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ON THE PERTURBATION PROPAGATION
IN THE INITIAL-BOUNDARY VALUE
PROBLEM FOR QUASILINEAR FIRST

ORDER EQUATIONS

Yu. G. Rykov

Abstract

The paper deals with initial-boundary value problem for gener-
alized solutions of single gquasilinear nonavtonomouns conservation
law. For the case so-called “processes with aggravation” the local-
ization property and inner boundedness are studied. Also in case
when boundary function tends to zero as t = +o0 the localization
effect is regarded.

1. Introduction

This paper studics generalized solutions of the equations in the form
(1.1} Lu = uy + [A(t, 2, u)]; + B(t,z,u) = H(t,z)
in the domain

Q={{t.z):te{0,T), 0<T<+o0, zcRy}

with the conditions
(1.2) u(0,2) =0, u{,0) = wu(t).
Here A(t,z,u) and B({,x,u} are continuous functions such that
A(t,z,0) = B(,2,0) = 0; B(¢,z,u} is monotonically increasing in
u; A{t,z,u) is continuosly differentiable with respect to u, z; Ay, 2
0; A(£,0,u) # 0; A, (f,z,u} + B{t,z,u) > 0; H{{,z) is a measurable

function bounded for bounded ¢; uy € C*{[0,T}}, w1 > &

The definition of generalized solution and proofs of the existence and
uniqueness theorems can be found in (3], (4], [7], [8] or [10].
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In Section 2 the definition of generalized solution and comparison the-
oTem are given.

In Section 3 we deal with the case when there exists T < 400 such that
1 {T'—0) = +oo. According to the terminology of [1], [5] it corresponds
to the so-called “processes with aggravation”.

Definition 1.1. One says that localization in the problem (1.1}, (1.2)
occurs if there exists X > 0 such that u(t,z)=0forz > X, 0 <t < T.
One says that localization does not occur if for every sufficiently large
z, > 0 there exists t. > 0 such that u{t,,z.) # 0.

In the paper [1] autonomous equations with power nonlinearities and
zero lower order term were studied. There necessary and sufficient con-
ditions for the cceurence of localization and for inner boundedness of
solutions were obtained. In Section 3 we shall study such questions for
arbitrary nonlinearities and in the nonautonomous case.

Section 4 is devoted to localization in the case when w1 (t) is defined
for every t € [0, +00) and may tend to zero as t = +oo0.

Some supplementary results on the localization are given in Section 5
for the equation

(1.8) w+ (T — P(W™)e + (T — )%™ =0,  (t,2) € (0,T) x R,

There are certain peculiarities of the front behavior in this case.

2. The definition of generalized solution.
A comparison theorem

Now, let us introduce the notion of generalized solution.

Definition 2.1. A measurable function u(t, 2} bounded for bounded ¢
is called a generalized solution (abbreviation: g.s.) of the problem (1.1},
(1.2) in Q if: 1) for every w(t, z) > 0, w € CF°(Q) the inequality

[ utt.2) = sl + siga(utt,2) - )[4t 2, u2)) - Al 7, 9a—
Q

— sign(u(t, ) — s)[Az(¢, 2, 8) + B(t,z,ult,z)) — H(f,x)|jw}dtdz >0
heolds, where s = const is arbitrary; 2) there exists a set £; C [0,7],

mes E; = 0, such that for ¢t € [0, T)\Eyu(t, z) is defined for almost every
z € R, and for every R > 0

R
lim |ul(t, )| dz = 0;
t=0

tE[0,TINE,
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3} there exists a set By C [0,+00), mes Ey = 0, such that for z €
[0, +oo)\ Eyult, 7} is defined for almost every ¢ € [0,T) and for every
N0« < T,

T

lim |ult, z} — uq{t)| dt = C.
t=+0
z€[0,+00)\ Bz

Remark 2.1. If w{t,z) is a piecewise continucus g.s. of the problem
(1.1}, (1.2) then Definition 2.1 implies (see [6]) at the line of discontinuity
z = y(t) for u(¢, z) the Hugoniot condition

{2.1) y = [Alt,y(t),u™) — Alt, y(t),w7)]/{ut —u7)
and the stability condition

(22) sign(u® —u)[Al,y(t), pu” + (1 —plu’)—
— pAlty(),u”) = (1 — WAyt u* ) > 0

for every p € (0,1); here u™ = u(t,y — 0}, vt = uft, y + 0.
The existence of g.5. to the problem {1.1), (1.2) under various restric-

tions on boundary conditions and initial data was proved, for instance,
in [3), (4], [10].

