

∂tn−1
(0, 0) '= 0

and the differentials
{

d

(
∂jφ

∂tj

)
(0, 0)

}n−1

j=1

=
{
ej

}n

j=2

are linearly independent. Thus π has at most S1n−2,0 singularities.
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Conversely, assume that π has at most S1n−2,0 singularities. Since ψ
does not pass through the origin, we may assume that ψn(t) '= 0 locally.
Then the map π is given in adapted coordinates by

(η′, t) 1→



η′,−
n−1∑

j=1

ηj
ψj(t)
ψn(t)





and the linear independence follows easily from (2.3)–(2.5).

2.5. Mixed finite type conditions. We briefly discuss mixed con-
ditions for pairs of maps (fL, fR) where fL : M → NL, fR : M → NR

where M , NL, NR are all d dimensional and fL, fR are volume equiva-
lent, i.e., there is a nonvanishing function α so that det DfL = α det DfR

in the domain under consideration.
Let VL, VR be nonvanishing kernel fields on M for the maps fL, fR.

Let U be a neighborhood of P in M . We define Dj,k(U) to be the linear
space of differential operators generated spanned by operators of the
form

a1V1 . . . aj+kVj+k

where Vi are kernel fields for the maps fL or fR in U , and k of them are
kernel fields for fL and j of them are kernel fields for fR. Let h be a
real valued function defined in a neighborhood of P ∈ M ; we say that h
vanishes of order (j, k) at P if LhP = 0 for all L ∈ Dj−1,k ∪Dj,k−1. We
say that (fL, fR) is of type (j, k) if h ≡ det DfL vanishes of order (j, k) at
P ∈ M and if there is an operator L ∈ Dj,k so that LhP '= 0. Because of
the assumption of volume equivalence detDfL in this definition can be
replaced by detDfR. In the canonical example of interest here we have
M = C ⊂ T ∗ΩL × T ∗ΩR, a canonical relation, and fL ≡ πL, fR ≡ πR

are the projections to T ∗ΩL and T ∗ΩR, respectively.

3. Fourier integral operators in two dimensions

In this section we examine the regularity of Fourier integral operators
in two dimensions, in which case one can get the sharp L2 regularity
properties with the possible exception of endpoint estimates. We shall
assume that ΩL, ΩR are open subsets of R2, C ⊂ (T ∗ΩL \ 0L)× (T ∗ΩR \
0R) is a homogeneous canonical relation and F ∈ I−1/2(ΩL, ΩR, C), with
compactly supported distribution kernels; we assume that the rank of
the projection πspace : C → ΩL ×ΩR is ≥ 2 everywhere. The generalized
Radon transform (1.11) (with + = 1, d = 2) is a model case in which
rank(dπspace) = 3.
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In order to formulate the L2 results we shall work with the Newton
polygon, as in [58] where oscillatory integral operators in one dimension
are considered. We recall that for a set E of pairs (a, b) of nonnegative
numbers the Newton polygon associated to E is the closed convex hull of
all quadrants Qa,b = {(x, y) : x ≥ a, y ≥ b} where (a, b) is taken from E.

Definition. For c ∈ C let N (c) be the Newton polygon associated to
the set

E(c) = {(j + 1, k + 1) : C is of type (j, k) at c}.(3.1)

Let (tc, tc) the point of intersection of the boundary ∂N (c) with the
diagonal {(a, a)}.

Using the notion of type (j, k) in Section 2.5 we can now formulate

3.1. Theorem. Let ΩL, ΩR ⊂ R2 and C as above and let
F ∈ I−1/2(ΩL, ΩR; C), with compactly supported distribution kernel. Let
α = minc(2tc)−1.

Then the operator F maps L2 boundedly to L2
α−ε for all ε > 0.

In the present two-dimensional situation one can reduce matters to
operators with phase functions that are linear in the frequency variables
(i.e., the conormal situation). We briefly describe this reduction.

First, our operator can be written modulo smoothing operators as a
finite sum of operators of the form

Ff(x) =
∫

eıϕ(x,ξ)a(x, ξ)f̂(ξ) dξ(3.2)

where a is of order −1/2, and has compact x support. We may also
assume that a(x, ξ) has ξ-support in an annulus {ξ : |ξ| ≈ λ} for large λ.
By scaling we can reduce matters to show that the L2 operator norm for
the oscillatory integral operator Tλ defined by

Tλg(x) =
∫

eıλϕ(x,ξ)χ(x, ξ)g(ξ) dξ

is O(λ−1/2−α); here χ has compact support and vanishes for ξ near 0.
We introduce polar coordinates in the last integral, ξ = σ(cos y1, sin y1)
and put

S(x, y1) = φ(x1, x2, cos y1, sin y1).
Then the asserted bound for ‖Tλ‖ is equivalent to the same bound for
the L2 norm of T̃λ defined by

T̃λh(x) =
∫

eıλσS(x,y1)χ̃(y1, σ) dy1 dσ
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for suitable χ̃; here we have used the homogeneity of ϕ. Now we rescale
again and apply a Fourier transform in σ and see that the bound ‖T̃λ‖ =
O(λ−1/2−α) follows from the L2 → L2

α bound for the conormal Fourier
integral operator with distribution kernel

∫
eıτΦ(x,y)b(x, τ) dτ(3.3)

where Φ(x, y) = S(x, y1) − y2, and b is a symbol of order 0, supported
in {|τ | ≈ λ} and compactly supported in x.

Thus it suffices to discuss conormal operators of this form; in fact for
them one can prove almost sharp Lp → Lp

α estimates. Before stating
these results we shall first reformulate the mixed finite type assumption
from Section 2.5 in the present situation.

3.2. Mixed finite type conditions in the conormal situation. We
now look at operators with distribution kernels of the form (3.3). The
singular support of such operators is given by

M = {(x, y) : Φ(x, y) = 0}

and it is assumed that Φx '= 0, Φy '= 0. The canonical relation is the
twisted conormal bundle N∗M′ as in (1.12). In view of the homogeneity
the type condition at c0 = (x0, y0, ξ0, η0) ∈ N∗M′ is equivalent with the
type condition at (x0, y0, rξ0, rη0) for any r > 0 and since the fibers in
N∗M′ are one-dimensional it seems natural to formulate finite type con-
ditions in terms of vector fields tangent to M, and their commutators.
We now describe these conditions but refer for a more detailed discus-
sion to [67]. Related ideas have been used in the study of subelliptic
operators [36], [63], in complex analysis [41], [2] and, more recently, in
the study of singular Radon transforms [10].

Two types of vector fields play a special role: We say that a vector
field V on M is of type (1, 0) if V is tangent to M∩ (ΩL ×{0}); likewise
we define V to be of type (0, 1) if V is tangent to M ∩ ({0} × ΩR).
The notation is suggested by an analogous situation in several complex
variables [41], [55].

Note that at every point P ∈ M the vector fields of type (1, 0) and
(0, 1) span a two-dimensional subspace of the three-dimensional tangent
space TPM. Thus we can pick a nonvanishing 1-form ω which annihilates
vector fields of type (1, 0) and (0, 1); we may choose ω = dxΦ− dyΦ and
X = Φx2∂x1 − Φx1∂x2 , Y = Φy2∂y1 − Φy1∂y2 are (1, 0) and (0, 1) vector
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fields, respectively. With this choice

〈ω, [X, Y ]〉 = −2 det
(

Φxy Φx
tΦy 0

)
(3.4)

which is (1.14) in the situation + = 1, θ = 1 and relates 〈ω, [X, Y ]〉 to
det dπL/R. Thus N∗M′ is a local canonical graph iff 〈ω, [X, Y ]〉 does not
vanish. The quantity (3.4) is often referred to as “rotational curvature”
(cf. [55]).

Now let µ and ν be two positive integers. For a neighbor-
hood U of P let Wµ,ν(U) be the module generated by vector fields
adW1 ad W2 . . . adWµ+ν−1(Wµ+ν) where µ of these vector fields are of
type (1, 0) and ν are of type (0, 1). The finite type condition in (2.4)
can be reformulated as follows. Let P ∈ M and let c ∈ N∗M′ with base
point P . Then C is of type (j, k) at c if there is a neighborhood U of P so
that for all vector fields W ∈ Wj+1,k(U)∪Wj,k+1(U) we have 〈ω, W 〉P =
0 but there is a vector field W̃ in Wj+1,k+1 for which 〈ω, W̃ 〉P '= 0.1 Now
coordinates can be chosen so that Φ(x, y) = −y2 + S(x, y1) and the gen-
eralized Radon transform is given by

Rf(x) =
∫

χ(x, y1, S(x, y1))f(y1, S(x, y1)) dy1(3.5)

where Sx2 '= 0 and χ ∈ C∞
0 (ΩL × ΩR). If

∆(x, y1) = det
(

Sx1y1 Sx1

Sx2y1 Sx2

)

then at P = (x, y1, S(x, y1)) the mixed finite type condition amounts to

(3.6) Xj′
Y k′

∆(x, y1) = 0

whenever j′ ≤ j and k′ < k or j′ < j and k′ ≤ k

but

XjY k∆(x, y1) '= 0(3.7)

for X = Sx2∂x1 − Sx1∂x2 and Y = ∂y1 + Sy1∂y2 . For the equivalence of
these conditions see [67].

