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POINTWISE SMOOTHNESS,
TWO-MICROLOCALIZATION
AND WAVELET COEFFICIENTS

5. JAFFARD

In this paper, we shall compare three notions of pointwise smoothness: the
usual definition, J.M. Bony’s two-microlocal spaces C‘;’o", and the correspond-
ing definition on the wavelet coefficients. The purpose is mainly to show that
these two-microlocal spaces provide "good substitutes” for the pointwise Holder
regularity condition; they can be very precisely compared with this condition,
they have more functional properties, and can be characterized by conditions on
the wavelet coefficients. We also give applications of these properties. In Part
2 some results on the microlocat spaces contained in [B2] will be recalled. The-
orems 3 and 4 are also essentially contained in [B2]. The starting point of this
paper was a note {[J1]) the author had written on a comparison between the
Halder criterion of regularity at a given point xy and a corresponding property
defined on the wavelet coefficients. Some easy proofs are omitted or abridged
and can be found in [J2].

1. Pointwise smoothness and two-microlocalization

Let s be a strictly positive real number. Let us recall the usual definition
of the Holder criterion at zg. A function f belongs to €7 if there exists a
polynomial P(z) of degree equal to the integral part of s such that

(1) flz) = Pz} + Oz — z6|*).

The following properties are classical. If f belongs to €7 , nothing is implied
on the derivatives of f. In dimension 1, the primitive of f belongs to Cyt?.
In dimension larger than 1, the fractional integration of order I maps C} into
cit

The two-microlocalization of J.M. Bony consists in replacing the preceding
notion by another one which allows to derivate and integrate. The classical
pseudo-differential operators will operate on these spaces, which will be spaces
of temperate distributions.

These spaces are defined by conditions on the Littlewood-Paley decomposi-
tion. Let us recall its definition. Let 8 be a function in the Schwartz class such
that

B =1 || <1/2and (&) =01if |§] = 1.
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Let then

(&) = 8(£/2) - §(¢).
Let S; be the "low-pass filter”, which, after a Fourier transform, is a multipl-
cation by 6(277€). Define A; = §;4, — ;. Thus

I=S[]+AO+AI+...
The Fourier transform of A;{u} is supported by the set
2i=1t < €] < gitl

The two-microlocal spaces can now be defined,

Definition 1. Let s and s’ be two real numbers; Cg'a’ is the Banach space
of distributions such that

(2) 1So(u)(z)| < C(1 + Jz])~
and
(3) 18;(u)(z)] € C279(1 + [y~

The space C;’:’ is then obtained through a simple translation.
If s = 0, the space thus obtained is the global Holder space C*(R”). The effect
of s is to accentuate either the role played by zy, when s < 0, or the behavior
at infinity, when s’ > 0. A few other remarks will give a better understanding
of these conditions.

Define u; = Aj{u} and U{z) = u;{277z). Then, the Fourier transform of
U; is a distribution carried by the set 1/2 < |¢| £ 2, and {3) implies that

) U;(u)(z)] < €277 (1 + |2|)~".

Such an estimate is stable under derivation and fractional integration, more
generally under the action of the operators (I — AP or (—A)’ﬂ, s € R,
because these operators are Fourier multipliers which, once restricted to 1/2 <
[£] £ 2, coincide with a function of the Schwartz class. Coming back to the
"space variable”, we get

(—AYU; = K, Uj

where K'; belongs te the Schwartz class.

This convelution operator preserves the polynomial increase or decay, as it
appears in {4). So that the following equivalence holds
Ju

2,5 -1,4 :
(5) uw € Co ﬁngC:O for 1 <5 <n.

In the following part, we shall investigate the nature of the elements of C';Ef' ,
whether they are {eventually smooth) functions or distributions.
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2. The elements of C:;”

We claim that the elements of CJ;™° are (in general) distributions. To shorten
the proof, suppose n =1, 2¢ = 0 and 0 < 5 < 1. Define

Gz} = ¢ |z|°,

where the Fourier transform of ¢ belongs to the Schwartz class, vanishes outside
[—1/2,1/2), and is equal to 1 on [—1/4,1/4]. So that, for any N > 1,

8(z) = [z}* + O(lz|~").