Theorem 2.1. Suppose h(t,z), g{t,z} are measurable functions
bounded for t < Ty, where Ty < T 1is arbitrary. Suppose w{t,x} s a
9.5. of the equation Lw = h{t,z) in Q with data w(0,2) = 0, w(t,0) =
wi(t) € L2 ([0,T)), and v{t,x) is a g.5. of the equation Lv = g{t, x)

in @ with data v{0,z) = 0, v(t,0) = wi{t) € LL([0,T)). Suppose

wi{t) < n(t) almost everywhere in [0,T) and h(t,z) < g(t,z) almost
everywhere in Q. Then w(t,x) < v(t,z) almost everywhere in Q.

For the proof of this theorem similar methods to those of papers [2],
[10] are used. The uniqueness of the g.s. for problem (1.1}, {1.2) follows
from Theorem 2.1.

One denotes below by u(t,z) the g.s. of the problem (1.1}, {1.2) with
Hit,z)=0

3. Process with aggravation {The case T < +o0)

Theorem 3.1. Suppose the following conditions hold
1) Alt,z,v)fo < Alt,z,w)/w, 0 < v < w, w € By;
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2) Aft,z,v)fv < ao(T
C([0,T)),a0 >0 a(O)
3) wift) < @(1/(T — 1)),
creasmg,
fo ag{s)aopl(l/s)ds < +oc.

) ) U€R+,Q601(R+)HC(R+), ag €
=10, o is increasing;
w € C{1/T,4+00)), (1/T) = 0, ¢ is in-

Then localization in the problem (1.1}, (1.2} occurs and u(t, z) = 0 for
z > f,;_t ao{s)a o p(1/s) ds.
Proof: Suppose the line z = y(f) is defined by the equations

(1) = { Atz () /un(t), if ui(t) #0,
Y - Au(t! €, 0): if ul(t) = (;

with the initial datum %{0) = 0. Let us set A (f,z) = u1(?) for 0 <
< y{t) and Ai(t,2) = 0 for & > y(t). It is easy to see that LA, > 0
when z # y(t) and at the line of discontinuity = = y{£) (2.1), (2.2) hold.
Further,

g <a(T —thaop(l/{T-1t), y0)=0,

hence

T
y(t) < / ap(8la o w(l/s)ds
T—t

With the aid of assumption 4), the application of Theorem 2.1 gives the
required result.

Remark 3.1. Suppose (1.1) has the form
(3.1) g+ A (T =3P (™) =0,

where 4 =const >0, pc R, m> landu (t) = (T—¢) T %, a > 0.
Then Theorem 3.1 asserts the presence of localization when p — a(m —
1) > -1

Theorem 3.2. Suppose the following conditions hold
1} Alt,z,v)/v < Alt,z,w)/w, 0 < v <w, we Ry,
2) Ax(t;:c,'u) + B(t,l‘,l’) > bU(T - t)'U, vE R'}-} bﬂ € C([Olj‘)): b0 =
0;
3) Av(t,:s,v) = O.g(T - t)l‘l(i}), ap € C([OaT))a ag > 0: G(O) = UJ
a € CYRLINC(RY), a increases;
4) a(af) < x{e)a(8), ¢ € [0,1),8 € Ry, x € C, x(0) = 0, x in-
creases;
5) wi(t) < (/T — 1), ¢ € CLT,+00)), p(1/T) = 0, in-

Creases;
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6) fo s)ds < +oo, a(u)fwl(‘U (s)ds < C < +oo,v € Ry,
C = const > 0, g(s) = ao{s)x (exp (-— fs bo(cr) o’)) cls) =
s)exp (£, bo(0)do ) , walv) = 1/v7 (w).
Then localization in the problem (1.1}, (1.2) occurs.

