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ON THE COMPLETE DIGRAPHS WHICH ARE
SIMPLY DISCONNECTED

Abstract

DAVIDE C. DEMARIA AND ,I . CARLOS S . KHHL

Homotopic methods are employed for the characterization of the complete
digraphs which are the composition of non-trivial highly regular tourna-
ments.

1. Introduction

It is known that one can also construct a homotopy theory for categories of
spaces having a structure weaker than a topology. For example, one can take
the category of prespaces or Cech closure spaces .

To every digraph D one can associate, in a natural way, two finite prespaces
P(D) and P* (D) ; and vice versa, to every finite prespace one can associate two
digraphs G and G*, dually oriented. Hence one can relate the category of the
digraphs with that of the finite prespaces. Therefore a homotopy theory can
be defined for digraphs, by setting the regular homotopy group Q�,(D) ofD to
be the homotopy group 7r�,(P(D)) of the associated prespace (see [6]) .

In [3] Burzio and Demaria proved that the groups Q,(D) are isomorphic
to the classical homotopy groups 7r�,(IKDI), where jKD1 is the polyhedron of
a suitable simplicial compeex KD associated with the digraph D. Then in
[5] they obtained, as an application of the regular homotopy of digraphs, a
structural characterization of tournaments T, called simply disconnected tour-
naments, whose fundamental group QI(T) is non trivial . In [4], they have
obtained another characterization for the simply disconnected tournaments by
using coned 3-cycles .

In this paper we extend those results to the case of digraphs D which are
complete, and we get analogous results if QI(D) ~¿ 0 . First of all, we must
generalize the concept of simple quotient for every type of digraph and we
prove the following theorem :

Theorem 4 .4 . Every (non-trivial) digraph has a unique simple quotient .

In this way we obtain the following theorems :
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Theorem 5.3 . A complete digraph D is simply disconnected if and only if
its simple quotient is a highly regular tournament.

Theorem 5.10 . A complete digraph Dn is simply disconnected if and only

(a) there exists in Dn a non coned 3-cycle;
(b) every symmetric pair and every 3-cycle in Dn are shrinkable in Dn .

2 . Some Definitions and Notations

Definition 2.1 . Let V be a finite non-empty set and E a set of ordered
pairs (u, v) E V x V, such that u =,A v . We call the pair D = (V, E) a directed
graph or digraph. The elements of V are the vertices of D, the cardinality of V
the order of D, and the elements of E the ares of D . Moreover, we write u -> v
instead of (u, v), and we call u a predecessor of v and v a successor of u.
Remark 1. Given two distinct vertices u and v, we have a priori four

possibilities, and four types of are :
(1) there is no oriented are between u and v - we denote by uIv the null are;
(2) there is the oriented are (u, v), but not the are (v, u) - we denote the

simple are by u -> v ;
(3) there is the oriented are (v, u), but not the are (u, v) - we denote the

simple are by u - v ;
(4) there are both oriented ares (u, v) and (v, u) - we denote the double are

by u <--> v . (A double are is also called a symmetric pair.)
Definition 2.2 . A digraph is called oriented if, between two distinct vertices,

there is at most one ordered are - that is, the possible ares are either simple
ares or null ares . A digraph is called a non-oriented graph if, between two
distinct vertices, there is either a double are or a null are . A digraph is called
complete if, between two distinct vertices, there is at least one ordered are ; the
possible ares in this case are either simple or double ares .

Definition 2.3 . A digraph T is a tournament if, between every pair of
distinct vertices, there is one and only one are . A tournament T is called
hamiltonian if it contains a spanning cycle - that is, a cycle passing through
all the vertices of T .

Definition 2.4 . Let D= (V, E) and D' = (V', E') be digraphs. A function
f : V -> V' is a homomorphism between Dand D' if, for every u, v E V u -> v
implies either f(u) -> f(v) or f(u) = f(v) .

