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ON THE DIOPHANTINE EQUATION
xp − x = yq − y

M. Mignotte† and A. Pethő‡

Abstract
We consider the diophantine equation

(∗) xp − x = yq − y

in integers (x, p, y, q). We prove that for given p and q with 2 ≤
p < q (∗) has only finitely many solutions. Assuming the abc-
conjecture we can prove that p and q are bounded. In the special
case p = 2 and y a prime power we are able to solve (∗) completely.

1. Introduction.
This paper was motivated by the observations of Fiedler and Al-

ford [FA]. We consider the family of diophantine equations

(1) xp − x = yq − y,

and (except in Section 3, where we consider rational solutions) we con-
sider only non-trivial integral solutions, that is solutions in rational in-
tegers (x, y) for which xp −x �= 0. Of course we always suppose that |x|,
|y|, p, q > 1 and that p �= q. In [FA], the authors give the following list
of positive solutions (x, p, y, q):

(3, 2, 2, 3), (6, 2, 2, 5), (15, 2, 6, 3), (16, 2, 3, 5),
(13, 3, 3, 7), (91, 2, 2, 13), (280, 2, 5, 7), (4930, 2, 30, 5).

†This work was began and finished during two visits of the first author to the Uni-
versity of Debrecen and he wants to thank the people of this University for their kind
hospitality.
‡Research supported in part by the Hungarian Foundation for Scientific Research,
Grant No. 25157/98.
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Studying systematically (1) we found no other solutions but all the above
solutions, as the only solutions of some different families, except the last
of the previous list. The exceptional solution (4930, 2, 30, 5) corresponds
to the equation x2 − x = y5 − y. It seems to be a hard problem to solve
this equation.

We shall first show that non-trivial solutions can exist only when the
exponents p and q are coprime. Suppose that p and q are both divisible
by some prime �, say p = �p′ and q = �q′, then

xp − yq = x− y = (xp′ − yq′
)


 ∑

i+j=�−1

yiq′
xjp′


 .

If � = 2, we get |x|p′
+ |y|q′ ≤ |x| + |y|, contradiction. If � ≥ 3, then

– if x and y are of the same sign we get again |x|p′
+ |y|q′ ≤ |x|+ |y|,

– if xy < 0 and y > 0 and x < 0 then we see that p′ must be even
and we get for the third time the inequality |x|p′

+ |y|q′ ≤ |x|+ |y|.
The case y < 0 and x > 0 can be treated similarly. Hence we have
proved

Proposition 1. If the equation (1) has non-trivial integral solutions
then p and q are coprime.

Remark. A similar proof shows that equation (1) has no non-trivial
solution (x, p, y, q) with y = zt and such that gcd(t, p) > 1.

We are quite unable to prove a general result about this equation, but
we prove some results about the finiteness of the set of solutions when
some values among x, y, p and q are fixed. Now we study a certain
collections of special cases for which we can obtain some information.
Let S denote a finite set of primes. The set consisting of 1 and of all
those integers which are divisible only by primes belonging to S is called
the set of S-integers. Now we state the finiteness results:

0) If x and p are fixed, then as y | (xp − x), there are only finitely
many possible solutions.

1) If x, y ∈ Z are fixed then xp−yq = x−y. This is a S-unit equation
in two unknowns, hence p, q < C(x, y), where the effectively
computable function C depends only on x and y. (See the book
of Shorey-Tijdeman, [Sh-T, Corollary 1.3].)
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2) If x, y are S-integers, then (1) becomes a four-term S-unit equa-
tion. As none of x, y, xp − x, yq − y and x + yq is zero, this
equation has only finitely many solutions (x, p, y, q) by a theorem
of Everste [E]. But this result is not effective.

3) If p and y are fixed, then we re-write (1) as

Q(x) := xp − x + y = yq.

Assume that x0 is a multiple root of Q(x). Then x0 is also a zero of
Q′(x) = pxp−1 − 1, i.e. x0 = (1/p)

1
p−1 ζ where ζ is a (p − 1)-th root of

unity. As Q(x0) = 0 we obtain

y =
(

1
p

) 1
p−1

ζ −
(

1
p

) p
p−1

ζ = ζ

(
1
p

) 1
p−1

(
1 − 1

p

)
= ζ

(
1
p

) 1
p−1

· p− 1
p

.

The rightmost number cannot be an integer, hence Q is square-free. As
p ≥ 2 we can apply Theorem 10.1 of [Sh-T] and conclude that q and x
are effectively bounded.

In the next two sections we are mainly dealing with the cases p and q
fixed.

2. An application of Siegel’s theorem.
In this section, we use the following result of Davenport, Lewis and

Schinzel [D-L-S]:

Theorem A. Let f(x) be a polynomial with integral coefficients of
degree n > 1 and g(y) be a polynomial with integral coefficients of de-
gree m > 1. Let D(λ) = disc

(
f(x) + λ

)
and E(λ) = disc

(
g(y) + λ

)
.