Proof: Let us consider the function

T
woft, z) = v(t, ) exp (—/T bg(s)ds) ,

where (¢, z) is defined by the relation
Tt
{3.2) 0=zx+a(v) / g(s)ds = z + Git,v}.
wy (v}

The equation G(t,v) = 0 with respect to v has two roots: v = 0, v =
n(1/(T . When z varies the solution of (3.2) may stop to exist if
G,(t,v) = D Consequently the set of (¢,z) where the solution of (3.2)
does not exist can be described by the system

(3.3) 2+ G(tv) =0,  Gylt,v)=0.

Now, let us consider the function y(¢) defined in the following way
¥ = Alt,y, walt, y))/wo(t,y), y(0) = 0. Then

< Au(t,y,wo) < ao(T — tla{wo) < g(T' — t)a(v).
From the system (3.3) for its solution z = z{f) one has:
= G~ Gyo = —Gy = g(T — t)a(v),
so ¢ < Z and lines z = y{t) and z = 2(f) do not intersect. Suppose

Mo(t, ) = wo(t,z) for x < y(t) and Az(f,2) = 0 for =z > y(t). It is easy
to see that

-
exp (— / bo(e) ds) Luwg 2> [a(v)g(T —¢t) ~ alwo)ao(T — t)]/Gl.

T=

Hence with the aid of assumption 4} and G, > 0 for & < 2(t) one obtains
L)y 2 0 for ¢ < y{t). Besides, at the line £ = y(t) (2.1}, (2.2) hold.
Since {0, z) < A2(0,z) we have u(t,z) < Az(t,z) in Q.
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Let us rewrite (3.2):

Tt (v}
T+ a('u)fo g(s)ds — a(‘u)fe gi{s)ds = 0.

Hence et
z+ a(’u)j g{s)ds < C = const
0

by virtue of assumption 6). When z is sufficiently large there is no
solution of (3.2} and 2(T" — 0} < +oo. This ends the proof.

Corollary 3.1. If in addition to assumptions of Theorem 3.2 the fol-
lowing inequality holds

iy v}
a(v) / g(s)ds < nv), veRs,
1]

where n{u} decreases, n(+0o) = 0 then ult,z) is bounded ast = T -0
for every fized x #£ C.

Proof: Indeed, from (3.2) we have

wy{v) T—t
w0 2a) [ als)ds = a+a) | ewasza,

or v < n~}z). Since u(t,z) < Az{t,z) one gets the boundedness u(t, z}
forfixedz# 0andt =T - 0.

Remark 3.2. For the equation {3.1) Theorem 3.2 gives the localiza-
tion presence when p — af{m — 1) > —1, while Corollary 3.1 gives the
boundedness of g.s. fort #0and t = T -0 whenp—alm — 1) > —1.

Theorem 3.3. Suppose the fellowing conditions hold:

1} Alt,z,v}fv < Alt,z,w)/w, O <e<w welRy;

2) Ay{t,z,v) 2 ao(T — tlafv), v € Ry,a5 € C{0, T}, a0 >
0, a{0) =0, a € CY{RLINC(R,), o increases;

3) boap(T — ta(v) < Alt,z,v)/v £ SaolT — t)a{v), v € By, 0 <
bo <6y < 1;

1) pxta)a(B) > a(ef) > x(@)alB), p > 1, fp < Lac [0,1], f €
R4, x € C{[0,1]), x(0) =0, x increases;

5) B{t,z,v)+A.(t, 2, v) <b{T—t}v, v € Ry, b € C([0,T)), b = 0;

6) wi(t) > @(U/(T — 1), ¢ € C(1/T,+)), $(1/T) = 0, ¢ in-
creases;
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7) 9(s)s < (s} fy 9lo)do, 0 < s < T;¢/(s)s 2 valshp(s), s 2
1/T; sa'(s) > ya(s)als), s > 0; u(s) = bo(1/5)/s + Pafs), where
Pi{s)(i = 1,2,3} are monotonic {in particular moy be constanis)
and 1 — 9 o wn (v} [Pa(v)pa(l/wi(e})] > plv),v € Ry, p €
C{RL), pp > 0, u 2 0, p does not increase;

8) Jy H(s)ds=+o0, Hig=ao(s)a (exp(—fTbg(a)da) _1(f;g(o)do*)),

viv)=u v}fw‘(v) {s)ds, € = const > 0, fo s)ds < +00.

Then there is no localization in the probtem (1.1), (1.2} and u(t,z) > 0
for0 <z <6 f;’:z Hio)do.