Define then o o
fz)=3"2776(272)e™ s = 3 uy(a).
5 o
Then

uj(z) = 277u(272) and |u(z)] < C(1 + |o})°,

so that f belongs to €'~ °. The restriction of f to any interval |6/2,6[,6 > 0,
is a distribution, because, if §/2 < z < §,

O

fay=Jel 3 ™"+ 0(1).

9

We claim that the elements of C;;;r, when s’ < —s, are "honest functions”.
In order to prove it, we shall suppose that 0 < s < 1, £ = 0, and obtan that

|f(z} — F(0)| < C|z|® when 0 < |z| < 1.

Let jg be such that
9=Uo+1} lz| < g—Jo

then
|f(z)~ f(O) <
|56 f(z) = So SO} + D luj(z) — w0 + Y (2 + D [u;(0).
0<i<io i>je e
By definition,
lus(e)l < C279(1 + 2|y,

Hence _ _
| 7 u{z)| < €291 4 2|z

So that, if 0 <€ 7 < g3,

wj(z) — u;(0)] < C1270 =7z
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and the total contribution of these terms is C2707% which is equivalent to
Clz|°.
The serie Z luj{z)| is bounded by C Z 2_"’(2"|z|)_"", which is equivalent
i>je i>Je
to C277°¢ and the same estimate holds for Z [¢;(0}). Since, by Bernstein’s

i>je
inequality, 185 f(z) — Sp f(0)] < Co|z|, the result is proved. One can also easily
check that, if s > 0 and s' + 5 > 0, then €} is included mn C73,.
In the next part, we shall examine the regularity of the elements of €77 at
Ta.

3. A comparison between C37* and C},

Let s > 0, we saw that the elements of C};7%, cven restricted to R™ — {z¢}
are in general "wild distributions” {or which (1) cannot hold. Though, we shall
prove the following result.

Theorem 1. Lei s and § be stricily positive numbers, and v an element of
crm'n CP(R™). There exisis a polynomicl P of degree less than s such thai,
if |z — za| £ 1,

{6) Ju(z) — P{z)| < Clz — zol* log

|z = |’

and this resull 1s optimal

Remark that, in this theorem, we are looking for regular points in an irregular
background, which is more subtle than the usual approach that consists in
finding irregular points in a O™ or analytical background {determination of
the singular supports).

This theorem can be interpreted as a tauberian theorem. We have infor-
mation on the behavior of averages of f ( its Littlewood-Paley decomposition)
and a tauberian condition of minimal global regularity, which allow to obtain
a pointwise result.

Proof of Theorem 1: Define j; and j; by

; ; .5,
2777 <z — 26| < 277 and j; = =jo.

B
Let us restrict to the case 0 < 5 € 1 and 0 < 8 < 5. Then P{z) = u(0), and

1o
lu(z) — w(0)) < |Sou(z) — Sou(O)] + D |uj{z) — w;(0)+

Y (el + {50 + Z{Iuj(l‘)l +lu(O) =4+ B+C+D.

o
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To estimate A is a straightforward consequence of Bernstein’s inequality. As
concerns B, we use u € C3'~ ", so that

uj(z) =277 B,(2'z)

where |8;{z}] < ¢(1 + |2])’. The Fourier transform of §; vanishes outside the
set 1/2 < |£] £ 2, so that

18;(z) — B;(0)] < clz| if [z] < L

hence _ _
Jj(x) — u;{0}] < c27)x|277".

Adding up these inequalities, we get either B < ¢lz|* if s < 1, or, if s = 1,
. 2
B £ ¢lz|fo € )z log Ek
z

In order to estimate C, remark that

luj(z)| < (277 + |zI*),

so that C is at most G{|z|*(71 — jo}) = O(|z|* log %}

Because uis in CF || u; {[o0< €277, 50 that D is at most Q2778 = O(|z[*),
which ends the proof. The case s > 1 is left to the reader.

