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REPRESENTATION OF ALGEBRAIC DISTRIBUTIVE
LATTICES WITH ℵ1 COMPACT ELEMENTS AS IDEAL

LATTICES OF REGULAR RINGS

Friedrich Wehrung

Abstract
We prove the following result:

Theorem. Every algebraic distributive lattice D with at most ℵ1

compact elements is isomorphic to the ideal lattice of a von Neu-
mann regular ring R.

(By earlier results of the author, the ℵ1 bound is optimal.) There-
fore, D is also isomorphic to the congruence lattice of a section-
ally complemented modular lattice L, namely, the principal right
ideal lattice of R. Furthermore, if the largest element of D is
compact, then one can assume that R is unital, respectively, that
L has a largest element. This extends several known results of
G. M. Bergman, A. P. Huhn, J. Tůma, and of a joint work of
G. Grätzer, H. Lakser, and the author, and it solves Problem 2 of
the survey paper [10].
The main tool used in the proof of our result is an amalgamation
theorem for semilattices and algebras (over a given division ring),
a variant of previously known amalgamation theorems for semi-
lattices and lattices, due to J. Tůma, and G. Grätzer, H. Lakser,
and the author.

Introduction

It is a well-known and easy fact that the lattice of ideals of any
(von Neumann) regular ring is algebraic and distributive. In unpub-
lished notes from 1986, G. M. Bergman [2] proves the following converse
of this result:

Bergman’s Theorem. Every algebraic distributive lattice D with coun-
tably many compact elements is isomorphic to the ideal lattice of a regular
ring R, such that if the largest element of D is compact, then R is unital.
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On the negative side, the author of the present paper, in [20], using
his construction in [19], proved that Bergman’s Theorem cannot be ex-
tended to algebraic distributive lattices with ℵ2 many compact elements
(or more). This left a gap at the size ℵ1, expressed by the statement of
the following problem:

Problem 2 of [10]. Let D be an algebraic distributive lattice with at
most ℵ1 compact elements. Does there exist a regular ring R such that
the ideal lattice of R is isomorphic to D?

In this paper, we provide a positive solution to this problem, see
Theorem 5.2. Of independent interest is an amalgamation result of ring-
theoretical nature, mostly inspired by the lattice-theoretical construc-
tions in [17] and [13], see Theorem 4.2. This result is the main tool
used in the proof of Theorem 5.2.

Once the Amalgamation Theorem (Theorem 4.2) is proved, the repre-
sentation result follows from standard techniques, based on the existence
of lattices called 2-frames in [6], or lower finite 2-lattices in [5]. Such a
technique has, for example, been used successfully in [14], [15], where
A. P. Huhn proves that every distributive algebraic lattice D with at
most ℵ1 compact elements is isomorphic to the congruence lattice of
a lattice L. Theorem 5.2 provides a strengthening of Huhn’s result,
namely, it makes it possible to have L sectionally complemented and
modular, see Corollary 5.3. Note that we already obtained L relatively
complemented with zero (thus sectionally complemented), though not
modular, in [13].

We do not claim any originality about the proof methods used in
this paper. Most of what we do amounts to translations between known
concepts and proofs in universal algebra, lattice theory, and ring theory.
However, the interconnections between these domains, as they are, for
example, presented in [10], are probably not well-established enough to
trivialize the results of this paper.

1. Basic concepts

Lattices, semilattices. References for this section are [3], [11], [12].
Let L be a lattice. We say that L is complete, if every subset of L has

a supremum. An element a of L is compact, if for every subset X of L
such that the supremum of X,

∨
X, exists, a ≤ ∨

X implies that there
exists a finite subset Y of X such that a ≤ ∨

Y . The unit of a lattice is
its largest element, if it exists.
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We say that L is algebraic, if it is complete and every element is the
supremum of compact elements. If L is an algebraic lattice, then the
set S of all compact elements of L is closed under the join operation,
and it contains 0 (the least element of L) as an element. We say that S
is a {∨, 0}-semilattice, that is, a commutative, idempotent monoid (the
monoid operation is the join).