Proof: Let us econsider the function wg(f,z} introduced in the proof
of Theorem 3.2. Suppose y(t) is defined by the equation § =
Alt,y,wolt, ¥))/wolt,y) with the initial datum y(0) = 0. By analogy
with the proof of Theorem 3.2 one states that the curve z = y(t) is
contained in the domain of existence of the sclution to equation (3.2).
Let us regard the same comparison function Ag{t,z) as in the proof of
Theorem 3.2. As G, > 0 for x < 2(t) one has Lwy < 0 for 2 < y{t) and
u(t, x) = Az(t, 2} in Q.

Now the equation G{t, v} = 0 has two roots and the root of the equa-
tion G, = 0 lies between them by virtue of Rolle’s Theorem. Conse-
quently the solution » > 0 of the equation (3.2} with fixed z, t always
exceeds the solution of the equation G, = 0 with the same fixed £. Hence

' T-t wy (w)
0=G, = d'(v) (/0 g(s)ds — /U o(s) ds) +

+a(v)g o wi(v){vy ) (W)wr (v)?,
or

T—t wy fu)
[ atsras= [T gts)ds - S g0 m)or) (s o)

Using conditions 7) one estimates:

T—t wy (u)
]0 g{s)ds > /0 g(s)ds [1 - a{v) _wl(l’)__qpl o un (fu)] ;

a'(v) v} o vy H{v)

T
sv)(s) = exp ([l bo(o) dcf) [s™*ba(1/s}p(s) + s/ (5)] 2 vi(s)¥u(s);

i

T_t wir{v} a(v) ¥ ow{v}
/0 g{s)ds > fo 9(s)ds [1 ) y¢4(1/w1(v))] z

2 /Owg(s) @ [1 - m(ﬁﬁg}ﬁ(m)] Zj[:i(v)g{s) dotu(v)=vv)
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Since p{s} and w,(s) do not increase »{s) does not increase too.

Consequently v{t, ) > v~1 ( aT_tg(s)ds); hence

T T—t
wolt, ) > exp (ﬂ .[r—sb{)(s) ds) v (./a g(s) ds) = H (-1

Further,
¥ = A(t, y,wo)/wo > &ra0(T — tha({we) >

zégao(Tvt}a(exp(uj;_tba(s)ds)u_“ (/0 ) g(s}ds))zégH(T—t).

This inequality implies y{t) > & f;{_tH{o')da and we obtain the re-
quired result with the aid of assumption 8).

Corollary 3.2. Suppese conditions 1)-7} of the Theorem 3.5 hold, but
instead of condition 8) assume :lirr%Hl(T—t} = +400. Suppose u{t, zg) >
=

0 for some zo and t close to T. Then u(t,z9) unbounded ast = T — 0.

Proof: In the proof of Theorem 3.3 we had the estimate wolt,z) >
Hi(T —t). Since u{t,z) > wolt,z) for < y(t), the assertion of the
corollary is true.

Remark 3.3, For the equation (3.1) Thecrem 3.3 asserts the local-
ization absence when p — a{m — 1) < ~1,p > —1. Indeed, in this
case agls) = Ays?, bo(s) = 0, x(s) = ™71, a(s) = ms™?, g(s)
Ars?, a(s) = p+ 1, P2(s) = @, Yals) = ¥als), ¥a(s) = m— 1, pls)
1 - (p+ 1)/{adm — 1)),

_ Ailo(m—1)-p-1

—ay—{ptl)/x
v{s) alm 1@+ D (s+T7%) ,
—a/(p+1) e
_ o{m ~ 1) _
Hi{s) = P « 7=
{s} =mA,s® |5 (a( —l)—p—l)

It follows from Corollary 3.2 that u{¢,z} is unbounded as t = 7" — 0 and
z fixed, since
afm — 1)

-7 =
alm—1y—p—-1

—a/{p+1}
Hy (S) =5 [ ]

Suppose p — a{m — 1) = —1. Then Theorem 3.3 is invalid because of
assumption 8). But one can choose (s} = as®/(5* — T—%),

v(s) = Ai{p+ 1) T (s + T7%)™™, Hy(s) = T7|(T/s)m-0/m _q].

