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POINTWISE SMOOTHNESS,
TWO-MICROLOCALIZATION
AND WAVELET COEFFICIENTS

S . JAFFARD

In this paper, we shall compare three notions of pointwise smoothness : the
usual definition, J.M. Bony's two-microlocal spaces Cxós,, and the correspond-
ing definition on the wavelet coefficients . The purpose is mainly to show that
these two-microlocal spaces provide "good substitutes" for the pointwise Hdlder
regularity condition ; they can be very precisely compared with this condition,
they have more functional properties, and can be characterized by conditions on
the wavelet coefficients . We also give applications of these properties . In Part
2 some results on the microlocal spaces contained in [B2] will be recalled . The-
orems 3 and 4 are also essentially contained in [B2] . The starting point of this
paper was a note ([J1]) the author had written on a comparison between the
Hdlder criterion of regularity at a given point x o and a corresponding property
defined on the wavelet coefiicients . Some easy procfs are omitted or abridged
and can be found in [J2] .

1 . Pointwise smoothness and two-microlocalization

Let s be a strictly positive real number . Let us recall the usual definition
of the Hdlder criterion at x o . A function f belongs to C" if three exists a
polynomial P(x) of degree equal to the integral part of s such that

f(x) = P(x) + O(Ix - xo js) .

The following properties are classical . If f belongs to C2 o , nothing is implied
on the derivatives of f . In dimension 1, the primitive of f belongs to C'+' .
In dimension larger than 1, the fractional integration of order 1 maps C', finto
C9+1 .

x o

The two-microlocalization of J.M . Bony consists in replacing the preceding
notion by another one which allows to derivate and integrate . The classical
pseudo-dif erential operators will operate on these spaces, which will be spaces
of temperate distributions .

These spaces are defined by conditions on the Littlewood-Paley decomposi-
tion . Let us recall its definition . Let 0 be a function in the Schwartz class such
that

B(1) = 1 if 111 < 1/2 and B(1) = 0 if 111 > 1 .
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Let then

Let Sj be the "low-pass filter", which, after a Fourier transform, is a multipli-
cation by 0(2-jj) . Define Aj = Sj+1 - Sj . Thus

The Fourier transform of Oj(u) is supported by the set

The two-microlocal spaces can now be defined .
Definition 1. Let s and s' be two real numbers ; C"' is the Banach space

of distributions such that

(2)

	

ISo(u)(x)I <_ C(1 + 1x)-9/

and

0(1) = 0(1/2 ) - B(1) .

I=So+Do+Di + . . .

2'-1 <_ 111 < 2j+1 .

láj(u)(x)j :5 C2-j9(1 + j2jxj)-9' .

The space Cxo9 is then obtained through a simple translation .
If s' = 0, the space thus obtained is the global HSlder space C9(Rn) . The effect
of s' is to accentuate either the role played by xo , when s' < 0, or the behavior
at infinity, when s' > 0 . A few other remarks will give a better understanding
of these conditions .

Define uj = Oj(u) and Uj(x) = uj(2-jx) . Then, the Fourier transform of
Uj is a distribution carried by the set 1/2 < 111 < 2, and (3) implies that

(4)

	

lUj(u)(x)I < C2-j'(1 + Ix1)" .

Such an estimate is stable under derivation and fractional integration, more
generally under the action of the operators (I - 0) 9 / 2 or (-0) .9 / 2 , s E R,
because these operators are Fourier multipliers which, once restricted to 1/2 <_
111 <_ 2, coincide with a function of the Schwartz class . Coming back to the
"space variable", we get

(-0)9~2Uj = K9 * Uj

where Ks belongs to the Schwartz class .
This convolution operator preserves the polynomial increase or decay, as it

appears in (4) . So that the following equivalence holds

(5)

	

u E C','

	

áu~r

	

E C'-1 " ' for 1 < j < n.
zo

	

09x j

	

xo

	

-

	

-

In the following part, we shall investigate the nature of the elements of Cxó",
whether they are (eventually smooth) functions or distributions .