One easily checks that, if (1} holds, then v belongs to C§.7°. So that, i
s+s >0,

e, con

The necessity to make the global C# asumption and the optimality of the
logarithmic term in the result have been proved by Yves Meyer (personal com-
munication), using wavelets and will be given in the next section. B

4. Wavelet coefficients and C?¥ spaces

One of the interesting properties of the space C :;f is that it can be charac-
terized by conditions on the wavelet coefficients. The intuitive reason for that
is because the wavelet coefficients of a distribution are given by a sampling
(foliowing Shannon’s rule) on the filtering given by the Littlewood-Paley de-
composition. It is therefore natural that spaces defined by local conditions on
their Littlewcod-Paley decomposition can be thus characterized. We assume in
the following that the orthonormal basis of wavelets used has enough regularity
and decay. We use the usual notations

Pia(z) = 21220z — k), j € Z,k € Z™.

Then, the following theorem is very easy to check.
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Theorem 2. A distribution u belongs fo C;a” if and only if
(1) [ < uyghyp > | < C2TOAHNI(L 4|k — 200]) 7"

The other two-microlocal spaces can also be characterized by conditions on
the wavelet cocflicients. Recall that

we HY ol 2°(1 4+ 2[2|)” u; ||22< ¢

with T J¢;|% < oo
Then, u belongs to H>*' iff

- . k et
S+ 2z - 2o |)?)C; £ )% < o0

We now give the counter-examples that show the optimality of Theorem 1.

Assume that 1 is 2 compactly supported wavelet, as constructed in [I3]. One
easily checks that it is possible to suppose

$(8) # 0.

We first prove that the global C# asumption is needed in Theorem 1.

Let m be a positive integer and e, a real number such that 2™e,,; is an
integer, and €, — 0 when m — oo. The precise value of e, will be given later.
Let & be such that 0 < o < 1. The wavelet coefficients of the counter-example
f are defined by:

if 2™ < j <2 and k= 6,27, O = 2779/262,;

else, C; ¢ = 0.
Then define -
fg) =) fmla)
m=—=0
with .
falz) =% Y Bz - en))
'zméjgzm-}-l
Choose then €y, such that
1 1
<M £
2m ~ 2em < m

The supports of the f,, are disjoint, |fm(z}] £ C2™¢,, and f(0) = 0. Then f

is continuous {because 2™ef, — 0}. But

falem) = C2™e5,
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so that

1#{=) = Hzo)l

> 2 limsup C2™el ¥ = +oo ¥y > 0.
I

limsup
Hence f is not in Cy for any value of v, although condition (3) holds at 0.
The following counter-example shows that the logarithmic term is needed in
(6).

Take the same construction as before, but with
Em = 272" for a given 8 > C.

Then

M > C2™ > C'log [eml.

Hence the optimality of the logarithmic term,

It should be noticed that other conditions similar to condition (7) can be
introduced in order to be compared with other types of pointwise regularity
conditions. For example, a comparison with pointwise differentiability is given
by the following proposition, the proof of which is similar to the one of Thecrem
1,

Proposition 1. Lei f be a function differentiable at zq with wavelet coeffi-
cients cjx. Let A be the point (k277 277Y in the upper helf-plane. Then, the
Jollowing estimate holds

lejiel £ C(2)2~ B+ |k — D)

where p{A) < 1 and y{ ) = o(1} when A tends to (14,0).

Conversely, if f s in C#(R™) for e strictly positive 8 and if there ezists a
posttive function 8 defined for positive values of j such thet 3 () < co and

lesul < Cn(M)B(7 Y2718 +203(1 4 [k — 27z},

then f 15 differentiable al zy.

5. Pseudo-differential operators and
two-microlocalization

We shall now study the action of generalized pseudo-differential operators
on the spaces Cj;}". The operators T that we shall consider will belong to
the algebras Op{M"} {cf. [DJ],[L] and (M2]) defined by conditions on their
distribution-kernel K{z, y} as follows.
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Define O to be the class of operators such that, off the main diagonal, their
distribution-kernel X is a function satisfying the following estimates: for any
integer « such that o < v,

|a°}{(.'1,‘., y)| S mm<

If o is the integer such that y — 1 < a < v,

Clz — 2|77 . z —
|65“K{$,y) —89’K{x"y)| _<_ ﬁ_}? If |I — z‘l S l_2y_l’
- Cly -y """ . Iz — ¥
o o ? _ ¥
|0°K(z,y) — 0" K(z,y')| < o g if ly—v'| < =5

and the operator T is such thet T(X¥) = T*(X?} = 0 for a less than or equal
to .
The algebra Op(M?) is then the union of all the O7 for v > 1.

