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Abstract
We give a new proof of the main result of [1] which does not use
the classification of the finite simple groups.

Introduction. In [1] the proof of the main result, [1, Theorem 2.3], is
based implicitly on the classification of the finite simple groups through
the use of [6, Theorem]. We give here a proof of [1, Theorem 2.3] which
does not use [6, Theorem].

The proof. Let G be a group. Recall that ∆(G) = {g ∈ G | [G :
CG(g)] < ∞} is a characteristic subgroup of G. A group G is an
FC-group (finite conjugate group) if G = ∆(G). A group G satisfies
Min (minimal condition on subgroups) if every non-empty set of sub-
groups of G, partially ordered by inclusion, has a minimal element. A
group satisfies Min-p for the prime p if each of its p-subgroups satisfies
Min.

Throughout, K denotes a field and G a locally finite group with no
elements of order char(K). Thus K[G] is a regular group ring (cf. [9,
Theorem 3.1.5]).

Lemma 1. Suppose that G is an FC-group satisfying Min-p for all
primes p and that the type If part of Qr(K[G]) is non-zero. Then G is
abelian-by-finite.

Proof: Suppose that G has no abelian subgroup of finite index. By [9,
Lemma 6.3.3] and [1, Lemma 1.3(ii)], we may assume that G is countable.
By [10, Lemma 6] and [1, Lemma 1.3(ii)], we may assume

G =

( ∞∏
i=1

Hi

)
/H,
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where
∏∞

i=1 Hi is a (weak) direct product of finite groups Hi. We may
also assume that H ∩ Hi = 〈1〉 for all i. Since H and Hi are disjoint
normal subgroups of

∏∞
i=1 Hi, they commute and we have

H ≤ Z

( ∞∏
i=1

Hi

)
=

∞∏
i=1

Z(Hi).

By [1, Lemmas 1.3(ii), 1.4 and Proposition 1.1], we may assume that the
Hi are not nilpotent and every proper subgroup of Hi is abelian.

By [8], Hi = Pi〈ti〉, where Pi is a normal Sylow pi-subgroup of Hi

and ti ∈ Hi is an element of order qni
i (ni ≥ 1), where qi is a prime.

Furthermore, 〈ti〉 is not normal in Hi and 〈tqi

i 〉 = Z(Hi).
Since the type If part of Qr(K[G]) is non-zero, by [3, Lemma 4.2],

there exists a non-zero abelian idempotent e ∈ K[G]. Thus there exists
an integer n, such that

〈Supp e〉 ≤
(

n∏
i=1

Hi

)
H/H ≤ G.

Since G satisfies Min-p for all primes p, it is easy to see that there are
infinitely many distinct qi. Let qj be such that j > n and 〈Supp e〉 has

no element of order qj . Let t̃j = 1 + tj + · · · + t
q

nj
j

−1

j . Note that t̃j/q
nj

j

is idempotent. Since (x, tj) = 1 for all x ∈ Supp e, et̃j/q
nj

j ∈ eK[G]e
is idempotent. Since e is abelian and (x, h) = 1 for all x ∈ Supp e and
h ∈ Hj , we have

et̃jh = eht̃j

for all h ∈ Hj . Using the fact that
∑q

nj
j

−1

i=0 K[〈Supp e〉]tij is a direct sum,
we deduce that xtj ∈ Supp et̃j for all x ∈ Supp e. Thus, given x ∈ Supp e
and h ∈ Hj , there exist y ∈ Supp e and m such that xtjh = yhtmj . Hence
tjht

−m
j h−1 = x−1y ∈ 〈Supp e〉 ∩Hj = 〈Supp e〉 ∩Z(Hj). Since Z(Hj) is

a qj-group and 〈Supp e〉 has no element of order qj , we see h−1tjh = tmj .
But 〈tj〉 is not normal in Hj , which is a contradiction, so the lemma is
proved.

Let J be a right ideal of K[G]. As in [3], we define α(J, F ) = dim(J ∩
K[F ])/|F | for each finite subgroup F of G, and α(J) = supα(J, F ),
where F ranges over all finite subgroups of G.

We denote by π(G) the set of all primes p such that G has an element
of order p. If π is a set of primes we say that G is a π-group if π(G) ⊆ π.
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Lemma 2. Suppose that G satisfies Min-p for all primes p and that
the type If part of Qr(K[G]) is non-zero. Then G is abelian-by-finite.

Proof: By [9, Lemma 6.3.3] and [1, Lemma 1.3(ii)], we may assume
that G is countable. By [1, Lemma 1.3(ii)] and Lemma 1, ∆(G) is
abelian-by-finite. By [9, Lemma 12.1.2], ∆(G) has a characteristic
abelian subgroup A of finite index. Let σ = π(∆(G)/A).

Since the type If part of Qr(K[G]) is non-zero, by [3, Lemma 4.2],
there exists a non-zero abelian idempotent e ∈ K[G]. Let H = 〈Supp e〉
and τ = π(H). Hence π = σ ∪ τ is a finite set of primes.

Now A is the direct product A =
∏

Ap of its p-primary parts. Let
Aπ′ =

∏
p/∈π Ap. Then Aπ′ is characteristic in G. Consider Ḡ = G/Aπ′ .