Remark 2. We can consider two kinds of dualities for a given digraph D:
(a) the first one is the dually oriented digraph D, which is obtained by

changing the orientation of the ares ; in this case, both digraphs are of the same
type .

(b) the second kind is the digraph D, which is obtained by maintaining the
simple ares and by changing the null ares into double ares, and vice-versa . In
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this case, oriented digraphs become complete digraphs, and vice-versa . On the
other hand, tournaments and non-oriented graphs do not change .

It is known that, given a tournament T, we can associate an algebraic struc-
ture to T in a natural way. In fact we have (see [71) :

Proposition 2.5 . A tournament T becomes a commutative groupoid A(T)
if we define the following binary operation * :

Remark 3 . Similarly we can associate with T the dual commutative group-
oid A'(T), by defining :

u, ifu->voru=v;
forallu,vET,u*v=v*u=~

v,

	

if v -> u.

u, ifv-->uoru=v ;
forallu,vETu * v=v * u={

v,

	

if u --~ v .

Remark 4. Every homomorphism between two tournaments T and T' is
also an algebraic homomorphism between the commutative groupoids A(T) and
A(T') (orA'(T) and A'(T')), and vice-versa .
The same definitions can be applied to the case of a digraph D of any type,

and then we have the associated groupoids A(D) and A'(D), which are dual .
In this case, we set for A(D) :

on the other hand from uIv we get :

Remark 5. In general the two groupoids are not commutative . In the first
case, from u <--> v we get

u * v=uandv * u=v;

u*v=uandv*u=u.

Remark 6. Whereas the homomorphisms between two tournaments coin-
cide with the algebraic homomorphisms between the associated groupoids, this
is not true in the general case, for there are homomorphisms between digraphs
which are not algebraic homomorphisms between the associated groupoids .

u, ifu-~voru=v ;
for all u, v E D, u * v

v, if v 74 u ;

and for A'(D) :

u, ifu f4voru=v ;
for all u, v E D, u * v

v, if u --> v .
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For example, given the 3-cycle C : u , v -> w -; u and the symmetric pair
D : x <--> y, if we define f : C --+ D by f(u) = x, f(v) = f(w) = y, then in
A(C) and A(D) we have

Remark 7. We can still associate other two groupoids tl(D) and fh(D) to
the digraph D, in the following way :

and

u * w = w,

	

f(u) * f (w) = x * y = x and f(w) = y .

forallu,vED,u*v
u, ifu=voru-v;
v,

	

ifu yL v .

forallu,vcD, u* v={
u, ifu=vorug¿-v ;
v,

	

if u <--V .

We observe that, if we change the orientation of the arcs, then A(D) becomes
A(D) and A'(D) becomes Á'(D) ; in changing the double arcs into null arcs and
the null arcs into double arcs, A(D) becomes th(D), and A'(D) becomes A(D) .

3 . Quotient Digraphs

We say that a subset X of vertices of a digraph D is a set of equivalent
vertices if for any vertex u in D-X the oriented arcs from u to any vertex v
in X are all of the same type . Of course the type of oriented arc can change if
we vary the vertex u in D - X.

If p : A(D) -+ A(Q) is a surjective algebraic homomorphism between the
groupoids which are associated to the two digraphs D� and Q,�,,, of order n
and m, respectively, then we see that the groupoid A(Q) is isomorphic to
the quotient groupoid A(D)/p. For, if we consider the m pre-images of the
vertices v,, . . . , v�,, in Q�,,, and we set S(i) = p-' (vi), i = 1, . . . , m, then we
can subdivide the n vertices of D in m disjoint subdigraphs S( I ), . . . , S(-) of
equivalent vertices, because the type of arc which joins the vertex vi to vj is
of the same type as the arcs which join every vertex in S(i) to every vertex in
SO) .