If S is a {∨, 0}-semilattice, an ideal of S is a nonempty, hereditary
subset of S closed under the join operation. The set IdS of all ideals of S,
partially ordered by containment, is an algebraic lattice, and the compact
elements of IdS are exactly the principal ideals (s] = {t ∈ S | t ≤ s},
for s ∈ S. In particular, the semilattice of all compact elements of IdS
is isomorphic to S. Conversely, if L is an algebraic lattice and if S is the
semilattice of all compact elements of L, then the map from L to IdS that
with every element x of L associates {s ∈ S | s ≤ x} is an isomorphism.
It follows that algebraic lattices and {∨, 0}-semilattices are categorically
equivalent. The class of homomorphisms of algebraic lattices that cor-
respond, through this equivalence, to {∨, 0}-homomorphisms of semi-
lattices, are the compactness preserving,

∨
-complete homomorphisms of

algebraic lattices. (We say that a homomorphism f : A→ B of algebraic
lattices is

∨
-complete, if

∨
f [X] = f (

∨
X), for every (possibly empty)

subset X of A.) We observe that if B is finite, then any homomorphism
from A to B is compactness-preserving.

A {∨, 0}-semilattice S is distributive, if its ideal lattice IdS is a dis-
tributive lattice. Equivalently, S satisfies the following statement:

(∀a, b, c)
(
c ≤ a ∨ b⇒ (∃x, y)(x ≤ a and y ≤ b and c = x ∨ y)

)
.

For a lattice L, the set ConL of all congruences of L, endowed with
containment, is an algebraic lattice. Its semilattice of compact elements
is traditionally denoted by Conc L, the semilattice of finitely generated
congruences of L.

We say that L is

— modular, if x ∧ (y ∨ z) = (x ∧ y) ∨ z for all x, y, z ∈ L such that
x ≥ z;

— complemented, if it has a least element, denoted by 0, a largest
element, denoted by 1, and for all a ∈ L, there exists x ∈ L such
that a ∧ x = 0 and a ∨ x = 1;

— sectionally complemented, if it has a least element, denoted by 0,
and for all a, b ∈ L such that a ≤ b, there exists x ∈ L such that
a ∧ x = 0 and a ∨ x = b.

We denote by 2 the two-element lattice.



422 F. Wehrung

Rings, algebras. All the rings encountered in this work are associa-
tive, but not necessarily unital. A ring R is regular (in von Neumann’s
sense), if it satisfies the statement (∀x)(∃y)(xyx = x). If R is a regu-
lar ring, then the set of all principal right ideals of R, partially ordered
by containment, is a sectionally complemented modular lattice, see, for
example, [7, page 209].

If R is a ring, then we denote by IdR the set of all two-sided ideals of
R, partially ordered by containment. Then IdR is an algebraic mod-
ular lattice, which turns out to be distributive if R is regular. We
denote by IdcR the semilattice of all compact elements of IdR, that
is, the finitely generated two-sided ideals of R. It is to be noted that
Idc can be extended to a functor from rings and ring homomorphisms
to {∨, 0}-semilattices and {∨, 0}-homomorphisms, and that this functor
preserves direct limits.

If K is a division ring, a K-algebra is a ring R endowed with a struc-
ture of two-sided vector space over K such that the equalities

λ(xy) = (λx)y, (xλ)y = x(λy), (xy)λ = x(yλ)

hold for all x, y ∈ R, and λ ∈ K. Such a structure is called a K-ring
in [4, Section 1]. Most of the rings that we shall encounter in this work
are, in fact, algebras.

2. Embedding into V-simple algebras

Definition 2.1. A unital, regular ringR is V-simple, ifRR is isomorphic
to all its nonzero principal right ideals, and there are nonzero principal
right ideals I and J of R such that I ⊕ J = RR.