The usual pseudo-differential operators of order 0 are the sum of such an
operator and of a regularizing operator.

Yves Meyer proved that the following caracterization holds (cf. [M2]}.

Proposition 2. An operetor T belongs to Op(M™} iff its "wavelet coeffi-
ciemts” defined by oA, X') =< T¥,|bar > satisfy the following condition: there
ezisis ¥ > vy, such that

Je{A, A € w(A, A7)

with ) .,
9-Ji 4 9-i

ANy = o i RE ) _
R e R S e e

e

and . _
A= (k277,270

We shall now prove the following result.
Theorem 3. If f belongs to C’;;J" and T belongs to Op(M™) unth
5 > suplls + 5'l, 5,16, = - s),
then T{ [} belongs to C;’B".
If we keep Theorem 1 in mind, this theorem can be interpreted as follows.

The position of the points of regularity of a function is essentially preserved
under the action of singular integral operators such as the Hilbert transform.
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Proof of Theorem 3: Let 8()) = 2~(8+)i(1 4 2|4 — :':0])_”. We must prove

that
> WA, XN)B(X) < CHN).
A
Notice that, for any s’
(8)  (L+2PA—ao)™ SL+PN — o) (14 2= AL

We split the sum Y w(A, X)8()) into two parts.
a) If § £ 7', then :

o—{i' K3+ 274l (1 4 2|\ — 2|y

;“{‘\'A’)G(A) sC Z: (13 2 = Xye+v

ey 27 NI L DN —z))™
< Y o-l=iEEY) : 9 by (8
= Z,\ Ay v Y ®

(142X = z])~"
(1+27]%— ,\f|)n+w—|-v‘l

< o5+ Z 9-{(i' —ity—9)
A

We introduce now the two foliowing subcases,
i} ¥ s’ < 0 then

(T+ 2N — x|} (1 +27 [N —zo)™"

and
o—(r' —5¥y—1}

Zw(’\’ ANB(X) < 8(X) Z/\: (1+ [k — 23‘):|)n+7-|8’|

A

<CHNYEy>sandy—|s'| > 0.
ity If 5' > 0 then

(1+27|A = mo|)™ = 20" 99" (20" =1 93" |A" — 2o}

< 201 1 28 |4 — )

and
9= =i y—s—-5")

D w(X A8 < 9(*’)2/\: (1+27]A — Ayntrle]

A

<CHNYiE vy > s+ 5 and y—|¢') > 0.

by j > j/, then
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o nmany 2T BT 20N — )
' < a—(j=F )5+ _
;w(A)/\ )8(’\) = C; : (1 + 23-"/\ - /\fl)ﬂ-i—'r

We introduce again the two following subcases.
i) If ' <0 then

> w(A,A)8(2)
:Y

(+ 22— )
A +27 A -2t

< ¢ {3+’ Z 9={i=i"Yintr+ts)
A

But (1 + 23|/\ _ zol}—sf S 2—(j_j')_g’(1 + 23"/\ _ xﬁl)—g:‘

Hence

o= (i~ Wntytsts’)

X)\:w[/\,)ﬁ’)g()\) s CQ(A’)E (1427 [x — M]yetrle] by (8)

< CH(N) Z 9= {i—i" Wytats)

>3
< CHN)if v > —s — 5"

ii) If s' > 0 then

> w(X,A8(0)

A

—(§+a)y" iyt (L YA = zo)7Y
< ol XA:Q i=j ¥ A F o p—a

(14274 —z)™"
(14 27°|A = A7)nt

< Cg—{%-H)J" Zg—(i—j')(ﬂ-i-‘ﬁ!)
A

(1427 X —zp{)~
(14 27|A = Ayl

< CQ*(%%’)J" 22—(j-i')(n+'r+83 i by (8)
A

< CH{N') as before.
Which ends the proof of Theorem 2. W
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6. Former pointwise regularity conditions and applications