If the above conditions hold, then we write

D,, = Q,(S('), . . . , S(m)),
and we say that the digraph D,, is the composition of the m digraphs
S(I), . . . , S(-) . The subdigraphs S( ' ) , . . . , S(n) are called the componente of
the digraph D, and Q�, is the quotient of the digraph D,n .
We say that a digraph is simple if the composition

D,, = Q,,,(S~ I) , . . . , S(m))
implies that m = 1 or m = n - that is, if the quotient Q�,, or the componente
S( 2 ) coincide with the trivial digraph of order 1 .
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4. Properties of the Quotient Digraphs

Proposition 4.1 . Let D be a digraph, Q be one of the quotient digraphs of
D, and S be one of the components of D with respect to Q; then S is a set of
equivalent vertices . Conversely, if X is a set of equivalent vertices, then X is
a component of D .

Proof.. The first statement is obvious . For the second, we consider the par-
tition of D in the subset X and the singular subsets of D - X

Proposition 4 .2 . LetX andY be two sets of equivalent vertices of a digraph
D. If X fl Y =,A 0 and X UY =~ D, then X U Y is a set of equivalent vertices .

Proof.. Let u be a vertex in X n Y and let v be a vertex in D- (X U Y) ; for
each vertex w in X U Y, the oriented arc between v and w is of the same type
as the oriented arc between v and u

Proposition 4.3 . Let D be a digraph and Q one of its quotient digraphs;
then Q is isomorphic to a subdigraph E of D.

Proof.. In fact we can construct E by choosing one vertex in each components
of D

Theorem 4.4. Every non-trivial digraph has a unique simple quotient .

Proof.. We argue by contradiction .

	

Let P =

	

[S(1), . . . , S(h )] and Q

	

=
[T('), . . . ,T(k )] be two different partitions of the digraph D into components of
equivalent vertices, such that the quotient digraphs Ph and Qk are non-trivial
and simple . Then we have :

D = Ph(S(1), . . . , S(h) ) = Qk(T (1) , . . . ,T(k)) .

Suppose that h > 2 . Since the two partitions are distinct, there must exist
two distinct components S and T with non empty intersection . If S is not
contained in T and the other components T have non-empty intersection with S,
then at least one of them cannot be contained in S, for otherwise we can replace
these particular components T in the partition Q by the unique component S;
this contradicts the simplicity of Qk .

Therefore there exist a component S and a component T such that S n T r,4

0, S ~t- T and T 9~- S, and we choose them to be S(1) and T(1 ) . We now number
the components S in such a way that S(1 ), S(2 ), . . . , S( , ) intersect T(1) , while
the rest S(T+1), S(T+2) . . .

	

S(h) do not intersect T(1 ) .
We distinguish two cases :
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(a) 1<r<h.

Since the components S( 1 ), S(2), . . . , S(r) intersect T(1) , their union U =
S(1) U . . . U S(r) is a subset of equivalent vertices . Hence, to the partition
pl = [U, S(r+1), S(r+2) . . . S(h)] we can associate a new composition of D,
which will induce a composition of Ph . But this contradicts the simplicity of
Ph .

(b) r = h.

The oriented ares between a vertex u in S(1) - T(1) and any vertex in the
union U = S(2 ) U S(3 ) U . . . U S(h ) are all of the same type, because every
component S('), i = 2, 3, . . . , h intersects the component T(1 ) . On the other
hand, Since u is a vertex in S(1 ), the oriented ares between any vertex in S(1)
and any vertex in U are of the same type . This means that the partition
[S( 1 ), U] is a composition of D, which is a contradiction, for we have supposed
that the quotient Ph is simple of order h > 2.

Finally, if h = 2, then k must be also equal to 2, for otherwise it would be
sufficient to interchange the two compositions and repeat the previous argu-
ment . On the other hand, the digraphs P2 and Q2 must be isomorphic, for if
P2 is the null are, then the digraph D is disconnected, if P2 is the simple are,
then the digraph D is weakly (but not strongly) connected ; and if P2 is the
double are, then the digraph D is strongly connected

Remark 1 . It follows from the proof that, for h > 2, we have not only a
unique simple quotient, but also a unique partition into components . On the
other hand, for h = 2, then we may have more partitions . For example, if
D= [u, v, w; u H v, u H w, v H w] we have the following partitions

P = [[u, v], w],

	

Q = [u, w], v] and R = [[v, w], u] .