We now relate the last condition to the finite type condition above.
Notice that

C = {(x1, x2, τSx1 , τSx2 ; y1, S(x, y1),−τSy1 , τ)}
and using coordinates (x1, x2, y1, τ) a kernel vector field for the projec-
tion πR is given by VR = Sx2∂x1 − Sx1∂x2 ; this can be identified with
1Here we deviate from the terminology in [67], where the incidence relation M is
said to be of type (j + 1, k + 1) at P .
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the vector field X on M. Moreover a kernel vector field for the projec-
tion πL is given by VL = ∂/∂y1 − S−1

x2
Sx2y1∂/∂τ and for any function of

the form F (x, y1) we see that (VL − Y )(τF ) equals F multiplied by a
C∞ function. Thus it is immediate that C is of type (j, k) at the point c
(with coordinates (x, y1, τ)) if conditions (3.6), (3.7) are satisfied, and
this is just a condition at the base-point P .

We shall now return to the proof of Theorem 3.1 and formulate an Lp

version for the conormal situation.

3.3. Theorem ([67]). Let ΩL, ΩR ⊂ R2, let M ⊂ ΩL × ΩR so that
the projections to ΩL and ΩR have surjective differential. Suppose that
F ∈ I−1/2(ΩL, ΩR; N∗M′) with compactly supported distribution kernel.

For c ∈ N∗M′ denote by Ñ (c) the closure of the image of N (c) under
the map (x, y) 1→ ( x

x+y , 1
x+y ); i.e., the convex hull of the points (1, 1),

(0, 0) and ( j+1
j+k+2 , 1

j+k+2 ) where N∗M′ is of type (j, k) at c.
Suppose that (1/p, α) belongs to the interior of Ñ (c), for every c.

Then F is bounded from Lp to Lp
α.

The L2 estimate of Theorem 3.1 for conormal operators follows as
a special case, and for the general situation we use the above reduc-
tion. Theorem 3.3 is sharp up to the open endpoint cases (cf. also Sec-
tions 3.5.1–3.5.3 below).

We now sketch the main ingredients of the proof of Theorem 3.3.
We may assume that Sx2 is near 1 and |Sx1 | 5 1. Suppose that Q =
(x0, y0) ∈ M and suppose that the type (j′, k′) condition holds for some
choice of (j′, k′) with j′ ≤ j and k′ ≤ k at Q, and suppose that this type
assumption is still valid in a neighborhood on the support of the cutoff
function χ in (3.5) (otherwise we work with partitions of unity).

Our goal is then to prove that F maps Lp to Lp
α for p = (j + k +

2)/(j + 1) and α < 1/(j + k + 2).
Since we do not attempt to obtain an endpoint result, it is sufficient

to prove the required estimate for operators with the frequency variable
localized to |τ | ≈ λ for large λ. We then make an additional dyadic
decomposition in terms of the size of |∆| (i.e., the rotational curvature).
Define a Fourier integral operator Fλ,l0 by

Fλ,l0f(x) =
∫

f(y)
∫

eıτ(S(x,y1)−y2)β

(
x, y,

|τ |
λ

)
χ(2l0 |∆(x, y1)|) dτ dy;
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then by interpolation arguments our goal will be achieved by proving
the following crucial estimates:

‖Fλ,l0‖Lp→Lp ≤ Cγ2−l0γ , p =
j + k

j
, γ <

1
j + k

,(3.8)

and

‖Fλ,l0‖L2→L2 ≤ Cε2l0( 1
2+ε)λ−1/2.(3.9)

A variant of this interpolation argument goes back to investigations on
maximal operators in [17] and [71], [72], and (3.9) can be thought of a
version of an estimate for damped oscillatory integrals.

The type assumption is only used for the estimate (3.8). We note
that by integration by parts with respect to the frequency variable the
kernel of Fλ,l0 is bounded by

λ(1 + λ|y2 − S(x, y1)|)−N χ̃(2l0∆(x, y1)).(3.10)

We can use a well known sublevel set estimate related to van der Cor-
put’s lemma (see [6]) to see that for each fixed x the set of all y1 such
that |∆(x, y1)| ≤ 2−l and |∂k′

y1
∆(x, y1)| ≈ 2−m has Lebesgue measure

bounded by Cε2εl02(m−l0)/k′ ≤ Cε2εl02(m−l0)/k if m ≤ l0. Moreover,
if S(y, x1) is implicitly defined by y2 = S(x1,S(y, x1), y1) then the as-
sumption Xj′

Y k′
∆ '= 0 for some (j′, k′), j′ ≤ j, k′ ≤ k implies that

∂j′

x1
[∂k′

y1
∆(x1,S(y, x1), y1)] '= 0, for some (j′, k′), j′ ≤ j, k′ ≤ k. Thus

for fixed y the set of all x1 for which |∂j′

x1
[∂k′

y1
∆(x1,S(y, x1), y1)]| ≤ 2−m

has Lebesgue measure ! 2−m/j′ ! 2−m/j . The two sublevel set esti-
mates together with (3.10) and straightforward applications of Hölder’s
inequality yield (3.8), see [67].

We now turn to the harder L2 estimate (3.9). We sketch the ideas of
the proof (see [66] and also [67] for some corrections).

Firstly, if 2l0 ≤ λ we consider as above the oscillatory integral opera-
tor Tλ,l0 given by

Tλ,l0g(x)=
∫

eıλτ(S(x,y1)−y2)η(y1, τ)χ(2l0 |∆(x, y1)|)g(y1, τ) dτ dy1(3.11)

with compactly supported η; it suffices to show that

‖Tλ,l0‖L2→L2 ≤ Cε2l0(1+ε)/2λ−1.(3.12)

If |∆(x, y1)| ≤ λ−1 we modify our definition by localizing to this set. We
note that it suffices to estimate the operator χQ′F [χQf ] where Q and Q′

are squares of sidelength 2−l0ε/10, since summing over all relevant pairs
of squares will only introduce an error O(24εl0/10) in the final estimate.
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If we tried to use the standard TT ∗ argument we would have to have
good lower bounds for Sy1(w, y1) − Sy1(x, y1) in the situation where
S(w, y1) − S(x, y1) is small, but the appropriate lower bounds fail to
hold if the rotational curvature is too small. Thus it is necessary to work
with finer decompositions. Solve the equation S(w, y1)−S(x, y1) = 0 by
w2 = u(w1, x, y1) and expand

(3.13) Sy1(w, y1) − Sy1(x, y1)
= Sy1(w1, u(w1, x, y1), y1) − Sy1(x, y1) + O(S(w, y1) − S(x, y1))

and

(3.14) Sy1(w1, u(w1, x, y1), y1) − Sy1(x, y1)

=
M∑

j=0

γj(x, y1)(w1 − x1)j+1 + O(2−l0ε/M )

where M + 100/ε. In particular

γ0(x, y1) = Sy1x1(x, y1) + uw1(x1, x, y1)Sy1,x2(x, y1) =
∆(x, y1)

Sx2(x, y1)
;

thus |γ0(x, y1)| ≈ 2−l0 . For the coefficient γj(x, y1) we have

γj(x, y1) = S−1
x2

V j∆(x, y1) +
∑

k<j

αk(x, y1)V k(x, y1)∆(x, y1)

where the αk are smooth and V is the (1, 0) vector field ∂x1−Sx1/Sx2∂x2 .
We introduce an additional localization in terms the size of γj(x, y1). For
6l = (l0, . . . , lM ), with lj < l0 for j = 1, . . . , M define

Tλ,.l g(x) =
∫∫

eıλτS(x,y1)η(x, y1)
M∏

j=0

χ(2lj |γj(x, y1)|)g(y1, τ) dy1 dτ

which describes a localization to the sets where |γj(x, y1)| ≈ 2−lj . A
modification of the definition is required if |γj | ≤ 2−l0 for some j ∈
{1, . . . , M}.