We claim that the elements of Ció ' are (in general) distributions . To shorten
the proof, suppose n = 1, xo = 0 and 0 < s < 1 . Define

where the Fourier transform of ~ belongs to the Schwartz class, vanishes outside
[-1/2,1/2], and is equal to 1 on [-1/4,1/4] . So that, for any N > 1,

Define then

Then

Let j0 be such that

then
I f(x) - f(0 )I <

By definition,

Hence
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2. The elements of
Ció"

8(x) = 0 * IxI',

B(x) = IX],, + Q(IXI-N) .

f(x) = 1: 2-i80(2ix)e'2' z = 1: uj(x) .
0

	

0

uj(x) = 2-J9 u(21 x) and Iu(x)I < C(1 + IxI)',
so that f belongs to Có'- ' . The restriction of f to any interval ]b/2, 8[, S > 0,
is a distribution, because, if 5/2 < x < S,

00

f(x) =
IX I' 1: ed21x + O(1) .

0

We claim that the elements of Cs,~", when s' < -s, are "honest functions" .
In order to prove it, we shall suppose that 0 < s < 1, x0 = 0, and obtain that

I f(x) - f(0)I < Cixi' when 0 < IxI < 1 .

2 -(jo+1) < IxI < 2-jo

ISOAX) - SOf(0)I +

	

1:

	

Iuj(x ) - uj(0)I +E Iuj(x)I + E Iuj(o)I .
0<j<jo

	

j>ju j>jo

Iuj(x)I < C2-j"(1 +2jix1)" .

1 V uj(x)I < C2j('-s)(1 + 2j1xI)-9, .

So that, if 0 < j < j0,

Iuj(x)-uj(0)I :5 Cl 2 ' ( ' -J) IxI
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and the total contribution of these terms is C2j(1 -9), which is equivalent to
CIxl9 .
The serie E Iuj(x)I is bounded by CE 2-j9(2jjxj)-", which is equivalent

7>70

	

7>70
to C2-1 and the same estimate holds for E Iuj(0)I. Since, by Bernstein's

7>7o
inequality, I So f(x) - So f(0) I < Co Ix1, the result is proved. One can also easily
check that, if s > 0 and s' + s > 0, then CxoC" ,-" isinclu dedinCxo .

In the next part, we shall examine the regularity of the elements of Cxó s at
xo .

and Chis result is optimal.

3. A comparison between Ciá s and Cxo

Let s > 0, we saw that the elements of Cxó 9, even restricted to R' - {xo}
are in general "wild distributions" for which (1) cannot hold . Though, we shall
prove the following result .

Theorem 1. Let s and fl be strictly positive numbers, and u an element of
Cid' n CO(Rn) . There exisis a polynomial P of degree less than s such that,
if

IX - XOI
< 1,

(6)

	

Iu(x)-P(x)I :5 CIx-x0I 9 1og
Ix

2 xol '

Remark that, in this theorem, we are looking for regular points in an irregular
background, which is more subtle than the usual approach that consists in
finding irregular points in a C°° or analytical background (determination of
the singular supports) .

This theorem can be interpreted as a tauberian theorem . We have infor-
mation on the behavior of averages of f ( its Littlewood-Paley decomposition)
and a tauberian condition of minimal global regularity, which allow to obtain
a pointwise result .

Proof of Theorem 1 : Define jo and j l by

2-)0-1 < Ix - xo I < 2 - io and Ji =
s
jo .

Q
Let us restrict to the case 0 < s < 1 and 0 < 0 < s . Then P(x) = u(0), and

7o

u(x) - UMI 5 ISOU(x) - SOu(o)I +E Iu7(x) - Uj(0)I+
0

00

E(IUj(x)I + IU;(o)I) + 57(IUj(x)I + IUj(0)I) = A+ B+C+D.
7o

	

h
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To estimate A is a straightforward consequence of Bernstein's inequality . As
concerns B, we use u E C¿8'-"1 so that;

where jfj(x)j _< c(1 + jxj) - . The Fourier transform of Nj vanishes outside the
set 1/2 < 111 < 2, so that

hence

ui(x) = 2-19fij(21x)

lpj(x) - fj(0)1 _< cixi if IxI < 1 ;

l uj(x) - uj(0)j < c2jixi2-j9 .

Adding up these inequalities, we get either B < cixi 9 if s < 1, or, if s = 1,
B < cixijo < c'ixllog

I2I,

	

-

x
In order to estimate C, remark that

luj(x)j < c(2-j9 + jxj9),

so that C is at most O(jxj 9 (jl - jo)) = O(Ixi' log 2 I ) .

Because u is in CQ, 11 uj jj,,,,< c2-jO, so that D is at most O(2-j"Q) = 00x0,
which ends the proof . The case s > 1 is left to the reader .
One easily checks that, if (1) holds, then u belongs to Czó s .

	

So that, if
s+s' > 0, Cio9

, C Cio C Cx~s .