It is obvious that if R is V-simple, then it is simple. The converse is
obviously false, for example, if R is a field.

Notation. Let κ be an infinite cardinal number, let U be a two-sided
vector space over a division ring K. For example, if I is any set, then
the set K(I) of all I-families with finite support of elements of K is
endowed with a natural structure of two-sided vector space over K.

Let Nκ(U) be the subset of the algebra EndK(U) of right K-vector
space endomorphisms of U defined by

Nκ(U) = {f ∈ EndK(U) | dimK im f < κ}.
It is obvious that Nκ(U) is a two-sided ideal of EndK(U). We define a
K-algebra, Eκ(U), by

Eκ(U) = EndK(U)/Nκ(U).
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The idea behind the proof of Lemma 2.2 and Proposition 2.3 is old,
see, for example, Theorem 3.4 in [1]. For convenience, we recall the
proofs here.

Lemma 2.2. Let κ be an infinite cardinal number, let U be a two-sided
vector space of dimension κ over a division ring K. Then Eκ(U) is a
unital, regular, V-simple K-algebra.

Proof: Note that Eκ(U) is nontrivial, because κ ≤ dimK U . Since
the endomorphism ring EndK(U) is regular, so is also the quotient
ring Eκ(U) = EndK(U)/Nκ(U), see Lemma 1.3 in [8].

Furthermore, the principal right ideals of R = EndK(U) are exactly
the ideals of the form

IX = {f ∈ R | im f ⊆ X},
for a subspace X of U . If X and Y are subspaces of U , then X ∼= Y
implies that IX ∼= IY . If X is a subspace of dimension κ of U , then X
can be decomposed as X = X0 ⊕X1, where dimK X0 = dimK X1 = κ,
hence

[IX ] = [IX0 ] + [IX1 ] = 2[IX ],

where [I] denotes the isomorphism class of a right ideal I. Since X ∼= U ,
[IX ] = [IU ] = [R]. However, if X is a subspace of U of dimension < κ,
then the image of IX in Eκ(U) is the zero ideal. The conclusion fo-
llows.

Proposition 2.3. Let K be a division ring. Every unital K-algebra has
a unital embedding into a unital, regular, V-simple K-algebra.

Proof: Let R be a unital K-algebra. Put κ = ℵ0 + dimK R, where
dimK R denotes the right dimension of R over K, and U = R(κ), the
R-algebra of all κ-sequences with finite support of elements of R. We
put

S = Eκ(U).

Since the dimension of U over K equals κ, it follows from Lemma 2.2
that S is a unital, regular, V-simple K-algebra.

Define a map ϕ : R → EndK(U), by the rule

ϕ(a) : U → U, x �→ ax,

for all a ∈ R. It is easy to see that ϕ is a unital ring homomorphism
from R to EndK(U).
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Let a ∈ R \ {0}. If 〈eξ | ξ < κ〉 denotes the canonical basis of U over
R, then the range of ϕ(a) contains all the elements aeξ, for ξ < κ, thus
its dimension over K is greater than or equal to κ. Hence, ϕ(a) does not
belong to Nκ(U). Therefore, the map ψ from R to S defined by the rule

ψ(a) = ϕ(a) + Nκ(U),

for all a ∈ R, is a unital K-algebra embedding from R into S.

3. Amalgamation of algebras over a division ring

The following fundamental result has been proved by P. M. Cohn, see
Theorem 4.7 in [4]. We also refer the reader to the outline presented in
[16, page 110], in the section “Regular rings: AP”.

Theorem 3.1. Let K be a division ring, let R, A, and B be unital
K-algebras, with R regular. Let α : R ↪→ A and β : R ↪→ B be uni-
tal embeddings. Then there exist a unital, regular K-algebra C, unital
embeddings α′ : A ↪→ C, and β′ : B ↪→ C, such that α′ ◦ α = β′ ◦ β.