Since we consider at most O((1 + l0)M ) = O(2εl0) such operators it
suffices to bound any individual Tλ,.l, and the main estimate is

3.4. Proposition.

‖Tλ,.l ‖L2→L2 ≤ Cε2l0(1+ε)/2λ−1/2.
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In what follows we fix λ and 6l and set

T = Tλ,.l.

The proof of the asserted L2 bound for T relies on an orthogonality
argument based on the following result (a rudimentary version of the or-
thogonality argument in the case of two-sided fold singularities is already
in [56]).

Lemma. For 6l = (l0, . . . , lm), with 0 ≤ lj ≤ l0 for 1 ≤ j ≤ M , let
PM (l) be the class of polynomials

∑M
i=0 aihi with 2−li−2 ≤ |ai| ≤ 2−li+2

if li < l0 and |ai| ≤ 2−l0+2 if li = l0. Then there is a constant C = C(M)
and numbers νs, µs, s = 1, . . . , 10M so that

(i) 0 ≤ ν1 ≤ µ1 ≤ ν2 ≤ µ2 ≤ · · · ≤ νM ≤ µM ≤ 1 := νM+1.

(ii) νi ≤ µi ≤ Cνi.

(iii)

∣∣∣∣∣

N∑

i=1

aih
i

∣∣∣∣∣≥C−1 max{|aj ||h|j ; j = 1, . . . , M} if h∈ [0, 1]\
⋃

s

[νs, µs].

Note that while µi and νi are close there may be ‘large’ gaps be-
tween µi and νi+1 for which the favorable lower bound (iii) holds. The
elementary but somewhat lengthy proof of the lemma based on induc-
tion is in [66]. A shorter and more elegant proof (of a closely related
inequality) based on a compactness argument is due to Rychkov [64].

In order to describe the orthogonality argument we need some termi-
nology. Let I be a subinterval of [0, 1]. We say that β is a normalized
cutoff function associated to I if β is supported in I and |β(j)(t)| ≤ |I|−j ,
for j = 1, . . . , 5 and denote by A(I) the set of all normalized cutoff func-
tions associated to I.

Fix I and β in A(I); then we define another localization of T = Tλ,.l

by

T [β]g(x) = β(x1)T g(x).(3.15)

It follows quickly from the definition and the property νs ≤ µs ≤ Cνs

that

sup
Ĩ

|Ĩ|=µs

sup
β̃∈A(Ĩ)

∥∥T [β̃]
∥∥ ! sup

I
|I|=νs

sup
β∈A(I)

∥∥T [β]
∥∥.(3.16)

This is because for any interval Ĩ of length µs a function β ∈ A(Ĩ) can
be written as a sum of a bounded number of functions associated to
subintervals of length νs.
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We have to prove that also

sup
Ĩ

|Ĩ|=νs

sup
β∈A(Ĩ)

∥∥T [β̃]
∥∥ ! sup

I
|I|=µs−1

sup
β∈A(I)

∥∥T [β]
∥∥+ 2l0( 1

2+ε)λ−1(3.17)

and

sup
I

|I|=ν1/8

sup
β∈A(I)

∥∥T [β]
∥∥ ! 2l0( 1

2+ε)λ−1.(3.18)

By the above remark inequality (3.17) is obvious if µs−1 ≈ νs. Thus
let us assume that µs−1 ≤ 2−100Mνs and fix β̃ ∈ A(Ĩ), |Ĩ| = µs−1.

One uses the Cotlar-Stein Lemma in the form
∥∥∥
∑

Aj

∥∥∥!
[ ∞∑

n=−∞
sup

j
‖A∗

j+nAj‖θ

]1/2[ ∞∑

n=−∞
sup

j
‖Aj+nA∗

j‖1−θ

]1/2

,(3.19)

for a (finite) sum of operators
∑

j Aj on a Hilbert space. (See [73,
Chapter VII.2]; as pointed out in [5] and elsewhere, the version (3.19)
follows by a slight modification of the standard proof.)

Now if J is an interval of length νs/8 and β̃ ∈ A(J) then we split
β̃ =

∑
n βn where for a fixed absolute constant C the function C−1βn

belongs to A(In) and the In are intervals of length µs−1; In and In′ are
disjoint if |n−n′| > 3 and the sum extends over no more than O(νs/µs−1)
terms and thus over no more than O(2l0) terms.

Now let |In| = |In′ | ≈ µs−1 and dist(In, In′) ≈ |n− n′||I| and assume
|n−n′||I| ≤ νs/8. Let βn, βn′ be normalized cutoff functions associated
to In, In′ . Then

‖T [βn]∗T [βn′ ]‖ = 0 if |n − n′| > 3(3.20)

by the disjointness of the intervals In, I ′n. The crucial estimate is

(3.21) ‖T [βn]T [βn′ ]∗‖ ! |n − n′|−12l0(1+ε)λ−2

if |n − n′| > 3, |n − n′| ≤ νs

8µs−1
.

(3.20)–(3.21) allows us to apply (3.19) with θ = 0 (the standard ver-
sion does not apply, as is erroneously quoted in [66]). This yields the
bound

‖T [β̃]‖ ≤ Cε



sup
n

‖T [βn]‖ + 2l(1+ε)/2λ−1
2l0∑

n=3

n−1





and thus (3.17).
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To see (3.21)one examines the kernel K of T [βn]T [βn′ ]∗ which is given
by

K(x, w)=βn(x1)βn′(w1)
∫

e−ıλτ(S(w,y1)−S(x,y1))b(x, w, y1, τ) dy1 dτ(3.22)

and by definition of µs−1, νs, In, In′ and the above lemma we have

|Sy1(x, y1)−Sy1(w, y1)|"2−l0 |x1 − y1|−O(S(x, y1) − S(w, y1)).(3.23)

To analyze the kernel K and prove (3.21) by Schur’s test one integrates
by parts once in y1 and then many times in τ , for the somewhat lengthy
details see [66], [67]. Analogous arguments also apply to the estimation
of T [β]T [β]∗ when β is associated to an interval of length 5 ν1, this
gives (3.18).

3.5. Remarks.

3.5.1. Phong and Stein, in the remarkable paper [58], proved
sharp L2 decay estimates for oscillatory integral operators with ker-
nel eiλs(x,y)χ(x, y) in one dimensions, where s is real analytic. From
their result and standard arguments one gets an improved result for the
generalized Radon transform in the special semi-translation invariant
case where the curves in R2 are given by

y2 = x2 + s(x1, y1).(3.24)

Namely, if Rf(x) =
∫

f(y1, x2 + s(x1, y1))χ(x, y1) dy1 then the end-
point L2 → L2

α estimate in Theorem 3.1 holds true. An only slightly
weaker result for the case s ∈ C∞ has been obtained by Rychkov [64].
For related work see also some recent papers by Greenblatt [23], [24].

3.5.2. It is not known exactly which endpoint bounds hold in the gen-
eral case of Theorem 3.3. As an easy case the Lp → Lp

1/p estimate holds
if p > n and a type (0, n − 2) condition is satisfied (in the terminology
of Theorem 3.3). A similar statement for 1 < p < n/(n − 1) is obtained
for type (n − 2, 0) conditions by passing to the adjoint operator.

The interpolation idea (3.8)–(3.9) is not limited to conormal oper-
ators. Using variants of this method, sharp Lp estimates for Fourier
integral operators in the nondegenerate case [68] were extended to cer-
tain classes with one- or two-sided fold singularities [70], [15]. For other
Lp Sobolev endpoint bounds in special cases see [74], [66], [57], [80].
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3.5.3. Some endpoint inequalities in Theorem 3.3 fail: M. Christ [7]
showed that the convolution with a compactly supported density on
(t, tn) fails to map Ln → Ln

1/n. The best possible substitute is an Ln,2 →
Ln

1/n estimate in [69]; here Ln,2 is the Lorentz space.

3.5.4. Interpolation of the bounds in Theorem 3.3 with trivial L1 →
L∞ bounds (with loss of one derivative) yields almost sharp Lp → Lq

bounds [66], [67]. Endpoint estimates for the case of two-sided finite
type conditions are in [1]. For endpoint Lp → Lq estimates in the
case (3.24), with real-analytic s, see [57], [79], [42].

3.5.5. It would be desirable to obtain almost sharp L2 versions such
as Theorem 3.1 for more general oscillatory integral operators with a
corank one assumption. Sharp endpoint L2 results where one projection
is a Whitney fold (type 1) and the other projection satisfies a finite type
condition are due to Comech [14].

3.5.6. Interesting bounds for the semi-translation invariant case (3.24)
where only lower bounds on sxy (or higher derivatives) are assumed were
obtained by Carbery, Christ and Wright [4]. Related is the work by
Phong, Stein and Sturm [60], [62], [61], with important contributions
concerning the stability of estimates.