The unboundedness of u(t,z) as t = T — 0 and 1 15 not too large follows
from Corollary 3.2
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Theorem 3.4. Suppose conditions 1)-6) of Theorem 3.3 hold and
fol g(s)ds = +oo. Then there is no localization in the problem (1.1},

82
(1.2) and u(t,z) > 0 for 0 < z < const (fg_tg(s) ds)

Proof: Let us consider the funciion Az(t,z) defined in the proof of
Theorem 3.2. We have y = A(t,y,wo)/wp, ¥(0} = 0. The solution
of this Cauchy problem is not identically zero since A{t,0,wp) # 0 by
assumption. Hence, there exist such z* > 0, t* > 0 that y(¢t*) = z*.
Further, for ¢ > ¢* one obtains

¥ 2 62a0{T — tha{wo) = b2g(T — t)a(v).

It is obvious that wi(v) £ T by the definition of function uy (v). So we
have from (3.2}

y=ea(v) /wx(v) g(s)ds < alv) /T g(s) ds

Tt T—t

T
¥ = bayg(T — 1) Uﬂn_tg(SJ dS} , oy ="

Now

T b2 T 5
y(ty > z” [/T-r g(s) ds} [/T_tg(s) ds] = +oo

as t = T — (. This ends the proof.

Remark 3.4. In the case of equation (3.1} Theorem 3.4 states the
absence of localization for p < —1.

Theorem 3.5. Suppose assumptions 1)-§) of Theorem 5.3 hold and
fol g{s)ds = +oo0. Suppose the following conditions hold:

1) [To(r)dr < sg(sha(s), 0 < s < T5 & (s)s 2 plshals), s >
1/T; sa'(s) > a(8)ya(s), s > 0; a(s) = bo(1/8)/s + t=(s)}, where
¥:{5)(i = 1,2,3) are monotonic functions (in particular may be
constants) and ¥, o wi(v) + m <ulv),velRy pe
C(R4), #20, p £ 0, u increases;

2) v{v) = glun(v))w(v)plv) = +o00 as v = +oo;

3) Hals) = exp (— fsT bg(a)do) vl (f:g(a)da) = +40c as § =
+0.
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Then uft,x) is unbounded as t = T — 0 for every fized .

Proof: In the proof of Theorem 3.3 we have established the estimate
u(t,z) = Aa(t,z). Now, it is enough to get a lower estimate for the
function v(t, z) defined in (3.2). By analogy with the proof of Theorem
3.3 it sufficies 1o get a lower estimate for the root of the equation G, = 0
with ¢ fixed. We find

0=G, =2a(v) (/:{v) g(s)ds — /:_‘tg(s) ds) +

+a(v)g 0w (v)(vy Y (W)wr (v)®
or

T T
[ sds= [ gerdst 82 g0 mer e

T—t w{v)
Now using assumption 1) one evaluates

T
/ g(s)dssgowl(v)wl(m[wlowl(m

T—t

a(v) 1 } |

T} o] ov; (w)o; (v)

T
s} (s) = exp ( / boo) do) (s~ bo(1/s)o(s) + ¢'(s)s] = vi(s)sls);

fs
T ‘ a{v} 1
/T_tg(s) ds < g o wy(v)w (v) [wl ow{v) + 7 (0) w’)d,(l/wl(v))] <
1

g 0w vh S| < goun s (Dhr) =)

It follows from the last inequality that v > »~! (fﬁ?—t g(s) ds), since

v(v) is monotonic because of 2). Using the form of function Az (%, z) and
assumption 3) one gets the statement of the Theorem 3.5.

Remark 3.5. Suppose that in equation (3.1) p < —1. We have ag =
A1s?, bo(s) = 0, x{s) = 5™, a(s) =ms™ ", g(s) = Ars¥, n(s) = fp+
ll—l! ?}52(5) =, ’(154(5) = ‘%32(5), 153(3) = m_la .U.(S) = [p+1|_l+[a(m_
D7, w(s) = Avpls)(s +To) "D/ Hy(s) = [(uls)lp + 1)) (5771 -
Tetl)-e/lptl) _ e,

Then u(t,z) is unbounded as t = T — 0.