Suppose that there are at least �n/2	 disctinct roots of D(λ) = 0 for
which E(λ) �= 0. Then f(x) − g(y) is irreducible over the complex num-
bers. Further, the genus of the equation f(x)−g(y) = 0 is strictly positive
except possibly when m = 2 or m = n = 3. Apart from these possible
exceptions, the equation has at most a finite number of integral solutions.

Of course, the last assertion of this theorem is a direct application
of the famous result of Siegel [Si] about integral points of curves of
positive genus. Results which generalise the previous theorem can be
found in more recent papers like [P-S], [R-S] and [Sch]. The book of
Stepanov contains also the following more general result: Let n = deg(g),
if (n, q) = 1 then the polynomial yq − y − g(x) is absolutely irreducible
(see, [St, Corollary, p. 56]).
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For p = 2 equation (1) defines an elliptic or a hyperelliptic curve
according to q = 3 and q > 3. In both cases the genus of the curve is
positive. Hence we may assume 2 < p < q in the sequel.

Put f(x) = xp−x and g(y) = yq−y. First we compute the discriminant
of the polynomial h(x) = f(x) − λ = xp − x − λ. A common root x
of h(x) and h′(x) satisfies pxp − x = 0 and xp − x − λ = 0, hence
(p− 1)x+ pλ = 0. This leads to the formula D(λ) := disc(xp − x− λ) =
pp(−λ)p−1 − (p− 1)p−1. Any root λ of D satisfies

|λ| = (p− 1)p−p/(p−1).

Since the function z 
→ (z − 1)z−z/(z−1) is strictly increasing for z > 1
[proof: derivate], the discriminants E(λ) = disc(g(y)−λ) and D(λ) have
no common root, and the theorem above applies. We have obtained the
following result:

Theorem 1. For given p and q with 2 ≤ p < q, the diophantine
equation xp − x = yq − y has only a finite number of integral solutions.

Assuming the abc-conjecture we can prove much more. Let (x, p, y, q)
be a non-trivial solution of (1) with min{p, q} = p. Then, as |xp| ≈ |yq|
the abc-conjecture implies

|xp| ≤ (xy(x− y))1+ε < (|x|2+p/q)1+ε,

i.e. p = 2 for all but finitely many pairs (p, q).

For p = 2 we re-write (1) as (2x−1)2 = 4yq−(4y−1). Applying again
the abc-conjecture we obtain |yq| ≈ x2 ≤ (x · y2)1+ε, whence q ≤ 4 with
finitely many exceptions∗. For the finitely many exceptional pairs (p, q)
Theorem 1 implies that max{|x|, |y|} is bounded. Hence we have proved

Theorem 2. Assuming the abc-conjecture equation (1) has only fi-
nitely many non-trivial solutions.

∗We thank the referee for pointing out to this argument, and to other inaccuraces in
an earlier version of this paper.
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3. An application of Falting’s theorem.
In this section, we look at the set of rational solutions of equation (1).

Recall the following proposition (cf. [Fu, Prop. 5, p. 199]):

Proposition B. Let C be an irreducible plane curve with only ordi-
nary multiple points. Let n be the degree of C, rP = mP (C). Then the
genus of C is given by

g =
(n− 1)(n− 2)

2
−

∑
P∈C

rP (rP − 1)
2

.

We consider the curve C defined by equation (1). It follows by Theo-
rem A that this curve is irreducible. In the present case, for the equation

xp − x = yq − y,

a multiple point (x, y) would be a solution of the system


xp − x = yq − y,

pxp−1 − 1 = 0,
qyq−1 − 1 = 0.

This implies
x = p−

1
p−1 , y = q−

1
q−1

and, after some computation, we get the relation

1
pq−1

(
q(p− 1)
p(q − 1)

)(p−1)(q−1)

=
1

qp−1
.

Now suppose that � is a prime number which divides q and, more pre-
cisely, suppose that �β‖q and �α‖p − 1. Then � does not divide p by
Proposition 1, and � � | q − 1. Hence

(β + α)(p− 1)(q − 1) = −β(p− 1),

which is absurd. Thus we have proved that our curve C does not have
multiple points.

As a consequence, the genus g of C is equal to

g =
(q − 1)(q − 2)

2
≥ 3, when q ≥ 4.

[We suppose that q > p, without loss of generality.] Now, by Falting’s
theorem [Fa], we know that, there are only a finite nuber of rational
points on C. Thus we have proved the following result:
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Proposition 2. The curve C defined by the equation

xp − x = yq − y

has only a finite number of rational points (x, y) when 2 ≤ p < q and
q ≥ 4.

Remark. In the special case p = 2, q = 3, the curve C is an ellip-
tic curve with rank one, thus it contains an infinite number of rational
points.

4. The case p = 2.
We now consider the special case p = 2. In this special case, multiply-

ing by 4 gives

(2) X2 = 4yq − 4y + 1,

where X = 2x − 1. Put 4y − 1 = db2 where d is square-free and b is a
positive integer. Notice that (2) has the trivial solution (2y−1, y, 2). We
assume that (2) has the solutions (X, y, q), with q odd and, moreover,
that y is a prime power.