4. Operators with one-sided finite type conditions

We now discuss operators of the form (1.1) and assume that one of
the projections, πL, is of type ≤ r but make no assumption on the
other projection, πR. The role of the projections can be interchanged by
passing to the adjoint operator.

4.1. Theorem ([25], [26], [28]). Suppose πL is of corank ≤ 1 and
type ≤ r, and suppose that det dπL vanishes simply. If r ∈ {1, 2, 3} then

‖Tλ‖L2→L2 ! λ−(d−1)/2−1/(2r+2).(4.1)

It is conjectured that this bound also holds for r > 3. The esti-
mate (4.1) is sharp in cases where the other projection exhibits maximal
degeneracy. In fact if πL is a fold and πR is a blowdown then more
information is available such as a rather precise description of the kernel
of TλT ∗

λ , cf. Greenleaf and Uhlmann [32], [33]. Applications include the
restricted X-ray transform in three dimensions for the case where the
line complexes are admissible in the sense of Gelfand [21], [30], [34]; for
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an early construction and application of a Fourier integral operator with
this structure see also [43].

In the discussion that follows we shall replace the assumption that
det dπL vanishes simply (i.e., ∇x,z det πL '= 0) by the more restrictive
assumption

∇z det πL '= 0.(4.2)

In the case r = 1 this is automatically satisfied, and it is shown in [26],
[28] that in the cases r = 2 and r = 3 one can apply canonical transfor-
mations to reduce matters to this situation. For the oscillatory integral
operators coming from the restricted X-ray transform for well-curved line
complexes, the condition (4.2) is certainly satisfied. We shall show that
for general r the estimate (4.1) is a consequence of sharp estimates for
oscillatory integral operators satisfying two-sided finite type conditions
of order r − 1, in d − 1 dimensions. The argument is closely related to
Strichartz estimates and can also be used to derive L2 → Lq estimates
(an early version can be found in Oberlin [48]).

We shall now outline this argument. After initial changes of variables
in x and z separately we may assume that

Φx′z′(0, z) = Id−1, Φx′zd(0, z) = 0,

Φx′z′(x, 0) = Id−1, Φxdz′(x, 0) = 0;
(4.3.1)

moreover by our assumption on the type we may assume that

Φxdzr+1
d

(0, 0) '= 0(4.3.2)

and that Φxdzj
d
(x, z) is small for j ≤ r. We may assume that the ampli-

tudes are supported where |x| + |z| ≤ ε0 5 1.
We form the operator TλT ∗

λ and write

TλT ∗
λf(x′xd) =

∫
Kxd,yd [f(·, yd)](x′) dyd(4.4)

where the kernel of Kxdyd is given by

Kxdyd(x′, y′) =
∫

eıλ[Φ(x′,xd,z)−Φ(y′,yd,z)]σ(x, z)σ(y, z) dz.

We split Kxdyd = Hxdyd + Rxdyd where Hxdyd(x′, y′) vanishes when
|xd − yd| ≤ λ−1 and when |x′ − y′| " ε|xd − yd|, for some ε with ε0 5
ε 5 1.

Notice that by (4.3.1)

Φx′(x′, xd, z) − Φx′(y′, yd, z) = x′ − y′ + O(ε0|xd − yd|)
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and by an integration by parts argument we get

|Rxdyd(x′, y′)| ≤ CN (1 + λ|x′ − y′|)−N

for any N , in the relevant range |x′ − y′| " ε|xd − yd|. Thus the corre-
sponding operator Rxdyd is bounded on L2(Rd−1) and satisfies

‖Rxdyd‖L2→L2 ≤ C ′
Nλ−d+1(1 + λ|xd − yd|)−N+d−1,(4.5)

for any N . For the main contribution Hxdyd we are aiming for the
estimate

‖Hxdyd‖L2→L2 ! λ1−d− 1
r+1 |xd − yd|−

1
r+1 .(4.6)

From (4.4), (4.5), (4.6) and the L2(R) boundedness of the operator
with kernel |xd − yd|−1/(r+1)χ[−1,1](xd − yd) the bound (4.1) follows in
a straightforward way.

Now observe that the operator Hxdyd is local on cubes of diame-
ter ≈ |xd − yd| and we can use a trivial orthogonality argument to put
the localizations to cubes together. For a single cube we may then apply
a rescaling argument. Specifically, let c ∈ Rd and define

H̃xdyd
c (u, v) = Hxdyd(c + u|xd − yd|, c + v|xd − yd|).

Then for the corresponding operators we have

‖Hxdyd‖L2→L2 ! |xd − yd|d−1 sup
c

‖H̃xdyd
c ‖L2→L2 .(4.7)

Note that H̃xdyd
c does not vanish only for small c. A calculation shows

that the kernel of H̃xdyd
c is given by an oscillatory integral

(4.8)
∫

eıµΨ±(u,v,z;c,α,yd)b(u, v, z; c, xd, yd) dz;

α = |xd − yd|, µ = λ|xd − yd|,

with small parameters c, α = |xd − yd|, yd, and the phase function is
given by

Ψ±(u, v, z; α, yd, c) = 〈u − v,Φx′(0, z)〉± Φxd(0, z) + ρ±(u, v, z; α, yd, c).

Here the choice of Ψ+ is taken if xd > yd and Ψ− is taken if xd <
yd; for the error we have ρ± = O(α(|yd| + c)) in the C∞ topology.
Observe in particular that for α = 0 we get essentially the localization
of a translation invariant operator.
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We now examine the canonical relation associated to the oscillatory
integral, when α = 0. In view of (4.3.1) the critical set {∇zΨ± =
0} for the phase function at α = 0 is given by {(u, v, z) : v = u +
g(z), Φxdzd(0, z) = 0} for suitable g(z); in view of (4.2) this defines a
smooth manifold. Consequently the canonical relation

CΨ±
∣∣
α=0

= {(u, Ψ±
u , v,Ψ±

v ) : Ψ±
z = 0}

is a smooth manifold. By (4.2) we may assume (after performing a
rotation) that Φxdzdz1 '= 0 and then solve the equation Φxdzd(0, z) = 0
near the origin in terms of a function z1 = z̃1(z′′, zd). The projection πL

is given by

(u, z′′, zd) → (u, Φx′(0, z±1 (z′′, zd), z′′, zd))

and ∂/∂zd is a kernel field for πL. Implicit differentiation reveals that
∂k

zd
z±1 − Φ−1

zdxdz1
Φxdzk+1

d
belongs to the ideal generated by Φxdzj

d
, j ≤ k

and thus, by our assumption (4.3.2) we see that πL is of type ≤ r − 1.
The same holds true for πR, by symmetry considerations. Although we
have verified these conditions for α = 0 they remain true for small α
since Morin singularities are stable under small perturbations.

We now discuss estimates for the oscillatory integral operator S±
µ

whose kernel is given by (4.8) (we suppress the dependence on c, α, yd).
The number of frequency variables is N = d and thus we can expect the
uniform bound

‖S±
µ ‖L2→L2 ! µ− d−2

2 − 1
r+1−

d
2(4.9)

for small α. Indeed, the case α = 0 of (4.9) is easy to verify; because of
the translation invariance we may apply Fourier transform arguments to-
gether with the method of stationary phase and van der Corput’s lemma.
Given (4.9) we obtain from (4.7) and from (4.9) with µ = λ|xd−yd| that

‖Hxdyd‖L2→L2 ! |xd − yd|d−1µ−(d−1)− 1
r+1 ! λ−(d−1)− 1

r+1 |xd − yd|−
1

r+1 .

Of course the Fourier transform argument does not extend to the
case where α is merely small. However if r = 1 the estimate follows
from (1.6) (with d replaced by d − 1 and N = d) since then CΨ± is a
local canonical graph. Similarly, if r = 2 then the canonical relation CΨ±

projects with two-sided fold singularities so that the desired estimate
follows from known estimates for this situation (see the pioneering paper
by Melrose and Taylor [44], and also [53], [18], [27]). For the case r = 3,
inequality (4.6) follows from a recent result by the authors [28] discussed
in the next section, plus the reduction outlined in Section 1.2. The
case r ≥ 4 is currently open.
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4.2. Remarks.

