Publicacions Matemàtiques, Vol 40 (1996), 15-19.

THE MAXIMAL QUOTIENT RINGS OF REGULAR GROUP RINGS III

Ferran Cedó

To the memory of Andreu Pitarch

Abstract _

We give a new proof of the main result of [1] which does not use the classification of the finite simple groups.

Introduction. In [1] the proof of the main result, [1, Theorem 2.3], is based implicitly on the classification of the finite simple groups through the use of [6, Theorem]. We give here a proof of [1, Theorem 2.3] which does not use [6, Theorem].

The proof. Let G be a group. Recall that $\Delta(G) = \{g \in G \mid [G : C_G(g)] < \infty\}$ is a characteristic subgroup of G. A group G is an FC-group (finite conjugate group) if $G = \Delta(G)$. A group G satisfies Min (minimal condition on subgroups) if every non-empty set of subgroups of G, partially ordered by inclusion, has a minimal element. A group satisfies Min-p for the prime p if each of its p-subgroups satisfies Min.

Throughout, K denotes a field and G a locally finite group with no elements of order char(K). Thus K[G] is a regular group ring (cf. [9, Theorem 3.1.5]).

Lemma 1. Suppose that G is an FC-group satisfying Min-p for all primes p and that the type I_f part of $Q^r(K[G])$ is non-zero. Then G is abelian-by-finite.

Proof: Suppose that G has no abelian subgroup of finite index. By [9, Lemma 6.3.3] and [1, Lemma 1.3(ii)], we may assume that G is countable. By [10, Lemma 6] and [1, Lemma 1.3(ii)], we may assume

$$G = \left(\prod_{i=1}^{\infty} H_i\right) / H,$$

where $\prod_{i=1}^{\infty} H_i$ is a (weak) direct product of finite groups H_i . We may also assume that $H \cap H_i = \langle 1 \rangle$ for all *i*. Since *H* and H_i are disjoint normal subgroups of $\prod_{i=1}^{\infty} H_i$, they commute and we have

$$H \le Z\left(\prod_{i=1}^{\infty} H_i\right) = \prod_{i=1}^{\infty} Z(H_i).$$

By [1, Lemmas 1.3(ii), 1.4 and Proposition 1.1], we may assume that the H_i are not nilpotent and every proper subgroup of H_i is abelian.

By [8], $H_i = P_i \langle t_i \rangle$, where P_i is a normal Sylow p_i -subgroup of H_i and $t_i \in H_i$ is an element of order $q_i^{n_i}$ $(n_i \ge 1)$, where q_i is a prime. Furthermore, $\langle t_i \rangle$ is not normal in H_i and $\langle t_i^{q_i} \rangle = Z(H_i)$.

Since the type I_f part of $Q^r(K[G])$ is non-zero, by [3, Lemma 4.2], there exists a non-zero abelian idempotent $e \in K[G]$. Thus there exists an integer n, such that

$$\langle \operatorname{Supp} e \rangle \le \left(\prod_{i=1}^n H_i\right) H/H \le G.$$

Since G satisfies Min-p for all primes p, it is easy to see that there are infinitely many distinct q_i . Let q_j be such that j > n and $\langle \text{Supp } e \rangle$ has no element of order q_j . Let $\tilde{t}_j = 1 + t_j + \dots + t_j^{q_j^{n_j} - 1}$. Note that $\tilde{t}_j/q_j^{n_j}$ is idempotent. Since $(x, t_j) = 1$ for all $x \in \text{Supp } e$, $e\tilde{t}_j/q_j^{n_j} \in eK[G]e$ is idempotent. Since e is abelian and (x, h) = 1 for all $x \in \text{Supp } e$ and $h \in H_j$, we have

$$e\tilde{t}_jh = eh\tilde{t}_j$$

for all $h \in H_j$. Using the fact that $\sum_{i=0}^{q_j^{n_j}-1} K[\langle \operatorname{Supp} e \rangle] t_j^i$ is a direct sum, we deduce that $xt_j \in \operatorname{Supp} e\tilde{t}_j$ for all $x \in \operatorname{Supp} e$. Thus, given $x \in \operatorname{Supp} e$ and $h \in H_j$, there exist $y \in \operatorname{Supp} e$ and m such that $xt_jh = yht_j^m$. Hence $t_jht_j^{-m}h^{-1} = x^{-1}y \in \langle \operatorname{Supp} e \rangle \cap H_j = \langle \operatorname{Supp} e \rangle \cap Z(H_j)$. Since $Z(H_j)$ is a q_j -group and $\langle \operatorname{Supp} e \rangle$ has no element of order q_j , we see $h^{-1}t_jh = t_j^m$. But $\langle t_j \rangle$ is not normal in H_j , which is a contradiction, so the lemma is proved.