Put X ′ = 2y − 1. From the relation

X
′2 + db2 = 4y2,

if we put

α =
1 − b

√
−d

2
, β =

X ′ + b
√
−d

2
= y − 1 − b

√
−d

2
,

we see that α and β are algebraic integers in the number field K :=
Q[

√
−d], that β = −α2 and y = αᾱ (where the bar denotes complex

conjugation). Clearly gcd(α, ᾱ) = 1.

From the relation X2 + db2 = 4yq, if γ = X+sb
√
−d

2 , with s = ±1, we
see that γ is an algebraic integer in K and that the ideal (γ) is equal to

(γ) = cq,

for some ideal c of the field K. This relation implies (y) = cc̄. Now we
use (for the first time) the fact that y = pf for some prime number p.
The decomposition (y) = αᾱ proves that p splits in K, say (p) = pp̄ with
pf = (α) and p �= p̄. It is easy to prove that gcd(c, c̄) = 1. Choosing s
suitably we may assume that (γ) = pfq = (α)q.
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Now, β = −α2 and γ = εαq, where ε is a unit in K. Therefore,

(3) b
√
−d = α2 − ᾱ2 = εαq − ε̄ᾱq.

If d �= 3 [the case d = 1 cannot occur: d ≡ −1 (mod 4)], then the only
roots of unity in Q(

√
−d) are ±1, thus we have

(4) 1 = U2 = |Uq|

with Un = (αn − ᾱn)/(α− ᾱ).
Consider the special case d = 3. Then the only roots of unity in K

are ±1, ±1±
√
−3

2 . Let ε = 1+
√
−3

2 . Then

αq = γ · 1 −
√
−3

2
=

X + sb
√
−3

2
· 1 −

√
−3

2
=

X + 3sb + (sb−X)
√
−3

4

and so

Uq =
αq − ᾱq

α− ᾱ
=

(sb−X)
√
−3

2
· 1
−b

√
−3

=
X − sb

2b
.

We have Uq ∈ Z and b odd, hence b divides X. Thus b divides also
y because 4yq = X2 + db2, which implies b = 1 and y = 1, which is
absurd. Hence, ε = 1+

√
−3

2 is not possible. One can exclude similarly
the cases ε = 1−

√
−3

2 and ε = −1±
√
−3

2 . Hence (2) implies (4) in the
case d = 3 too.

We consider the equation (4). We have U0 = 0 and U1 = 1. By
Theorem 4 of Beukers [B] equation (4) has at most two solutions in q
unless y = αᾱ = 2, 3 and 5.

In our situation we know already two solutions of (4), namely q = 1
and 2, hence there are no others in the general case.

Consider the exceptional cases following Beukers [B]:
If y = 2, then q = 1, 2, 3, 5 and 13, and they give the (already known)

solutions

(x, p, y, q) = (3, 2, 2, 3), (6, 2, 2, 5), (91, 2, 2, 13).

If y = 3, then q = 1, 2 and 5, which corresponds to the (already known)
solution

(x, p, y, q) = (16, 2, 3, 5).

Finally, for y = 5, then q = 1, 2 and 7, and we obtain the (already
known) solution

(x, p, y, q) = (280, 2, 5, 7).
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Thus, we have proved the following result:

Theorem 3. When y is a prime power, the diophantine equation

x2 − x = yq − y, q > 2,

has only the following solutions

(x, y, q) = (3, 2, 3), (6, 2, 5), (91, 2, 13), (16, 3, 5), (280, 5, 7).

We notice that the equation x2 = 4yq + 4y + 1, where y is a prime
power, q ≥ 1, q �= 2, has been studied in [T-W1] and [T-W2], in the
second paper it is proved that the only solutions are (x, y, q) = (5, 3, 1)
and (11, 3, 3).

In the special case q = 3 we obtain the elliptic diophantine equa-
tion x2 − x = y3 − y. Mordell [M] proved a long time ago that it has
the following set of solutions (x, y) = (0, 0), (1, 0), (0,±1), (1,±1), (3, 2),
(−2, 2), (15, 6), (−14, 6), which contains four non-trivial solutions. For
p = 2, by Proposition 1 the case q = 4 leads only to trivial solutions.
Hence the following result:

Proposition 3. For p = 2 and q ≤ 4 the only non-trivial integral
solutions of equation (1) are

(3, 2, 2, 3), (15, 2, 6, 3), (2, 2,−2, 3), (−14, 2, 6, 3).

Remark. We are also able to treat some special cases when p = 3 and
y is fixed. Using elliptic curves and the computer algebra system simath
one can also prove that for p = 3 and y = 3 the only solution (x, p, y, q)
of (1) is (13, 3, 3, 7), which was already found in [FA] and that there are
no solutions for p = 3 and y = 2 or 4 ≤ y ≤ 8. Here, for each fixed value
of y, we have two elliptic equations to consider: Y 2 = X3 −X + y when
q is even (then Y = yq/2) and y Y 2 = X3 −X + y (where Y = y(q−1)/2)
when q is odd.
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