Remark 2. We recall that a digraph is hamiltonian if theie is a cycle passing
through all the vertices . We shall consider a symmetric pair as a hamiltonian
cycle .

Proposition 4.5 . A complete digraph is hamiltonian if and only if each of
its (non-trivial) quotients is hamiltonian.

Proof. From results due to Rado (1943), Rey (1958) and Camion (1959), we
know that a complete digraph D is hamiltonian if and only if the tournament
T2 (the simple oriented are) is not the simple tournament related to D . We
now observe that either the initial digraph or any of its quotient digraphs have
the same simple quotient . The assertion follows



ON COMPLETE DIGRAPHS

	

523

5. Complete Digraphs which are Simply Disconnected

Definition 5.1 . A tournament T is regular if, for each vertex v E T, the
numbers of predecessors and successors of v are the same (and hence the order
of T is odd) . A tournament T2.+1 is highly regular if there exists a cyclical
ordering vi, . . . , v2n,,+1, Vi on the vertices of T2�,,+1 such that vi -~ vj if and
only if vj is one of the first m successors of vi in the cyclical ordering of T2.+1 .

Definition 5.2 . A digraph D is simply connected if its first homotopy group
Q 1 (D) is trivial . A digraph D is simply disconnected if Q1 (D) is non-trivial .
We have the following theorem :

Theorem 5.3 . A complete digraph D is simply disconnected if and only if
its simple quotient is a highly regular tournament .

This theorem is a generalization of the analogous theorem for tournaments
(see Theorem 3.9, of [5]) . For the proof, we need the following lemmas .

Lemma 5 .4 . A complete digraph D is simply connected if and only if each
of its non-trivial quotient digraphs D* is simply connected.

Proof.. This is analogous to the proof of Proposition 2.1 in [5] for tourna-
ments

Lemma 5.5 . For every complete digraph Dn of order n, there exists at least

one tournament of order n which is a subdigraph of Dn .

Proof.. It is sufficient to eliminate one oriented arc from each symmetric
pair

Lemma 5.6 . Let D�, and Fn be two given complete digraphs, each of order
n, such that Fn, is a subdigraph of Dn . Then if Fn is simply connected, so is
D, .

Proof.. Each edge-loop in the polyhedron associated to the digraph Dn is
null-homotopic, since it is null-homotopic in the sub-polyhedron associated to
the digraph Fn
We now prove Theorem 5.3 :

(a) If the simple quotient of a complete digraph D is a highly regular tour-
nament, then D is simply disconnected .

This follows direct1y from Lemma 5.4 and the fact that a highly regular
tournament is simply disconnected .

(b) Let Dn be a complete digraph which is simply disconnected ; then Dn, has
a highly regular tournament as a simple quotient .
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A tournament T�, which is a subdigraph of D �, is aleo simply disconnected,
and therefore is the composition of a highly regular tournament, by the analo-
gous theorem for tournaments.

It is now sufficient to preve that the simple ares which ought to be replaced
by double ares in order to pase from the tournament T� to the initial complete
digraph D,,, all belong to subtournaments which are componente of T,z .
FYom Lemma 5.4, we see that the replacement of simple ares by double ares in

the components of T�,, do not change the first homotopy group of the digraphs
which are obtained one by one .
On the other hand, if we assume there exists a double are with vertices u

and v, which belongs to two different components of T�,, then :

1) if we construct a 3-cycle C in T�, using the vertices u and v, then the
edge-loop determined by C is not null-homotopic in the polyhedron associated
to T�,, as it is a generator of QI(T~,) (see [5, Proposition 3.6]) ;

2) en the other hand, if we replace the simple are between u and v by a double
are, then the same loop becomes null-homotopic in the polyhedron associated
with the complete digraph obtained in such a manner from T,, .
Therefore the first homotopy group of such a digraph is trivial, and hence by

Lemma 5 .6 the group Ql(D~) is aleo trivial . Hence the result follows

Corollary 5.7 . A simply disconnected complete digraph is hamiltonian.