Let J be a right ideal of K[G]. As in [3], we define $\alpha(J, F) = \dim(J \cap K[F])/|F|$ for each finite subgroup F of G, and $\alpha(J) = \sup \alpha(J, F)$, where F ranges over all finite subgroups of G.

We denote by $\pi(G)$ the set of all primes p such that G has an element of order p. If π is a set of primes we say that G is a π -group if $\pi(G) \subseteq \pi$. **Lemma 2.** Suppose that G satisfies Min-p for all primes p and that the type I_f part of $Q^r(K[G])$ is non-zero. Then G is abelian-by-finite.

Proof: By [9, Lemma 6.3.3] and [1, Lemma 1.3(ii)], we may assume that G is countable. By [1, Lemma 1.3(ii)] and Lemma 1, $\Delta(G)$ is abelian-by-finite. By [9, Lemma 12.1.2], $\Delta(G)$ has a characteristic abelian subgroup A of finite index. Let $\sigma = \pi(\Delta(G)/A)$.

Since the type I_f part of $Q^r(K[G])$ is non-zero, by [3, Lemma 4.2], there exists a non-zero abelian idempotent $e \in K[G]$. Let $H = \langle \text{Supp } e \rangle$ and $\tau = \pi(H)$. Hence $\pi = \sigma \cup \tau$ is a finite set of primes.

Now A is the direct product $A = \prod A_p$ of its p-primary parts. Let $A_{\pi'} = \prod_{p \notin \pi} A_p$. Then $A_{\pi'}$ is characteristic in G. Consider $\overline{G} = G/A_{\pi'}$. Let $\delta \in K[G]$. We denote by $\overline{\delta}$ the image of δ in $K[\overline{G}]$. By [4, Lemma 7.6], \overline{e} is an abelian idempotent, and clearly it is non-zero. Let p be a prime such that $\alpha(\overline{e}K[\overline{G}]) > p^{-1}$ and $p \notin \pi$. We shall see that $p \notin \pi(\overline{G})$.

Suppose that $p \in \pi(\overline{G})$. Then there exists $g \in G \setminus \Delta(G)$ with $o(g) = p^n$ and $o(\overline{g}) = p$. Let $\widetilde{g} = 1 + g + \cdots + g^{p^n - 1}$. Since K[G] is regular, there exists $\beta \in K[G]$ such that

$$\tilde{g}e = \tilde{g}e\beta\tilde{g}e$$

By squaring it, we see that $e\beta\tilde{g}e$ is an idempotent in eK[G]e. By [2, Lemma 2.1], Supp $e\beta\tilde{g}e \subseteq \Delta(G)H$. Let $H_1 = \langle \text{Supp } e\beta\tilde{g}e \cup \text{Supp } e \rangle$. Thus $p \notin \pi(\bar{H}_1)$. Using the fact that we have a direct sum $\sum_{i=0}^{p-1} \bar{g}^i K[\bar{H}_1]$, we deduce that

$$p^{n-1}\bar{e} = p^{n-1}\overline{e\beta\tilde{g}e}.$$

Since $p \neq 0$ in K, $\bar{e} = \overline{e\beta\tilde{g}e}$. Thus $\bar{e}K[\bar{G}] \cong \overline{\tilde{g}e\beta}K[\bar{G}]$. By [3, Lemma 1.2(iv)], $\alpha(\bar{e}K[\bar{G}]) \leq \alpha(\bar{\tilde{g}}K[\bar{G}])$. But an easy calculation shows that $\alpha(\bar{\tilde{g}}K[\bar{G}]) = p^{-1}$. This contradicts the choice of p. Thus $p \notin \pi(\bar{G})$. Hence $\pi(\bar{G})$ is finite.

Since \bar{e} is a non-zero abelian idempotent, by [3, Lemma 4.2], the type I part of $Q^r(K[\bar{G}])$ is non-zero. By [1, Proposition 1.2], $[\bar{G} : \Delta(\bar{G})] < \infty$ and $\Delta(\bar{G})'$ is finite. By [7, Theorem 3.13], $\Delta(\bar{G})$ satisfies Min-p for all primes p. By [1, Lemma 1.4], $[\Delta(\bar{G}) : Z(\Delta(\bar{G}))] < \infty$. Thus \bar{G} is abelian-by-finite. By [1, Lemma 1.3(ii)], we may assume that \bar{G} is abelian.

Let $\pi_1 = \pi \cup \pi(G)$ and let $A_{\pi'_1} = \prod_{p \notin \pi_1} A_p$. Then $\pi(G/A_{\pi'_1}) \subseteq \pi_1$. By [9, Lemma 12.4.12], there exists a π_1 -subgroup Q of G with $G = A_{\pi'_1}Q$. By [1, Lemma 1.3(ii), Proposition 1.2 and Lemma 1.4], Q is abelianby-finite. By [1, Lemma 1.3(ii)], we may assume that Q is abelian. Since $\pi(Q)$ is finite and satisfies Min-p for all primes p, Q has a minimal subgroup of finite index. Thus by [1, Lemma 1.3(ii)], we may assume that Q contains no proper subgroup of finite index.