By combining Theorem 3.1 with Proposition 2.3, we obtain immedi-
ately the following slight strengthening of Theorem 3.1:

Lemma 3.2. Let K be a division ring, let R, A, and B be unital K-al-
gebras, with R regular. Let α : R ↪→ A and β : R ↪→ B be unital embed-
dings. Then there exist a unital, regular, V-simple K-algebra C, unital
embeddings α′ : A ↪→ C, and β′ : B ↪→ C, such that α′ ◦ α = β′ ◦ β.

The following example partly illustrates the underlying complexity of
Theorem 3.1, by showing that even in the case where A and B are finite-
dimensional over R, one may not be able to find a finite-dimensional
solution C to the amalgamation problem:

Example 3.3. Let K be any division ring. We construct unital, ma-
tricial extensions A and B of the regular K-algebra R = K2 such that
the amalgamation problem of A and B over R has no finite-dimensional
solution.

Proof: We put A = M2(K) (resp., B = M3(K)), the ring of all square
matrices of order 2 (resp., 3) over K, endowed with their canonical K-al-
gebra structures. We define unital embeddings of K-algebras f : R ↪→ A
and g : R ↪→ B as follows:

f(〈x, y〉) =
(
x 0
0 y

)
, and g(〈x, y〉) =


x 0 0

0 x 0
0 0 y


 ,(1)

for all x, y ∈ K.
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Suppose that the amalgamation problem of A and B over R (with
respect to f and g) has a solution, say, f ′ : A ↪→ C and g′ : B ↪→ C,
where C is a finite-dimensional, not necessarily unital K-algebra and
f ′, g′ are embeddings of unital K-algebras. For a positive integer d, we
denote by ed

i,j , for 1 ≤ i, j ≤ d, the canonical matrix units of the matrix
ring Md(K). So, (1) can be rewritten as

f(〈x, y〉) = e21,1x+ e22,2y, and g(〈x, y〉) = (e31,1 + e32,2)x+ e33,3y,(2)

for all x, y ∈ K. Put ui,j = f ′(e2i,j), for all i, j ∈ {1, 2}, and vi,j =
g′(e3i,j), for all i, j ∈ {1, 2, 3}. Then apply f ′ (resp. g′) to the first (resp.,
second) equality of (2). Since f ′ ◦ f = g′ ◦ g, we obtain that the equality

u1,1x+ u2,2y = (v1,1 + v2,2)x+ v3,3y,

holds, for all x, y ∈ K. Specializing to x, y ∈ {0, 1} yields the equalities

u1,1 = v1,1 + v2,2,(3)

u2,2 = v3,3.(4)

However, the elements ui,j of C, for i, j ∈ {1, 2}, satisfy part of the
equalities defining matrix units in C, namely, ui,juk,l = δj,kui,l, for
all i, j, k, l ∈ {1, 2} (δ− denotes here the Kronecker symbol). Sim-
ilarly, the elements vi,j of C, for i, j ∈ {1, 2, 3}, satisfy the equali-
ties vi,jvk,l = δj,kvi,l, for all i, j, k, l ∈ {1, 2, 3}. Therefore, by (3) and
(4), dimK(u1,1C) = dimK(v1,1C) + dimK(v2,2C) = 2 dimK(v3,3C) =
2 dimK(u2,2C) = 2 dimK(u1,1C). But then, since C is finite-dimensional,
dimK(u1,1C) = 0, so dimK(f ′A) = dimK(g′B) = 0, a contradiction.

For a further discussion of Example 3.3, see the comments following
the statement of Problem 1 in Section 6.

4. The amalgamation theorem

Definition 4.1. Let K be a division ring. A K-algebra R is V-Boolean,
if it is isomorphic to a finite direct product of V-simple K-algebras.