Suppose p = —1. Then ag, bo, x; 4, 9, ¥2, ¥a, 14 are not changed,
but

Yi(s) = In(T/s), u(s) = a~ (T +1)+Halm=1)", v(s) = Aruls),

Ha(s) = s™%exp{—1/[Aa(m - 1}]} - T™%.
It follows from these equalities that w(t,z} is again unbounded as t =
T 0.
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4, The case T = +co

For the space of this paragraph we assume T = +co, 0 < w3(t) < M
forteR,.

Theoarem 4.1. Suppose the following conditions hold:

1} A,(t,z,v) < ap(t)a(v), a € C([0, M)}, a(0) = 0, a increases, ap €
C(R+), a0 2 0,'

2} B{t,z,v) + Ag{t,z,v) 2 bo(t)b(w}, b € C([0, A]), b{0) =0, b in-
creases, by € C'{R4), by > 0;

3} bolt) > aoft), t € Ry;

} fy al(s)/b(s) ds < o0, & = const > 0.
Then localization in problem (1.1), (1.2) occurs and u{t,z) =0 forz >

J a(s)/b(s) ds

Proof: Let us consider the functlon Aa{x) defined by relations
f;“m a(s)/b(s)ds = z for = < f," a(s)/b(s)ds, hs(x) = O for z >

fo a(s)/b(s)ds. It is easy to sce that LAs > 0 in the points where
Aa{zx) is smooth and A3{0) = M > u;(t). With the aid of Theorem
2.1 we obtain u(t, ) < Aa(z). The required statement follows from this
inequality.

Theorem 4.2. Suppose the following conditions hold:

1) A, x,0) /e £ Alt,z, w)fw, 0 < v <w < M;

2} S1a(v)an(t) < AL, z,v) < e{v)ap(t); Alt,z,v)/v > daao(t)alv),
0<v < MO0<éb <1(tE=12),a € C0,M]),a(d) =0,c
increases, ag € C(Ry), ao 2 0;

3) &ala)x(8) < a(aB) < a(a)x(F),0 < & < L,a € [0,1},F €
[0, M], x € C, x(0) =0, x increases;

1) Blt,5,0) + Az (t,2,v) < bo(t)b(v), v € [0, M], b(af) < $(B)b(a),
o < [D= 1]: B € [O!M]; P, b € C([Ole)s by € C(]R+): by =
0, b(0) = 0, ¥(0) = 0; b, ¥ increase;

5) bo(t) < 6183a0(t), t € Ry; ¥{v) < x(v)v, v € [0, M];

6) f0+°° ao(T)dr = +00, [; a(s)/b(s)ds = +o0, € = const > 0;

T) w1 (t) monotonically decreases, u1(+o00) =0, u1(0) = u > 0.

Then there is no localization in the problem (1.1), {1.2).

Proof: Let us introduce the functions g{z) and a(z): f o(a)@ (s)/b(s) ds=
z, h(z) = fg(x) ds/b(s) and define the function v(t,z} by the relation

uy He) t
(4.1} x(v) (/0 ag(T)dr —/0 ag(T)dT) +h{z})=0, O<v<yu
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for hiz} < f; ag(m)dr. It follows from 6) that g(+ ) =
0, h{+o0) = +oo Now set v{t,z) = p for h{z) > x(u) 3 aolr
Consider the curve ¢ = ~{t), defined by the relations y =

Alt,y, gly)v(t, 1))/ (o{w)v(t, y))y(0) = 0. Let us set Ai(2, z) = g(z)olt, z)
for z < y(t) and A (t,z) =0 for = > y(t).

It is easy to see that Ly < 0 at the points where A4{t,z} is smooth
while at the line of discontinuity x = y{¢) relations (2.1}, (2.2) are valid.
With the aid of Theorem 2.1 it follows that w(t, 2} = As{t, 2} in R, xRy

Since A(f,0,w) # 0 then there exists a point (.,z,} with ¢, >
0,2z, > 0 and y{t,) = :c,, Further, at the set v = g onc has
> b6268300(t)a{g(y))x{p) or hl(y) > babza(t)x (). Hence

¢
hiy) = h{(z™) + 62:53/ x{pag(Tydr for t > 1..
t.