4.2.1. The argument above can also be used to prove L2 → Lq es-
timates (see [48], [25], [26]). Assume r = 1 and thus assume that
πL : C → T ∗ΩL projects with Whitney folds. Then a stationary phase
argument gives that

‖Kxdyd‖L1→L∞ ! (1 + λ|xd − yd|)−1/2(4.10)

and interpolation with (4.5)–(4.6) yields Lq′ → Lq estimates for Kxdyd

and then L2 → Lq bounds for Tλ. The result [25] is

‖Tλ‖L2→Lq ! λ−d/q, 4 ≤ q ≤ ∞.(4.11)

The estimate (4.10) may be improved under the presence of some cur-
vature assumption. Assume that the projection of the fold surface S1(πL)
to ΩL is a submersion, then for each x ∈ ΩL the projection of S1(πL) to
the fibers is a hypersurface Σx in T ∗

x ΩL. Suppose that for every x this
hypersurface has l nonvanishing principal curvatures (this assumption
is reminiscent of the so-called cinematic curvature hypothesis in [46]).
Then (4.10) can be replaced by

‖Kxdyd‖L1→L∞ ! (1 + λ|xd − yd|)−(l+1)/2

and (4.11) holds true for a larger range of exponents, namely

‖Tλ‖L2→Lq ! λ−d/q,
2l + 4
l + 1

≤ q ≤ ∞.(4.12)

The version of this estimate for Fourier integral operators [25], with
l = 1, yields Oberlin’s sharp Lp → Lq estimates [48] for the averaging
operator (2.7) in three dimension (assuming that Γ is nondegenerate),
as well as variable coefficient perturbations. It also yields sharp results
for certain convolution operators associated to curves on the Heisenberg
group ([65], see Section 7.3 below) and for estimates for restricted X-ray
transforms associated to well curved line complexes in R3 [25].

In dimensions d > 3 the method yields L2 → Lq bounds [26] which
should be considered as partial results, since in most interesting cases
the endpoint Lp → Lq estimates do not involve the exponent 2.

4.2.2. The analogy with the cinematic curvature hypothesis has been
exploited by Oberlin, Smith and Sogge [52] to prove nontrivial L4 → L4

α

estimates for translation invariant operators associated to nondegenerate
curves in R3. Here it is crucial to apply a square function estimate due
to Bourgain [3] that he used in proving bounds for cone multipliers.
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The article [51] contains an interesting counterexample for the failure of
Lp → Lp

1/p−ε estimates when p < 4.

4.2.3. Techniques of oscillatory integrals have been used by Ober-
lin [49] to obtain essentially sharp Lp → Lq estimates for the opera-
tor (2.7) in four dimension, see also [29] for a related argument for the
restricted X-ray transform in four dimensions, in the rigid case (2.8).

4.2.4. More recently, a powerful combinatorial method was developed
by Christ [8] who proved essentially sharp Lp → Lq estimates for the
translation invariant model operator (2.7) in all dimensions (for nonde-
generate Γ). Lp → Lq bounds for the X-ray transform in higher dimen-
sions, in the model case (2.8), have been obtained by Burak-Erdoğan
and Christ [20], [9]; these papers contain even stronger mixed norm es-
timates. Christ’s combinatorial method has been further developed by
Tao and Wright [75] who obtained almost sharp Lp → Lq estimates for
variable coefficient analogues.

5. Two-sided type two singularities

We consider again the operator (1.1) and discuss the proof of the
following result mentioned in the last section.

5.1. Theorem ([28]). Suppose that both πL and πR are of type ≤ 2.
Then for λ ≥ 1

‖Tλ‖L2→L2 = O(λ−(d−1)/2−1/4).

A slightly weaker version of this result is due to Comech and Cu-
ccagna [16] who obtained the bound ‖Tλ‖ ≤ Cελ−(d−1)/2−1/4+ε for
ε > 0.

The proof of the endpoint estimate is based on various localizations
and almost orthogonality arguments. As in Section 2 we start with
localizing the determinant of dπL/R and its derivatives with respect to a
kernel vector field. The form (5.2) below of this first decomposition can
already be found in [14], [16].

We assume that the amplitude is supported near the origin and as-
sume that (4.3.1) holds. Let Φz′x′

= Φ−1
x′z′ , Φx′z′

= Φ−1
z′x′ ; then kernel

vector fields for the projections πL are given by

VR = ∂xd − Φxdz′Φz′x′
∂x′ ,

VL = ∂zd − Φzdx′Φx′z′
∂z′ ,

(5.1)
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respectively. Also let h(x, z) = det Φxz and by the type two assumption
we can assume that |V 2

Lh|, |V 2
Rh| are bounded below. Emphasizing the

amplitude in (1.1) we write Tλ[σ] for the operator Tλ and will introduce
various decompositions of the amplitude.

Let β0 ∈ C∞(R) be an even function supported in (−1, 1), and equal
to one in (−1/2, 1/2) and for j ≥ 1 let βj(s) = β0(2−js) − β0(2−j+1s).
Denote by +0 that is the largest integer + so that 2& ≤ λ1/2 (we assume
that λ is large). Define

σj,k,l(x, z) = σ(x, z)β1(2lh(x, z))βj(2l/2VRh(x, z))βk(2l/2VLh(x, z))

σ0
j,k,&0(x, z) = σ(x, z)β0(2&0h(x, z))βj(2&0/2VRh(x, z))βk(2&0/2VLh(x, z));

(5.2)

thus if j, k > 0 then |h| ≈ 2−l, |VLh| ≈ 2k−l/2, |VRh| ≈ 2j−l/2 on the
support of σj,k,l.

It is not hard to see that the estimate of Theorem 5.1 follows from

5.2. Proposition. We have the following bounds:

(i) For 0 < l < +0 = [log2(
√

λ)]

‖Tλ[σj,k,l]‖L2→L2 ! λ−(d−1)/2 min
{
2l/2λ−1/2; 2−(l+j+k)/2

}
.(5.3)

(ii)

‖Tλ[σ0
j,k,&0 ]‖L2→L2 ! λ−(d−1)/2−1/42−(j+k)/2.(5.4)

We shall only discuss (5.3) as (5.4) is proved similarly. In what fol-
lows j, k, l will be fixed and we shall discuss the main case where
0 < k ≤ j ≤ l/2, 2l ≤ λ1/2. As in the argument in Section 2 stan-
dard T ∗T arguments do not work and further localizations and almost
orthogonality arguments are needed. These are less straightforward in
the higher dimensional situation considered here, and the amplitudes
will be localized to nonisotropic boxes of various sides depending on the
geometry of the kernel vector fields.

For P = (x0, z0) ∈ ΩL × ΩR let aP =
(
− Φx′z′

(P )Φz′xd(P ), 1
)

and
bP = (−Φz′x′

(P )Φx′zd(P ), 1) so that VL = 〈aP , ∂x〉, VR = 〈bP , ∂z〉. Let
π⊥

aP
, π⊥

bP
be the orthogonal projections to the orthogonal complement of

RaP in Tx0ΩL and RbP in Tz0Rd, respectively. Suppose 0 < γ1 ≤ γ2 5 1
and 0 < δ1 ≤ δ2 5 1 and let

BP (γ1, γ2, δ1, δ2)
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denote the box of all (x, z) for which |π⊥
aP

(x−x0)| ≤ γ1, |〈x−x0, aP 〉| ≤
γ2, |π⊥

bP
(z − z0)| ≤ δ1, |〈z − z0, bP 〉| ≤ δ2. We always assume

γ1 ≤ γ2, δ1 ≤ δ2.(5.5)

We say that χ ∈ C∞
0 is a normalized cutoff function associated to

BP (γ1, γ2, δ1, δ2) if it is supported in BP (γ1, γ2, δ1, δ2) and satisfies the
(natural) estimates

|(π⊥
a ∇x)mL〈a,∇x〉nL(π⊥

b ∇z)mR〈b,∇z〉nRχ(x, z)|≤γ−mL
1 γ−nL

2 δ−mR
1 δ−nR

2

whenever mL + nL ≤ 10d, mR + nL ≤ 10d.
We denote by AP (γ1, γ2, δ1, δ2) the class of all normalized cutoff func-

tions associated to BP (γ1, γ2, δ1, δ2).
Suppose that (γ1, γ2, δ1, δ2)=(ε2−l, ε2−j−l/2, ε2−l, ε2−k−l/2). It turns

out that h=det Φxz changes only by O(ε2−l) in the box BP (γ1, γ2, δ1, δ2)
but is in size comparable to 2−l. This enables one to apply a TT ∗ argu-
ment and one obtains the correct bound O(2l/2λ−d/2) for the operator
norm of Tλ[χσ] assuming that χ ∈ AP (γ1, γ2, δ1, δ2) for some fixed P .
This step had already been carried out by Comech and Cuccagna [16].
Let

AP (γ1, γ2, δ1, δ2) := sup
{∥∥Tλ[χσj,k,l]