Theorem 4.2. Let K be a division ring, let R0, R1, and R2 be unital
K-algebras, with R0 regular, let S be a finite Boolean lattice. For k ∈
{1, 2}, let fk : R0 → Rk be a homomorphism of unital K-algebras and
let ψk : IdRk → S be a unit-preserving

∨
-complete homomorphism, such

that ψ1 ◦ Id f1 = ψ2 ◦ Id f2. Then there exist a unital, regular, V-Boolean
K-algebra R, homomorphisms of unital K-algebras gk : Rk → R, for
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k ∈ {1, 2}, and an isomorphism α : IdR → S such that g1 ◦ f1 = g2 ◦ f2
and α ◦ Id gk = ψk for k ∈ {1, 2} (see Figure 1).

IdR

α
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���������
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��							
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����������

ψ0

		

Id f2
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Proof: We adapt to the context of regular rings the lattice-theoretical
proof of Theorem 1 of [13].

We put ψ0 = ψ1 ◦ Id f1 = ψ2 ◦ Id f2. We start with the following case:

Case 1: S ∼= 2.

We put Ik = {x ∈ Rk | ψk(RkxRk) = 0}, for k ∈ {0, 1, 2}. Since ψk is
a

∨
-complete homomorphism, Ik is the largest ideal of Rk whose image

under ψk is zero. Furthermore, since ψk is unit-preserving, Ik is a proper
ideal of Rk.

Next, we put Rk = Rk/Ik, and we denote by pk : Rk � Rk the
canonical projection.

For k ∈ {1, 2}, the equivalence x ∈ I0 ⇔ fk(x) ∈ Ik holds for all
x ∈ R0, thus there exists a unique unital embedding fk : R0 ↪→ Rk such
that pk ◦ fk = fk ◦ p0, see Figure 2.
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Since R0 is regular and f0, f1 are unital embeddings, there exist, by
Lemma 3.2, a unital, regular, V-simple K-algebra R and embeddings
gk : Rk ↪→ R, for k ∈ {1, 2}, such that g1 ◦ f1 = g2 ◦ f2, see Figure 2.

We put gk = gk ◦ pk, for k ∈ {1, 2}, see Figure 3.
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Figure 3

Therefore,

g1 ◦ f1 = g1 ◦ p1 ◦ f1 = g1 ◦ f1 ◦ p0 = g2 ◦ f2 ◦ p0 = g2 ◦ f2.

Since R is V-simple, it is simple, thus, since S ∼= 2, there exists a unique
isomorphism α : IdR → S. To verify that α ◦ Id gk = ψk, for k ∈ {1, 2},
it suffices to verify that (Id gk)(I) = 0 iff ψk(I) = 0, for every I ∈ IdRk.
We proceed:

(Id gk)(I) = 0 iff gk[I] = 0

iff gk ◦ pk[I] = 0

iff pk[I] = 0

(because gk is an embedding)

iff I ⊆ Ik

iff ψk(I) = 0,

which concludes Case 1.

Case 2: General case, S finite Boolean.

Without loss of generality, S = 2n, with n < ω. For i < n, let
πi : S � 2 be the projection on the i-th coordinate. We apply Case 1 to
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the maps πiψk, for k ∈ {1, 2}, see Figure 4.
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We obtain a unital, regular, V-simple K-algebra R(i), K-algebra homo-
morphisms gk,i, for k ∈ {1, 2}, an isomorphism αi : IdR(i) → 2, such
that g1,i ◦ f1 = g2,i ◦ f2 and αi ◦ Id gk,i = πi ◦ ψk, for k ∈ {1, 2}, see
Figure 4.

Now we put R =
⊕

i<nR
(i), with the componentwise ring structure.

So R is a unital, regular, V-Boolean K-algebra. For k ∈ {1, 2}, we define
a unital homomorphism gk : Rk → R by the rule

gk(x) = 〈gk,i(x) | i < n〉, for all x ∈ Rk.