Some "good substitutes” for the '3 condition were introduced already in
1961 by A.P.Calderén and A.Zygmund [CZ2]. They are called the T¥ classes,

A function f belongs to T%(xz¢) if there exists a polynomial P of degree less
than u such that

G [ )= Pl = eo)Panyle < Cp,

for p small enough. Of course, if f belongs to C*(zg), then f belongs to T?(z,)
for any p. This weak formn of pointwise regularity is preserved under fractional
integration and singular integral transformations. An application of these two
properties is given by the following resuit. Since Calderén and Zygmund proved
in a former paper ([CZ1]) that the inverse of an elliptic operator is the compo-
sition of a fractional integration and of a singular integral operator, they could
deduce a theorem of pointwise regularity for clliptic operators in term of TP
classes. A similar approach, has been followed by E. Stein ({St]) for the defi-
nition of the harmonic derivative, which can be regarded as a condition on the
behavior of the wavelet transform near the boundary of its definition domain.

However, the T} clesses are not as closely related to the €} spaces as the
C:;‘J are, and a result such as Theorem 1 cannot hold, as the following connter-
example shows.

Let f be an even function defined as follows:
f is plecewise lincar between 27 and 2"H forne Z
If n is even, f(2%) =27
If n is odd, f{2") =0.

Then f belongs to C*{R), and, though it belongs to TL_C,
C* at 0. ’

We shall now follow the ideas developped in [CZ2] and get a pointwise reg-
ularity result for solutions of partial differential equations.

is not better than

Theorem 4. Let A be a purtial differential operator of order m, with smoeoth
coefficients and elliptic at 2. If Af = g and ¢ belongs to Cﬁ;”, then f belongs
to C;:m""

The proof of this theorem makes use of the decomposition discovered by
Calderén and Zygmund of the inverse of an elliptic operator as a product of
a fractional integration and a pseudo-differential operator of order 8. Such an
operator is the sum of a regularizing operator and of an operator belonging to a
class Op(M7); so that Theorem 4 is an immediate consequence of the remarks
of Part 1 and of Theorem 3. The following corollary gives an optimal result of
pointwise Holder regularity for elliptic operators and follows from Theorems 1
and 4.
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Corollary 1. Let A be a partial differential operator of order m, with smooth
coefficients and elliptic af z0. If Af = g, and if g is a funclion thel belongs
to C?,, then there evists a polynomial P of degree less than s such thai, for

|z —zg] £1,
12) ~ P(&)] = Cle = ol g e

This corollary uses the fact that, as Theorem 1 shows, the condition C};™°
is very closely related to €3 . Hence it could not be a consequence of the
approach through the 7% classes.

7. The continuous wavelet transform

It should be noticed that the characterizations that were given on the wavelet
coefficients hold not only in the case of an orthonormal basis of wavelets but
also for the continuous wavelet transform. Let us recall at first the definition
and some of the properties of this transform. We shall only consider the case
of functions defined on B. We need to suppose that the analysing wavelet 4 1s
even or odd and has enough cancellation and decay.

For a strictly positive number  ard a rcal number b, define

o) = [ Lot Dse

Then f can be recovered from its wavelet cocfficients by

fo= [ 5% [ danu s

Notice that we have taken a different normalization than in the orthonormal
case,

This continucus transform scems more adapted to the study of "fractal type”
functions because it is translation invariant and doesn't favour any particular
scale. The same caracterizations as in the preceding parts can be proved for
this transform. The proofs are exactly the same if one defines »; by

227 gq t—b
uilt) = ﬂ = [ eta b=,
Let us give the caracterization of Ci’o" as an example.
Proposition 3. A4 distribution belongs io C:;” if end only f ils wavelet
coeficients c(a, b} satisfy the following estimate:
le{a, B)| € Ca®** d{(a,b),(0,z0))™"

where d is the vsual euclidean distance,

Acknowledgement, The author expresses his thanks to R. Coifman and
Y. Meyer for many enlightening discussions on the topics studied in this paper.
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