∥∥ : χ ∈ AP (γ1, γ2, δ1, δ2)
}

then, for 2l ≤ λ1/2,

sup
P

AP (2−l, 2−j−l/2, 2−l, 2−k−l/2) ! 2l/2λ−d/2.(5.6)

If one uses that |VRh| ≈ 2j−l/2, |VLh| ≈ 2k−l/2 one also gets

sup
P

AP (2−l, 2−j−l/2, 2−l, 2−k−l/2) ! 2−(l+j+k)/2λ−(d−1)/2.(5.7)

Initially one obtains these estimates for boxes of size (ε2−l, ε2−j−l/2,
ε2−l, ε2−k−l/2) but the ε may be removed since we can decompose
any BP (γ1, γ2, δ1, δ2) into no more than O(ε−2d) boxes of dimen-
sions (εγ1, εγ2, εδ1, εδ2). From this one deduces

AP (γ1, γ2, δ1, δ2) ≤ Cε sup
Q

AQ(εγ1, εγ2, εδ1, εδ2).(5.8)

In order to put the localized pieces together we need some orthogonal-
ity arguments. For the sharp result we need to prove various inequalities
of the form

(5.9) sup
P

AP (γ1,large, γ2,large, δ1,large, δ2,large)

! sup
Q

AQ(γ1,small, γ2,small, δ1,small, δ2,small) + E(j, k, l)
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where the error term satisfies

E(j, k, l) ! λ−(d−1)/2 min{2l/2λ−1, 2−(l+j+k)/2}(5.10)

or a better estimate.
In the argument it is crucial that we assume

min
{

γ1,small

γ2,small
,
δ1,small

δ2,small

}
" max{γ2,large, δ2,large}(5.11)

since from (5.11) one can see that the orientation of small boxes
BQ(γsmall, δsmall) does not significantly change if Q varies in the large
box BP (γlarge, δlarge).

5.3. Proposition. Let k ≤ j ≤ l/2, 2l ≤ λ1/2. There is ε > 0 (chosen
independently of k, j, l, λ) so that the inequality (5.9) holds with the
choices of

(i)

(γlarge, δlarge) = (ε2j+k−l, ε2k−l/2, ε2j+k−l, ε2k−l/2)

(γsmall, δsmall) = (2−l, 2−j−l/2, 2−l, 2−k−l/2),
(5.12)

(ii)

(γlarge, δlarge) = (ε2j−l/2, ε2j−l/2, ε2k−l/2, ε2k−l/2)

(γsmall, δsmall) = (2j+k−l, 2k−l/2, 2j+k−l, 2k−l/2),
(5.13)

(iii)

(γlarge, δlarge) = (ε, ε, ε, ε)

(γsmall, δsmall) = (2j−l/2, 2j−l/2, 2k−l/2, 2k−l/2).
(5.14)

A combination of these estimates (with (5.8)) yields the desired
bound (5.3); here the outline of the argument is similar to the one
given in Section 3. For each instance we are given a cutoff function ζ ∈
AP (γlarge, δlarge) and we decompose

ζ =
∑

(X,Z)∈Zd×Zd

ζXZ

where the ζXZ is, up to a constant, a normalized cutoff function as-
sociated to a box of dimensions (γsmall, δsmall); the various boxes have
bounded overlap, and comparable orientation. More precisely if (P, Q) is
a reference point in the big box BP (γlarge, δlarge) then each of the small
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boxes is comparable to a box defined by the conditions |π⊥
aP

(x− xX)| ≤
γ1, |〈x − xX , aP 〉| ≤ γ2, |π⊥

bP
(z − zZ)| ≤ δ1, |〈z − zZ , bP 〉| ≤ δ2.

If TXZ denotes the operator Tλ[ζXZσj,k,l] then in each case we have
to show that for large N

‖Tλ[ζXZ ](Tλ[ζX′Z′ ])∗‖L2→L2 + ‖(Tλ[ζXZ ])∗Tλ[ζX′Z′ ]‖L2→L2

! λ1−d min{2lλ−2, 2−l−j−k}(|X − X ′| + |Z − Z ′|)−N

if |X − X ′| + |Z − Z ′| + 1.
For the estimation in the case (5.12) it is crucial that in any fixed

large box VLh does not change by more than O(ε2k−l/2) and thus is
comparable to 2k−l/2 in the entire box; similarly VRh is comparable to
2j−l/2 in the entire box. For the orthogonality we use that Φx′z′ is close
to the identity. In the other extreme case (5.14) VRh and VLh change
significantly in the direction of kernel fields and this can be exploited
in the orthogonality argument. (5.13) is an intermediate case. This
description is an oversimplification and we refer the reader to [28] for
the detailed discussion of each case.

6. Geometrical conditions on families of curves

We illustrate some of the results mentioned before by relating condi-
tions involving strong Morin singularities to various conditions on vector
fields and their commutators.

6.1. Left and right commutator conditions and strong Morin
singularities. We first look at an incidence relation M with canonical
relation C = N∗M as in (1.12) and assume + = d−1 so that dimM = d+
1. As in [67, Section 3], we have two distinguished classes of vector fields
on M, namely vector fields of type (1, 0) which are also tangent to M∩
(ΩL ×0) and vector fields of type (0, 1) which are tangent to M∩ ({0}×
ΩR). Note that for each point P the corresponding distinguished tangent
spaces T 1,0

P M and T 0,1
P M are one-dimensional. If Φ is the Rd−1-valued

defining function for M = {Φ(x, y) = 0} then a nonvanishing (1, 0)
vector field X and a nonvanishing (0, 1) vector field Y are given by

X =
d∑

j=1

aj(x, y)
∂

∂xj
, Y =

d∑

k=1

bk(x, y)
∂

∂yk
(6.1)

where (−1)j−1aj(x, y) is the determinant of the (d− 1)× (d− 1) matrix
obtained from the (d − 1) × d matrix Φ′

x by omitting the jth column,
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and (−1)k−1bj(x, y) is the determinant of the (d − 1) × (d − 1) matrix
obtained from Φ′

y by omitting the jth column.
The canonical relation N∗M′ in (1.12) can be identified with a sub-

bundle T ∗,⊥M of T ∗M whose fiber at P ∈ M is the +-dimensional space
of all linear functionals in T ∗

PM which annihilate vectors in T 1,0
P M and

vectors in T 0,1
P M,

T ∗,⊥
P M = (T 1,0

P M⊕ T 0,1
P M)⊥.

Concretely, if ı : M → ΩL × ΩR denotes the inclusion map and ı∗ the
pullback of ı (or restriction operator) acting on forms in T ∗(X×Y), then

T ∗,⊥M = {(P, ı∗P λ) : (P, λ) ∈ C}.

Finite type conditions can be formulated in terms of iterated com-
mutators of (1, 0) and (0, 1) vector fields [67]. Here they are used to
characterize the situation of strong Morin singularities (cf. Section 2.4).
Let x0 ∈ ΩL, let Mx0 = {y ∈ ΩR : (x0, y) ∈ M} and let

NL,x0 := π−1
L ({x0}× T ∗

x0
ΩL) = {(y, λ) : y ∈ Mx0 , λ ∈ T ∗,⊥

(x0,y)M}.

Let πL,x0 the restriction of πL to NL,x0 as a map to T ∗
x0

ΩL, then πL

has strong Morin singularities if for fixed x0 the map πL,x0 has Morin
singularities.

Similarly, if y0 ∈ ΩL, let My0
= {x ∈ ΩL : (x, y0) ∈ M} then the

adjoint operator R∗ is an integral operator along the curves My0 ; now
we define NR,y0 as the set of all (x, λ) where x ∈ My0 , λ ∈ T ∗,⊥

(x,y0)M,
and πR,y0 : NR,y0 → T ∗

y0ΩR is the restriction of the map πR.

Proposition. (a) Let x0 ∈ ΩL and y0 ∈ Mx0 and let P = (x0, y0).
The following statements are equivalent.
(i) Near P , the only singularities of πL,x0 are S1k,0 singularities,

for k ≤ d − 2.
(ii) The vectors (adY )mX, m = 1, . . . , d− 1 are linearly indepen-

dent at P .
(b) Let y0 ∈ ΩR and x0 ∈ My0

and let P = (x0, y0). The following
statements are equivalent.
(i) Near P , the only singularities of πR,y0 are S1k,0 singularities,

for k ≤ d − 2.
(ii) The vectors (adX)mY , m = 1, . . . , d− 1 are linearly indepen-

dent at P .