It is immediate that g1 ◦ f1 = g2 ◦ f2.
Furthermore, observe that

∏
i<n IdR(i) ∼= IdR, via the isomorphism

that sends a finite sequence 〈Ii | i < n〉 to
⊕

i<n Ii. Define an isomor-
phism α : IdR → S by the rule

α

(⊕
i<n

Ii

)
= 〈αi(Ii) | i < n〉, for all I ∈ IdR.

For k ∈ {1, 2} and I ∈ IdRk, we compute:

α ◦ (Id gk)(I) = α

(⊕
i<n

(Id gk,i)(I)

)

= 〈αi ◦ (Id gk,i)(I) | i < n〉
= 〈πi ◦ ψk(I) | i < n〉
= ψk(I),

so α ◦ Id gk = ψk.
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5. The representation theorem

We first state a useful lemma, see [5] and [6]:

Lemma 5.1. There exists a lattice F of cardinality ℵ1 satisfying the
following properties:

(i) F is lower finite, that is, for all a ∈ F , the principal ideal

F [a] = {x ∈ F | x ≤ a}

is finite.
(ii) Every element of F has at most two immediate predecessors.

Theorem 5.2. Let D be an algebraic distributive lattice with at most ℵ1

compact elements, and let K be a division ring. Then there exists a
regular K-algebra R satisfying the following properties:

(i) IdR ∼= D.
(ii) If the largest element of D is compact, then R is a direct limit

of unital, regular, V-Boolean K-algebras and unital embeddings of
K-algebras. In particular, R is unital.

Proof: A similar argument has already been used, in different contexts,
in such various references as [6], [14], [15], [13].

We first translate the problem into the language of semilattices. This
amounts, by defining S as the {∨, 0}-semilattice of compact elements
of D, to verifying the existence of a regular K-algebra R satisfying the
following condition

(i’) IdcR ∼= S,

along with (ii). We do this first in the case where the largest element
of D is compact, that is, where S has a largest element. It is proved
in [10] that S is a direct limit of finite Boolean {∨, 0}-semilattices and
{∨, 0, 1}-homomorphisms, say,

〈S, ϕi〉i∈I = lim−→〈Si, ϕ
i
j〉i≤j in I ,

where I is a directed partially ordered set, and 〈Si, ϕ
i
j〉i≤j in I is a di-

rect system of finite Boolean {∨, 0}-semilattices and {∨, 0, 1}-homomor-
phisms (in particular, ϕi

j : Si → Sj and ϕi : Si → S, for i ≤ j in I).
Furthermore, one can take I countably infinite if S is finite, and |I| = |S|
if S is infinite. In particular, |I| ≤ ℵ1.

Let F be a lattice satisfying the conditions of Lemma 5.1. Since
|F | ≥ |I| > 0, there exists a surjective map ν0 : F � I. Since F is lower
finite, it is well-founded, so we can define inductively an order-preserving,



430 F. Wehrung

cofinal map ν : F → I, by putting

ν(x) = any element i of I such that ν0(x) ≤ i and ν(y) ≤ i,

for all y < x,

for all x ∈ F . This is justified because F is lower finite, and this does not
use part (ii) of Lemma 5.1. As a conclusion, we see that we may index
our direct system by F itself, that is, we may assume that I satisfies the
conditions (i), (ii) of Lemma 5.1.

We shall now define inductively unital, regular, V-Boolean K-alge-
bras Ri, unital homomorphisms of K-algebras f i

j : Ri → Rj , and iso-
morphisms εi : IdcRi → Si, for i ≤ j in I.

Let 5 : I → ω be the natural rank function, that is,

5(i) = sup{5(j) | j < i} + 1,

for all i ∈ I. For all n < ω, we put

In = {i ∈ I | 5(i) ≤ n}.