The necessity to make the global CO asumption and the optimality of the
logarithmic term in the result have been proved by Yves Meyer (personal com-
munication), using wavelets and will be given in the next section .

4 . Wavelet coefficients and Ció" spaces

One of the interesting properties of the space CxO' is that it can be charac-
terized by conditions on the wavelet coefficients . The intuitive reason for that
is because the wavelet coefficients of a distribution are given by a sampling
(following Shannon's rule) on the filtering given by the Littlewood-Paley de-
composition . It is therefore natural that spaces defined by local conditions on
their Littlewood-Paley decomposition can be thus characterized . We assume in
the following that the orthonormal basis of wavelets used has enough regularity
and decay. We use the usual notations

1,j,k(x) = 2nil2 0(2j x - k), j E Z, k E Zn.

Then, the following theorem is very easy to check .
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Theorem 2 . A distribution u belongs to CxoC -" ,-" if andonlyif

1 < u ,Oj,k > 1 < C2-(n/2+s)j(1 + Ik _ 2jxa1)-9' .

The other two-microlocal spaces can also be characterized by conditions on
the wavelet coefficients . Recall that

with 1: Icj 12 < oo .

Then, u belongs to
H9,9,

iff

u E
H9,9,

	

2' 9 (1 + 2j ix1)" uj JILI< cj

L. 2's(1 + 2i i~ -x01)29/¡Cj,k12 < oo .

We now give the counter-examples that show the optimality of Theorem 1 .
Assume that 0 is a compactly supported wavelet, as constructed in [D] . One

easily checks that it is possible to suppose

wlth

Choose then E ;� such that

0(0) 7~ 0 .

We first prove that the global CQ asumption is needed in Theorem 1 .
Let m be a positive integer and e,,, a real number such that 2'e �1 is an

integer, and Evn -> 0 when m -+ oo . The precise value of Em will be given later .
Let a be such that 0 < a < 1 . The wavelet coefficients of the counter-example
f are defined by :

if 2- < j < 2-+1 and k = 6,n27, Cj,k = 2-j/2Emi
else, Cj , k = 0 .
Then define

00

x

	

= 1: f.(x)
m=0

frn(x) = Em

	

1:

	

0( 2j (x - cm.».
2-<j<2-+ 1

The supports of the fm are disjoint, ¡fm(x)I < C2'em, and f(0) = 0 . Then f
is continuous (because 2m e"1 -+ 0) . But

fm(em) = C2'em,



so that

Then
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limsup If(x)- f(x°)I > limsupC2'E'-r =+ooVy > 0 .xy -

Hence f is not in Có for any value of y, although condition (3) holds at 0 .
The following counter-example shows that the logarithmic term is needed in

(6) .
Take the same construction as before, but with

E,,,, = 2-Q2m for a given /i > 0 .

If(E-)- f(0)I > C2m > C'logjemi .
m

Hence the optimality of the logarithmic term .
It should be noticed that other conditions similar to condition (7) can be

introduced in order to be compared with other types of pointwise regularity
conditions . For example, a comparison with pointwise differentiability is given
by the following proposition, the proof of which is similar to the one of Theorem
1 .

Proposition 1 . Leí f be a function differentiable at xo with wavelet coef-
cients cj,k . Leí A be the point (k2- j, 2-j) ira the upper half-plane. Then, the
following estimate holds

where 77(A) < 1 and rl(A) = o(1) when A tends to (xo, 0) .
Conversely, if f is in C , (R") for a siricily positive ,l and if there exists a

positive function 0 defined for positive values of 1 such that E B(j) < oo and

then f is differentiable at xo .

Icj,kl :5 C~l(A)2-(2+')j(1 + Ik - 2'xol)

Icj,kl :5 Cil(A)B(j)2-cg + '> j(1 + Ik - 2'xo1),

5 . Pseudo-differential operators and
two-microlocalization

We shall now study the action of generalized pseudo-differential operators
on the spaces Ciós

,
. The operators T that we shall consider will belong to

the algebras Op(M7) (cf. [DJ],[L] and [M2]) defined by conditions on their
distribution-kernel K(x, y) as follows .
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Define 07 to be the class of operators such that, off the main diagonal, their
distribution-kernel K is a function satisfying the following estimates : for any
integer a such that ce < y,

If a is the integer such that y - 1 < a < y,

C
la°K(x,y)¡-< Ix-yln+«

.