It suffices to verify statement (a). There are coordinate systems x =
(x′, xd) near x0, vanishing at x0 and y = (y′, yd) near y0, vanishing at y0
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so that near P the manifold M is given by y′ = S(x, yd) with

S(x, yd) = x′ + xdg(yd) + O(|x|2)
where g(0) = 0.

In these coordinates we compute the vector fields X and Y in (6.1)
and find

(−1)d−1aj = gj(yd) + O(|x|), j = 1, . . . , d − 1,

(−1)d−1ad = 1 + O(|x|),

and

bj = xd
∂gj

∂yd
+ O(|x′|2 + |x′||xd|), j = 1, . . . , d − 1,

bd = 1.

By induction one verifies that for m = 1, 2, . . .

(−1)d−1(adY )mX =
d∑

j=1

vm
j

∂

∂xj
+

d∑

j=1

wm
j

∂

∂yj

where

vm
j =

∂mgj

∂ym
d

+ O(|x|), j = 1, . . . , d − 1,

vm
d = O(|x|)

and

wm
j = −∂mgj

∂ym
d

+ O(|x|), j = 1, . . . , d − 1,

wm
d = O(|x|).

Consequently we see that the linear independence of the vector fields
(adY )mX at P is equivalent with the linear independence of ∂mgj/(∂ym

d )
at yd = 0.

Next, the map πL,x0 : NL,x0 → T ∗
x0ΩL is in the above coordinates

given by

(yd, τ) 1→ τ · Sx(0, yd) =

(
τ1, . . . , τd−1,

d−1∑

i=1

τigi(yd)

)

and from (2.3)–(2.5) we see that the statement (i) is also equivalent with
the linear independence of the vectors ∂mgj/(∂ym

d ) at yd = 0.
This proves the proposition.
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6.2. Families of curves defined by exponentials of vector fields.
Let now {γt(·)}t∈I be a one-parameter family of diffeomorphisms of Rn

which we can also consider as a family of parametrized curves,

t 1→ γt(x) := γ(x, t).

We shall assume that x varies in an open set Ω, the open parameter
interval I is a small neighborhood of 0 and that γ0 = Id and γ̇ '= 0,
where γ̇ denotes d

dt (γt). Thus for each x, t 1→ γ(x, t) defines a regular
curve passing through x. As in the article by Christ, Nagel, Stein and
Wainger [10], we may write such a family as

γt(x) := γ(x, t) = exp

(
N∑

i=1

tiXi

)
(x) mod O(tN+1)(6.2)

for some vector fields X1, X2, . . . , and N ∈ N. The generalized Radon
transform is now defined by

Rf(x) =
∫

f(γ(x, t))χ(t) dt

and incidence relation M is given by

M = {(x, γ(x, t)) : x ∈ Rn, t ∈ R} ⊂ Rn × Rn.(6.3)

Besides using the projections πL and πR, there are other ways of
describing what it means for the family {γt(·)} to be maximally nonde-
generate, in either a one- or two-sided fashion. One is given in terms the
structure of the pullback map with respect to the diffeomorphisms γt(·),
and another is given by the linear independence of certain linear com-
binations of the vector fields Xj and their iterated commutators. We
formulate the conditions on the right, with the analogous conditions on
the left being easily obtained by symmetry.

6.3. Strong Morin singularities and pull-back conditions. We
are working with (6.2) and formulate the pullback condition (P )R. Form
the curve

ΓR(x, t) =
d

ds

(
γs+t ◦ γ−1

t (x)
)∣∣

s=0
,(6.4)

so that ΓR(x, ·) : R → TxRn. Let Γ(ν)
R (x, t) = (∂/∂t)νΓR(x, t) for ν =

0, 1, . . . .

Definition. The family of curves {γ(x, ·)}x∈Ω satisfies condition (P )R

at x if the vectors Γ(ν)
R (x, 0), ν = 0, . . . , n − 1 are linearly independent.
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Let M be the incidence relation for our averaging operator.

Proposition. Let c0 = (x0, ξ0, x0, η0) ∈ N∗M′. Then condition (P )R

is satisfied at x0 if and only if πR has only S+
1k,0 singularities at c, with

k ≤ d − 2.

To see this, note that M ⊂ Rn × Rn is the image of the immer-
sion (x, t) 1→ (x, γ(x, t)). Thus (x, ξ; y, η) belongs to N∗M′ if and only
if y = γ(x, t) for some t ∈ R and (DΦ(x,t))∗(ξ,−η) = (0, 0) ∈ T ∗

(x,t)Rn+1.
This yields

N∗M′ =
{
(x, (Dxγ)∗(η); γ(x, t), η) : x ∈ Rn, t ∈ R, η · γ̇(x, t) = 0

}
.

For each fixed t, let y = γt(x), so that x = γ−1
t (y) and γ̇t(x) =

γ̇t(γ−1
t (y)) = d

ds (γt+s ◦ γ−1
t (y)) = ΓR(y, t). We thus have a parame-

trization of the canonical relation,

N∗M′=
{

(γ−1
t (y), (Dxγ)∗(η); y, η) : y∈Rn, t∈R, η⊥ΓR(y, t)

}
,(6.5)

which is favorable for analyzing the projection πR. Indeed the equiva-
lence of (P )R with the strong cusp condition follows immediately from
the lemma in Section 2.4.

6.4. Pullback and commutator conditions. The bracket condi-
tion (B)R for families of curves (6.2) states the linear independence
of vector fields X̂i, i = 1, . . . , n where X̂1 = X1, X̂2 = X2 and for
k = 2, . . . , n

X̂k := Xk +
k−1∑

m=2

∑

I=(i1,...,im)

aI,k[Xi1 , [Xi2 , . . . , [Xim−1 , Xim ] . . . ]](6.6)

with universal coefficients aI,k which can be computed from the coeffi-
cients of the Campbell-Hausdorff formula ([40, Chapter V.5], see also
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the exposition in [10]). In particular

X̂1 = X1,

X̂2 = X2,

X̂3 = X3 −
1
6
[X1, X2]

X̂4 = X4 −
1
4
[X1, X3] +

1
24

[X1, [X1, X2]]

X̂5 = X5 −
3
10

[X1, X4] −
1
10

[X2, X3] +
1
15

[X1, [X1, X3]]

+
1
30

[X2, [X1, X2]] −
1

120
[X1, [X1, [X1, X2]]].

(6.7)

See [56], [26] for the computation of the vector fields X̂3, X̂4 and their
relevance for folds and cusps.

Assuming (P )R we shall now show that (B)R holds and how one can
determine the coefficients in (6.6). By Taylor’s theorem in the s variable

(6.8) γs+t ◦ γ−1
t

= exp
(
φ(t, X1, . . . , Xn, . . . ) + sψ(t, X1, . . . , Xn, . . . ) + O(s2)

)
,

and then, by an application of the Campbell-Hausdorff formula (essen-
tially [26, Equation (6.4)]), we can rewrite this as

exp
(
O(s2)

)
◦ exp

(
φ + sψ

)
.

From this it follows that

ΓR(x, t) = ψ(t, X1, . . . , Xn, . . . )
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and thus condition (P )R becomes the linear independence of ψ,
ψ′, . . . , ψ(n−1). We will work modulo O(s2) + O(stn+1) and so can as-
sume that there are only n vector fields, X1, . . . , Xn. Compute

γs+t ◦ γ−1
t = exp

(
n∑

i=1

(s + t)iXi

)
◦ exp

(
−

n∑

i=1

tiXi

)

= exp
((∑

tiXi+s
∑

iti−1Xi

)
+O(s2)

)
◦ exp

(
−
∑

tiXi

)

= exp

(
n∑

i=1

(t + is)ti−1Xi

)
◦ exp

(
−

n∑

i=1

tiXi

)
mod O(s2)

= exp(B) ◦ exp(A)

with A = −
∑n

i=1 tiXi and B =
∑n

i=1(t + is)ti−1Xi. Now, the explicit
Campbell-Hausdorff formula (see [40]) can be written as

exp(B) ◦ exp(A)

= exp



A + B +
1
2
[A, B]

+
∞∑

m=3

∑

I=(i1,...,im)∈{1,2}m

cI ad(Ci1) . . . ad(Cim−1)(Cim)





= exp



A + B +
1
2
[A, B]

+
∞∑

m=3

∑

J=(j1,...,jm−2)∈{1,2}m−2

c̃J ad(Cj1) . . . ad(Cjm−2)([A, B])





(6.9)

where C1 = A, C2 = B and

c̃J = c(J,1,2) − c(J,2,1).
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The first few terms are given by

(6.10) A + B +
1
2
[A, B] +

1
12

[A, [A, B]]

− 1
12

[B, [A, B]] − 1
48

[A, [B, [A, B]]] − 1
48

[B, [A, [A, B]]] . . . .