By induction on n < ω, we construct V-Boolean K-algebras Ri (note
then that IdRi = IdcRi), maps εi : IdRi → Si, and unital homomor-
phisms of K-algebras f i

j : Ri → Rj , for all i ≤ j in In, satisfying the
following properties:

(a) f i
i = idRi

, for all i ∈ In.
(b) f i

k = f j
k ◦ f i

j , for all i ≤ j ≤ k in In.
(c) εi is a lattice isomorphism from IdRi onto Si, for all i ∈ In.
(d) The following diagram is commutative, for all i ≤ j in In:

IdRi

Id fi
j−−−−→ IdRj

εi

� �εj

Si −−−−→
ϕi

j

Sj

For n = 0, it suffices to construct a V-Boolean K-algebra R0 such
that IdR0

∼= S0. This is easy: if p is the number of atoms of S0, take
any V-simple K-algebra R, and put R0 = Rp.

Suppose having done the construction on In, we show how to extend
it to In+1. Let i ∈ In+1 such that 5(i) = n+ 1. Denote by i0 and i1 the
two immediate predecessors of i in I. Note that i0 and i1 do not need
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to be distinct.

IdRi

εi

��
Ri Si

Ri0

g0
����������

Ri1

g1
����������

IdRi0

ϕi0
i εi0���

�����
Id g0�������

���������

IdRi1

ϕi1
i εi1���

�����
Id g1�������

���������

Ri0∧i1

f i0∧i1
i0

���������� f i0∧i1
i1

����������

Figure 5

IdRi0∧i1

Id f i0∧i1
i0

����������� Id f i0∧i1
i1

�����������

By Theorem 4.2, there exist a unital, regular, V-Boolean K-algebra Ri,
unital homomorphisms of K-algebras gk : Rik

→ Ri, for k < 2, and an
isomorphism εi : IdRi → Si such that the following equalities hold:

g0 ◦ f i0∧i1
i0

= g1 ◦ f i0∧i1
i1

;(5)

εi ◦ Id gk = ϕik
i εik

, for k ∈ {1, 2},(6)

see Figure 5. If i0 = i1, we may replace g1 by g0: the diagrams of
Figure 5 remain commutative and (5), (6) remain valid. Thus we may
define f i0

i = g0 and f i1
i = g1, and (5), (6) are restated as

f i0
i ◦ f i0∧i1

i0
= f i1

i ◦ f i0∧i1
i1

;(7)

εi ◦ Id f ik
i = ϕik

i εik
, for k ∈ {1, 2}.(8)

At this point, we have defined f j
i , if i ∈ In+1 \ In and j is an immediate

predecessor of i. If i ∈ In+1 \ In and j < i, then the only possibility is
to put f j

i = f iν
i ◦ f j

iν
, where ν < 2 is such that j ≤ iν . For this to be

possible, we need to verify that if j ≤ i0 ∧ i1, then f i0
i ◦ f j

i0
= f i1

i ◦ f j
i1

.
This follows from (7), along with the following sequence of equalities:

f i0
i ◦ f j

i0
= f i0

i ◦ f i0∧i1
i0

◦ f j
i0∧i1

= f i1
i ◦ f i0∧i1

i1
◦ f j

i0∧i1

= f i1
i ◦ f j

i1
.

At this point, we have defined f j
i , if i ∈ In+1 \ In and j < i. We

extend this definition by putting f i
i = idRi . The verification of condi-

tions (a)–(d) above is then straightforward.
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Let R be the direct limit of the Ri, with the transition maps f i
j for i ≤

j in I. Since the Idc functor preserves direct limits, IdcR is isomorphic
to the direct limit of the IdcRi, with the transition maps Idc f

i
j , for i ≤ j

in I. By (c) and (d), it follows that IdcR is isomorphic to the direct
limit of all the Si, with the transition maps ϕi

j , for i ≤ j in I; whence
IdcR ∼= S. This settles part (ii) of the statement of Theorem 5.2.