Proof. This follows easily from Proposition 4.5
Before we obtain a second characterization for the simply disconnected com-

plete digraphs, we need to introduce some further definitions .
Definition 5.8 . A subdigraph F of a digraph D is coned if there is at least

one vertex u in D - F, such that u is either a predecessor or a successor of the
vertices in F ; otherwise, the subdigraph E is non-coned.

Definition 5.9 . A subdigraph F of a digraph D is shrinkable if there exists
a proper subset of D consisting of equivalent vertices, and containing F .

Theorem 5.10 . A complete digraph D. is simply disconnected if and only
if

(a) there exists in Dn, a non-coned 3-cycle;
(b) every symmetric pair and every coned 3-cycle in D�, are shrinkable in

Dn, .

Proof.. By Theorem 5.3, it is sufficient to show that a complete digraph
whose simply quotient is a highly regular tournament, is characterized by the
conditions (a) and (b) .

1) The proof that conditions (a) and (b) are necessary is analogous to that
given for tournaments in [4, Th . 7] .
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2) If we suppose that conditions (a) and (b) hold for the complete digraph
D, then by (b) the simple quotient digraph Q of D�, is a tournament, such
that each of its 3-cycle is non-coned . Hence by the analogous theorem for
tournaments which was mentioned above and by the simplicity of Q, we see
that the tournament Q is highly regular . The result is proved

Aknowledgements . This work was performed under the auspices of the
Consiglio Nazionale delle Ricerche (CNR, GNSAGA) and of FAPESP (Proc .
NQ 89/2042-1) .

References

1 . BEINEKE, L . W. AND REID, K. B ., Tournaments, in "Selected Topics
in Graph Theory," Edited by L . W. Beineke and R. J . Wilson, Academic
Press, New York, 1978 .

2 .

	

BURZIO, M . AND DEMARIA, D. C., Duality theorem for regular homo-
topy of finite directed graphs, Rend. Circ . Mat. Palermo (2), 31 (1982),
371-400 .

3 .

	

BURZIO, M. AND DEMARIA, D. C ., Homotopy of polyhedra and regular
homotopy of finite directed graphs, Atti II° Conv . Topologia, Suppl. Rend .
Circ . Mat . Palermo (2), 12 (1986), 189-204.

4 .

	

BURZIO, M. AND DEMARIA, D . C ., Characterization of tournaments by
coned 3-cycles, Acta Univ . Carol. Math . Phys . 28 (1987), 25-30 .

5 .

	

BURZIO, M . AND DEMARIA, D. C ., On simply disconnected tournaments,
Proc . Catania ConE, Ars Combinatoria 24 A (1988), 149-161 .

6 .

	

DEMARIA D. C . AND GARBACCIO BOGIN R., Homotopy and homology in
pretopological spaces, Proc . 11th Winter School, Suppl. Rend . Circ . Mat .
Palermo (2), 3 (1984), 119-126 .

7 .

	

MÜLLER, V., NESETRIL J . AND PELANT J ., Either tournaments or alge-
bras?, Discrete Math. 11 (1975), 37-66 .

Davide C . Demaria : Dipartimento di Matemática
Universitá di Torino
via Principe Amedeo 8
10123 Torino
ITALIA

J . Carlos S . Kiihl : Departamento de Matemática
IMECC-UNICAMP
Caixa Postal 6065
13081 - Campinas,
SP BRASIL

Rebut el 28 de Gener de 1991