We shall see that G is abelian. Let q be a prime such that $q \notin \pi_1$. By [1, Lemma 1.3(ii), Proposition 1.2 and Lemma 1.4], A_qQ has an abelian normal subgroup B of finite index. Now $[Q : Q \cap B] < \infty$, thus $Q \leq B$. Now B is the direct product $B = \prod B_p$ of its p-primary parts. Let $B_{\pi_1} = \prod_{p \in \pi_1} B_p$. Since Q is a π_1 -group, $Q \leq B_{\pi_1}$. Thus $A_qQ = A_qB_{\pi_1}$. Since B_{π_1} is a normal subgroup of $A_qB_{\pi_1}$, A_qQ is abelian. Hence $G = A_{\pi'}Q$ is abelian.

Theorem 3 ([1, Theorem 2.3]). The type I_f part of $Q^r(K[G])$ is non-zero iff $[G : \Delta(G)] < \infty$ and $\Delta(G)'$ is finite. Furthermore, in this case the type I_f part of $Q^r(K[G])$ is isomorphic to $Q^r(K[G/M])$, where $M = \cap L'$ and the intersection is over all subgroups L of G of finite index.

Proof: The proof of the "if" part and the second part is as in [1].

Suppose that the type I_f part of $Q^r(K[G])$ is non-zero. Suppose that $[G : \Delta(G)] = \infty$ or $|\Delta(G)'| = \infty$. By [1, Lemma 1.3(i)], there exists a non-zero central idempotent $u \in K[G]$ such that uK[G] has bounded index of nilpotence. Thus, by [9, Theorem 5.3.15], uK[G] does not satisfy any polynomial identity. By [1, Lemma 2.2], there exists an irreducible uK[G]-module V with representation $\rho: K[G] \to \text{End } V$ such that $\rho(G)$ has no abelian subgroup of finite index.

Since uK[G] has bounded index of nilpotence, by [4, Corollary 7.10], V is finite dimensional over its commuting ring. By [5, Lemma 2.4], $\rho(G)$ satisfies Min-p for all primes p. Let $\varphi: K[G] \to K[\rho(G)]$ the natural projection. It is easy to see that $\varphi(u)$ is a non-zero central idempotent of $K[\rho(G)]$. By [4, Proposition 7.7], $\varphi(u)K[\rho(G)]$ has bounded index of nilpotence. By [4, Corollary 7.4 and Theorems 7.20 and 10.24], the type I_f part of $Q^r(K[\rho(G)])$ is non-zero. By Lemma 2, $\rho(G)$ is abelian-by-finite, a contradiction, thus $[G:\Delta(G)] < \infty$ and $|\Delta(G)'| < \infty$.

Acknowledgements. This work was partially supported by the DG-ICYT through grant PB92-0586.

References

- F. CEDÓ, On the maximal quotient ring of regular group rings, J. Algebra 115 (1988), 164–174.
- F. CEDÓ, The maximal quotient ring of regular group rings. II, Proc. Amer. Math. Soc. 104 (1988), 357–362.

- F. CEDÓ AND B. HARTLEY, Maximal quotient rings and essential right ideals in group rings of locally finite groups, *Publ. Mat.* 36 (1992), 473–480.
- 4. K. R. GOODEARL, "Von Neumann Regular Rings," Pitman, London, 1979.
- 5. B. HARTLEY, Injective modules over group rings, Quart. J. Math. Oxford Ser. (2) 28 (1977), 1–29.
- B. HARTLEY AND M. A. SHAHABI SHOJAEI, Finite groups of matrices over division rings, *Math. Proc. Cambridge Philos. Soc.* 92 (1982), 55–64.
- 7. O. H. KEGEL AND B. A. F. WEHRFRITZ, "Locally Finite Groups," North-Holland, Amsterdam, London, 1973.
- 8. G. A. MILLER AND H. MORENO, Nonabelian groups in which every subgroup is abelian, *Trans. Amer. Math. Soc.* 4 (1903), 398–404.
- 9. D. S. PASSMAN, "The Algebraic Structure of Group Rings," Wiley-Interscience, New York, 1977.
- R. L. SNIDER, Group algebras whose simple modules are finite dimensional over their commuting rings, *Comm. Algebra* 2 (1974), 15–25.

Departament de Matemàtiques Universitat Autònoma de Barcelona 08193 Bellaterra (Barcelona) SPAIN

Rebut el 16 de Juny de 1994