Let now S be a distributive {∨, 0}-semilattice of cardinality at most
ℵ1. Adjoin a new largest element to S, forming T = S∪{1}. Then T is a
distributive {∨, 0}-semilattice with a largest element and of cardinality
at most ℵ1, thus, by what we just proved, it is isomorphic to IdcR, for
some regular unital K-algebra R. Let ε : IdcR → T be an isomorphism.
We define an ideal I of R, by

I = {x ∈ R | ε(RxR) ∈ S}.
Then S is the image of Idc I under ε. In particular, Idc I ∼= S. Since R
is regular and I is an ideal of R, I is regular, see [8, Lemma 1.3].

Corollary 5.3. Let D be an algebraic distributive lattice with at most ℵ1

compact elements. Then there exists a sectionally complemented modular
lattice L such that ConL ∼= D. Furthermore, if the largest element of D
is compact, then one can take L with a largest element.

Proof: By Theorem 5.2, there exists a regular ring R such that IdR ∼= D,
and R is unital if the largest element ofD is compact. Let L be the lattice
of all principal right ideals of R. Then L is a sectionally complemented
modular lattice, see Section 1. Note that if D has a largest element, then
R is unital, thus L has a largest element. By [20, Theorem 4.3], ConL
is isomorphic to IdR. Hence ConL ∼= D.

6. Problems and comments

The main amalgamation result of this paper, Theorem 4.2, is eas-
ily seen to imply that for every finite diagram D of finite Boolean
{∨, 0}-semilattices, if D is indexed by the square 22, then D has a lift-
ing, with respect to the Idc functor, by regular rings. The analogue of
this result in case D is indexed by the cube, 23, does not hold, by the
results of [18]. A 23-indexed diagram D is produced there, that cannot
be lifted, with respect to the Conc functor, by lattices with permutable
congruences. Since for a regular ring R, the ideal lattice of R is iso-
morphic to the congruence lattice of the principal right ideal lattice L
of R, and since L has permutable congruences (because it is sectionally
complemented), D cannot be lifted, with respect to the Idc functor, by
regular rings as well.
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The regular rings obtained in the underlying construction of Berg-
man’s Theorem are locally matricial, that is, direct limits of matricial
rings (a ring is matricial over a division ring K, if it is isomorphic to
a direct product of finitely many matrix rings over K). Quite to the
contrary, the rings that we obtain in the proof of Theorem 5.2 are not
locally matricial. In fact, if R is one of those rings, then the monoid V (R)
of isomorphism classes of finitely generated projective right R-modules
is a semilattice, as opposed to the case of a locally matricial ring R, for
which V (R) is cancellative. Our proof cannot be extended to provide R
locally matricial, because the finite-dimensional analogue of Theorem 4.2
fails. This suggests the following problem:

Problem 1. Let D be a distributive algebraic lattice with at most ℵ1

compact elements. Does there exists a locally matricial ring R such that
IdR ∼= D?

Problem 1 is equivalent to the particular instance of [10, Problem 1]
obtained by taking |S| ≤ ℵ1.

Because of Example 3.3, Theorem 4.2 does not extend to matricial al-
gebras over a division ring. However, this does not rule out a priori the
possibility of an extension of Theorem 4.2 to a sufficiently large subcate-
gory of the category of matricial K-algebras and unital homomorphisms
of algebras.

Problem 2. Let D be an algebraic distributive lattice with at most
ℵ1 compact elements. Does there exist a locally finite, complemented,
modular lattice L such that ConL ∼= D?

(A lattice L is locally finite, if every finitely generated sublattice of L
is finite.) It can be easily proved, by using some results of [9] and [21],
that a positive answer to Problem 2 would imply a positive answer to
Problem 1. Conversely, if one obtains a positive answer to Problem 1
with R locally matricial over a finite field K, then the lattice of principal
right ideals of R is locally finite, thus providing a positive answer to
Problem 2.
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