When v(t, x) is defined by (4.1) the inequality § > §283a0(¢) (fo aglT )
> h{y)/ fgf ag{T)dr by virtue
of (41). Now, (Inh(y)) 2= b283a0(t) (fa aglT df)_ or hiy) =
—&28; So8a
(33;) (f;‘ QO(T)dT) (fgt G,a('r) d'r)

Applying assumption 8}, one gets the required result.

alg{yh(y} holds true because x{v) >

Remark 4.1. For the equation
w+{wM,+u" =0, m>1, n>0

Theorems 4.1, 4.2 give the presence of localization with bounded data
u3(t) for m > n and the absence of localization even with . ligi mit) =0
=too

for m < n.

5. Supplementary example

Let us consider the equation
(5.1) wg +{T = )P (u™) + (T — )%™ =190, {(t,z) € ¢,

wherem > 1,0 <n < 1,g < —1, p € R. One will find the solution of
(5.1) in the form u(t,z) = (T —8)*f(€), 6 =2{T—8) P, 22 0,0<t <
T,o={g+1}/{1-n), 3=p+ 1+ a{m—1). Substituting «(¢, z) into
{5.1) one gets

~a(T =) f(€) + BT — ) f/ )+
+m(T — oA gL FE) + (T — ) (g) = 0.
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Now the equation for f{£) foliows:

d _

or in another form

& pE mm o
i - Tarop =0

Consequently,

g™ H ,6
— ———dr | ds.
= ,[ lels + s* exp ,/s la|r + 77 Ty
Further,

f -2
| it / ) dr— 2l
|a|'r + 'r"‘ |a| T |a| laf 4 o1 la| s

ja + f71 B nlalf““+1
|a|(1—n) || + 871 |a|(1—n) la|s—™ + 17

+
Then

N
(5.2} £= (|a|f1—n+1}—ﬁ/|4+1|£ msm-—n—l{lalsl—n_i_ 1),6/|q+1|._1d3.

a) The case § > 0.
Let us denote

N \
N, = j ms™ Y |a|s T 4+ 1)P/la+l-1 gg
0

Let us define the function w (¢, z) in the following way: wi(t,z) =0 for
2> N(T=8°t <Tyun(t,z) =(T -)*f(§)for 0 < x < NJ(T -
)%, t > 0. Suppose yi{t) is the solution of the equation

(5.3) §=(T -7 (T -7

with datum y1{(0) = 0. Let us introduce the function z (¢, ) by the
relations: 2{¢,x) = wi(t,z) for 0 < z < y(t) and 7 {t,z} = O for
z > 1 (t). Function z)(¢, ) is the g.s. of the problem (5.1}, (5.2) with
ui () = N(T — t)*. Indeed, =1 {¢, ) satisfies (5.1} for = < 1 (¢) due to
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the definition and at the line of discontinuity z = y1(¢) relations {2.1},
(2.2} are valid; 21{0,x) =0, z.{£,0) = N(T — £)*. Hence, the gs. of the
boundary problem equals zero for z > N,(T — £)?, that is the width on
x of the g.s. support tends to zero as t = T — (.

b) The case 3 = 0.
Now (5.2) has the form z = ffN ms™ " H|als? ™™ + 1) 1ds. Set

wi{t,x) = 0 for x > N,, 0 <t < T. The equation (5.3) has the form
i = (T~ )71 f™*(3n). One gets for (1)

2 (t)
fﬁ ds/ ™1 (s) = n(T/(T — 1)).

Further, f(0) = N, f(N,) =0 and f(z) ~ (N, — 2)/(m=") a5 2 = N,.
So fGN' ds/f™ (s} < +oo, and there exists 7 < T such that y;{1) =

N,. We have that the line z = y({¢) of discontinuity for z,{¢, %) is defined
only for ¢ < 7, but for v <1 < T the function z»{t, z) is continuous.

¢} The case 3 < 0.

Then there exists such &g that f{£) is defined only for 0 < £ < &, f >
fi€o). Let us consider the curve z = £{T — t)?; differentiating with
respect to ¢ one finds & = —B&(T — )% = mf(&)™ YT ~ )81, At
this curve § = {T — t}°~1f(£&)™ ! < , hence the line z = 3, (t) lies
below the line £ = &(T — ¢)? and the definition of z(¢,2) is correct.
Further,

= (TP &)™, w0 =0

or y1(t) > f(&o)™ (T — ) — TP)/|8|. In this case there is no localiza-
tion.
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