Let δ ∈ K[G]. We denote by δ̄ the image of δ in K[Ḡ]. By [4, Lemma 7.6],
ē is an abelian idempotent, and clearly it is non-zero. Let p be a prime
such that α(ēK[Ḡ]) > p−1 and p /∈ π. We shall see that p /∈ π(Ḡ).

Suppose that p ∈ π(Ḡ). Then there exists g ∈ G\∆(G) with o(g) = pn

and o(ḡ) = p. Let g̃ = 1 + g + · · · + gpn−1. Since K[G] is regular, there
exists β ∈ K[G] such that

g̃e = g̃eβg̃e.

By squaring it, we see that eβg̃e is an idempotent in eK[G]e. By [2,
Lemma 2.1], Supp eβg̃e ⊆ ∆(G)H. Let H1 = 〈Supp eβg̃e ∪ Supp e〉.
Thus p /∈ π(H̄1). Using the fact that we have a direct sum

∑p−1
i=0 ḡiK[H̄1],

we deduce that
pn−1ē = pn−1eβg̃e.

Since p �= 0 in K, ē = eβg̃e. Thus ēK[Ḡ] ∼= g̃eβK[Ḡ]. By [3,
Lemma 1.2(iv)], α(ēK[Ḡ]) ≤ α(g̃K[Ḡ]). But an easy calculation shows
that α(g̃K[Ḡ]) = p−1. This contradicts the choice of p. Thus p /∈ π(Ḡ).
Hence π(Ḡ) is finite.

Since ē is a non-zero abelian idempotent, by [3, Lemma 4.2], the type
I part of Qr(K[Ḡ]) is non-zero. By [1, Proposition 1.2], [Ḡ : ∆(Ḡ)] < ∞
and ∆(Ḡ)′ is finite. By [7, Theorem 3.13], ∆(Ḡ) satisfies Min-p for
all primes p. By [1, Lemma 1.4], [∆(Ḡ) : Z(∆(Ḡ))] < ∞. Thus Ḡ
is abelian-by-finite. By [1, Lemma 1.3(ii)], we may assume that Ḡ is
abelian.

Let π1 = π∪π(Ḡ) and let Aπ′
1

=
∏

p/∈π1
Ap. Then π(G/Aπ′

1
) ⊆ π1. By

[9, Lemma 12.4.12], there exists a π1-subgroup Q of G with G = Aπ′
1
Q.

By [1, Lemma 1.3(ii), Proposition 1.2 and Lemma 1.4], Q is abelian-
by-finite. By [1, Lemma 1.3(ii)], we may assume that Q is abelian.
Since π(Q) is finite and satisfies Min-p for all primes p, Q has a minimal
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subgroup of finite index. Thus by [1, Lemma 1.3(ii)], we may assume
that Q contains no proper subgroup of finite index.

We shall see that G is abelian. Let q be a prime such that q /∈ π1.
By [1, Lemma 1.3(ii), Proposition 1.2 and Lemma 1.4], AqQ has an
abelian normal subgroup B of finite index. Now [Q : Q ∩ B] < ∞,
thus Q ≤ B. Now B is the direct product B =

∏
Bp of its p-primary

parts. Let Bπ1 =
∏

p∈π1
Bp. Since Q is a π1-group, Q ≤ Bπ1 . Thus

AqQ = AqBπ1 . Since Bπ1 is a normal subgroup of AqBπ1 , AqQ is abelian.
Hence G = Aπ′

1
Q is abelian.

Theorem 3 ([1, Theorem 2.3]). The type If part of Qr(K[G]) is
non-zero iff [G : ∆(G)] < ∞ and ∆(G)′ is finite. Furthermore, in this
case the type If part of Qr(K[G]) is isomorphic to Qr(K[G/M ]), where
M = ∩L′ and the intersection is over all subgroups L of G of finite index.

Proof: The proof of the “if” part and the second part is as in [1].
Suppose that the type If part of Qr(K[G]) is non-zero. Suppose that

[G : ∆(G)] = ∞ or |∆(G)′| = ∞. By [1, Lemma 1.3(i)], there exists
a non-zero central idempotent u ∈ K[G] such that uK[G] has bounded
index of nilpotence. Thus, by [9, Theorem 5.3.15], uK[G] does not satisfy
any polynomial identity. By [1, Lemma 2.2], there exists an irreducible
uK[G]-module V with representation ρ:K[G] → EndV such that ρ(G)
has no abelian subgroup of finite index.

Since uK[G] has bounded index of nilpotence, by [4, Corollary 7.10], V
is finite dimensional over its commuting ring. By [5, Lemma 2.4], ρ(G)
satisfies Min-p for all primes p. Let ϕ:K[G] → K[ρ(G)] the natural
projection. It is easy to see that ϕ(u) is a non-zero central idempotent
of K[ρ(G)]. By [4, Proposition 7.7], ϕ(u)K[ρ(G)] has bounded index of
nilpotence. By [4, Corollary 7.4 and Theorems 7.20 and 10.24], the type
If part of Qr(K[ρ(G)]) is non-zero. By Lemma 2, ρ(G) is abelian-by-
finite, a contradiction, thus [G : ∆(G)] < ∞ and |∆(G)′| < ∞.
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