For notational convenience, we let the sum start at m = 2 instead of
m = 3 and set c̃∅ = 1/2, and for the higher coefficients we get c̃(1) =
−c̃(2) = 1/12 and c̃(1,2) = c̃(2,1) = −1/48. These are enough to calculate
the coefficients in (B)R in dimensions less than or equal to five which
is the situation corresponding to at most S+

1,1,1,0 (strong swallowtail)
singularities.

Returning to (P )R, since we have C1 = A, C2 = B, we can use the
Kronecker delta notation to write Cj = (−1)j

∑n
i=1(t + δj2is)ti−1Xi.

Now

γs+t ◦ γ−1
t = exp



A + B

+
∞∑

m=2

∑

J=(j1,...,jm−2)∈{1,2}m−2

c̃J ad(Cj1) . . . ad(Cjm−2)([A, B])



+O(s2)

which modulo O(s2) is equal to

exp



−
n∑

i=1

tiXi +
n∑

i=1

(ti + isti−1)Xi

−
∞∑

m=2

∑

J=(j1,...,jm−2)∈{1,2}m−2

c̃J ad

(
(−1)j1

∑

i1

(t+δj12i1s)t
i1−1Xi1

)
· . . .

. . . · ad



(−1)jm−2
∑

im−2

(t + δjm−22im−2s)tim−2−1Xim−2





·








n∑

im−1=1

−tim−1−1Xim−1 ,
n∑

im=1

(t + ims)tim−1Xim











 ,
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which, again modulo O(s2), is equal to

exp



φ(t, X1, . . . , Xn)

+ s




n∑

i=1

iti−1Xi −
∞∑

m=2




∑

J∈{1,2}m−2

(−1)
∑m−2

l=1
jl c̃J





×
∑

i1,...,im−2

∑

im−1<im

(im − im−1) · ad(Xi1) · . . .

. . . · ad(Xim−2)
(
[Xim−1 , Xim ]

)
t−1+

∑m

l=1
il







 .

From this we obtain

ΓR(x, t) =
n∑

i=1

iti−1Xi −
∞∑

m=2




∑

J∈{1,2}m−2

(−1)
∑m−2

l=1
jl c̃J





×
∑

i1,...,im−2

∑

im−1<im

(im − im−1)

· ad(Xi1) · . . . · ad(Xim−2)
(
[Xim−1 , Xim ]

)
t−1+

∑m

l=1
il

:=
n∑

i=1

iti−1X̂i.

Since the c̃J ’s are known (cf. [40, Chapter V.5], [77]) this allows one to
compute the X̂i’s and this shows that the condition (P )R is equivalent
with a bracket condition (B)R for some coefficients aI,k.

To illustrate this, we restrict to n ≤ 5 and to get a manageable ex-
pression we work mod O(t5) and use (6.10); the expression for ΓR(x, t)
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becomes then

∑

i

iti−1Xi −
1
2

∑

i1<i2

(i2 − i1)[Xi1 , Xi2 ]t
i1+i2−1

+
1
6

∑

i1

∑

i2<i3

(i3 − i2) · [Xi1 , [Xi2 , Xi3 ]]t
i1+i2+i3−1

− 1
24

∑

i1,i2

∑

i3<i4

(i4 − i3) · [Xi1 , [Xi2 , [Xi3 , Xi4 ]]]t
i1+i2+i3+i4−1

which becomes

X1 + 2tX2 + 3t2X3 + 4t3X4 + 5t4X5

− 1
2
[X1, X2]t2 − [X1, X3]t3 −

3
2
[X1, X4]t4 −

1
2
[X2, X3]t4

+
1
6
[X1, [X1, X2]]t3 +

1
3
[X1, [X1, X3]]t4 +

1
6
[X2, [X1, X2]]t4

− 1
24

[X1, [X1, [X1, X2]]]t4

= X̂1 + 2tX̂2 + 3t2X̂3 + 4t3X̂4 + 5t4X̂5

where the X̂i are given in (6.7). Thus condition (B)R in dimension n ≤ 5
is the linear independence of the X̂i for 0 ≤ i ≤ n − 1.

6.5. Curves on some nilpotent groups. Let G be an n dimensional
nilpotent Lie group with Lie algebra g. Let γ : R → G be a smooth curve
and define

GR(t) = (DRγ(t))−1(γ′(t)),

where DRg denotes the differential of right-translation by g ∈ G. Note
that GR : R → T0G = g defines a curve in the Lie algebra g.

Lemma. The pullback condition (P )R for the family of curves t 1→ x ·
γ(t)−1 is satisfied if and only if the vectors GR(t), G′

R(t), . . . , G(n−1)
R (t)

are linearly independent everywhere.
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To prove this, compute

ΓR(x, t) =
d

ds

(
γs+t

(
x · γ(t)

))∣∣
s=0

=
d

ds

(
x · γ(t) · γ(s + t)−1

)∣∣
s=0

= −x · γ(t) · γ−1(t) · γ′(t) · γ−1(t)

= −x · γ′(t) · γ−1(t)

= −x ·
(
DR−1

γ(t)(γ
′(t)
)

= −x · GR(t),

from which the equivalence is obvious.
The condition that GR, . . . , G(n−1)

R be linearly independent came up in
work of Secco [65], who proved under this condition the sharp L3/2 → L2

boundedness result for the convolution operator

Rf(x) =
∫

f(x · γ(t)−1)χ(t) dt

on the Heisenberg group H (thus n = 3). For the model family of
cubics γ(t) = (t, t2, αt3), one easily computes that GR(t) = (1, 2t, (3α +
1
6 )t2), so that her condition is satisfied if and only if α '= − 1

6 .
We further illustrate the lemma above by analyzing a two-parameter

family of quartics on a four-dimensional, three-step nilpotent group,
which we denote M, due to its relation with the Mizohata operator.
The Lie algebra m of M is spanned by Yj , 1 ≤ j ≤ 4, satisfying

[Y1, Y2] = Y3, [Y1, Y3] = Y4,

with all other commutators equal zero. Thus, Y1 and Y2 satisfy the same
commutator relations as real and imaginary parts of the operator ∂

∂x +
ix2

2
∂
∂y , cf. [45].

The group multiplication is given by

(x1, x2, x3, x4) · (y1, y2, y3, y4) =
(

x1 + y1, x2 + y2, x3 + y3

+
1
2
(x1y2−x2y1), x4+y4+

1
2
(x1y3−x3y1)+

1
12

(x1−y1)(x1y2−x2y1)
)

.

For α, β ∈ R, we define curves γ(t) = (t, s2, αt3, βt4) and ask for
which values of the parameters the vectors GR(t), . . . , G′′′

R (t) are linearly
independent.
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We derive this in two different ways: first by the above lemma and
then using the bracket condition. To form GR, we first calculate the de-
rivative of Ry(x)=x·y, acting on a tangent vector X =(X1, X2, X3, X4) ∈
m = T0M:

DRy(X) =
(

X1, X2, X3 +
1
2
y2X1

−1
2
y1X2, X4 +

6y3 − y1y2

12
X1 +

y2
1

12
X2 −

y1

2
X3

)
.

Computing the inverse of this and applying it for y=γ(t)=(t, t2, αt3, βt4),
one calculates

GR(s) =
(
DRγ(t)

)−1
(γ̇(t)) =

(
DRγ(t)

)−1
(1, 2t, 3αt2, 4βt3)

=
(

1, 2t,

(
6α + 1

2

)
t2,

(
α + 4β +

1
6

)
t3
)

.

Thus, G(i)
R , i = 0, . . . , 3 are linearly independent if and only if α + 1

6 '= 0
and α + 4β + 1

6 '= 0.
Alternatively we may quickly rederive this by using the bracket con-

dition (B)R for n = 4. We have

γ(x, t) = x · (t, t2, αt3, βt4)−1

= exp
(
t(−Y1) + t2(−Y2) + t3(−αY3) + t4(−βY4)

)
(x),

where Y1, . . . , Y4 is the above basis for m, so we have the representation
as in (1.1) with

X1 = −Y1, X2 = −Y2, X3 = −αY3, X4 = −βY4

and thus condition (B)R says that the vector fields

− Y1, −Y2, −αY3 −
1
6
[−Y1,−Y2], −βY4

− 1
4
[−Y1,−αY3] +

1
24

[−Y1, [−Y1,−Y2]]

are linearly independent, which is equivalent with the linear indepen-
dence of the vector fields Y1, Y2, (α + 1

6 )Y3 and (α
4 + β + 1

24 )Y4.
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