'Clx -
x'1 7-«

l a«K(x, y) - a«K(x, y)l <

	

(x -
yln+y

if lx-x'I -< Ix 2 yI ,

lá'K(x,y)-a°K(x,Y,)¡<CI lx_yl+7a ifIy-y'I < Ix 2
y¡ ,

and the operator T is such that T(X") = T*(Xa) = 0 for a less than or equal
to ^y .
The algebra Op(M-1) is then the union of all the O^ for y' > y .
The usual pseudo-differential operators of order 0 are the sum of such an

operator and of a regularizing operator .
Yves Meyer proved that the following caracterization holds (cf . [M2]) .

Proposition 2 . An operator T belongs to Op(M7 ) if its "wavelet coef-
cients" defined by c(A, A') =< TOa10a , > saiisfy ¡he following condition: there
exisis y' > y, such that

Ie(A, A')I < w (A, A')

with

and

w(A A') = C2-h-j'I(2+7)(

	

2-i + 2-j/

	

)n+-y'
'

	

2-~ -l- 2-j' + la - A'I

A = (k2-i,2-) ) .

We shall now prove the following result .

Theorem 3 . If f belongs to
Cio9,

and T belongs to Op(M^~) with

then T(f) belongs to CxÓ" .

y > sup(IS + S' I, .s, IS'I, -n - S),

If we keep Theorem 1 in mind, this theorem can be interpreted as follows .
The position of the points of regularity of a function is essentially preserved
under the action of singular integral operators such as the Hilbert transform .
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Proof of Theorem 3: Let B(,1) = 2-(2'+9)j(1 + 2j IA - xoI)" . We must prove
that

Notice that, for any s'

,(A, A')B(,\) < CB(A') .
a

(8)

	

(1+2 j IA-xol)-9 ' <(1+2jIA'-xoI) -
s ,
(1+2jIA-

We split the sum Ew(A,A')B(A) into two parts .
a) If j < j', then

and

an

w(A,A')9(A) < C

	

2-(j'-j)(Z+-r) 2-(2
+9)x( 1 +2jIA-xoI)

-9a

	

a (1+2jIA-

< C

	

2-(j'-j)(Z+-r) 2-
(z+9)j(1 + 2,IA' - x,1)-s' by (8)

-

	

(1+2jIa-~'I)n+7-~9'~a

< C2-(z+9)j'

	

2-(j'-~)(7-9)

	

( 1 +
2jIA' - xoI)-9,

-

	

(1 + 2j IAa

We introduce now the two following subcases .
i)Ifs'<0then

(1+21. Ia'-xoI)-9 ' <-(1+2j'IA'-xoI)"

~w(a,a')B(a) < e(a') ~

	

2-cj'-jx7-9)

a

	

a

	

(1 + Ik - 2'a'Un+,-19'1

<C9(A')if-y>sand~y-Is'j >0.

ii) If s' > 0 then

(1 + 2j IA' - xoI)--" = 2(j'-j)9'(2(j'-j) + 2j' IAl - xoI)-9'

< 2(j'-D,9'(1 + 2j' IA' - xo I) -9

d

~w(a' a )B(A) < B(a)
~

	

2-
(1 + 2j IA - a' I)-+7-191

<CB(,')ify>s+s'andy-Is'I>0 .

b) If j > j', then
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~w(A,A')B(A) < Cj:2-(.i-i')(;+y) 2-( z +9)j(1+2jjA-xo1)"

a

	

a (1+2j'IA-

We introduce again the two following subcases .

i) If s' < 0 then

But (1 + 23. ¡A -

	

2-(i-i')9'(1 + 2j' 1A - xoj)-s" .

Hence

w(A, a')B(A) < CO(a')

	

(1 +2~' ~~ - ~'I)n+y-19'I
by (8)

ii) If s' > 0 then

< CB(A') as before .

S . JAFFARD

< C2-(Z+9)i'

	

2-(i-i')(n+y+9) (1 + 2' ¡A - x,,j)-,"

-

	

(1+2j'IA-A'¡)-+7a

< CO(A')E 2-(j-j')(7+9+8')

i>i,

<CB(A')if-y>-s-s' .

< C2-(z+9))'	2-(.i-.i')(n+7+9) (1 + 2i ¡A - xo j)
-9"

< C2-(Z+9)j'

	

2-(j-j')(n+-r+9) (1 + 2j' 1A - xo l)
-9i

1-

	

(1+2j'IA- .\'I)n+'ra

<_ C2-(á+s)j'

	

2-(i-i')(n+y+9)

	

(1 + 2j' l .V - xo 1)
-"

	

by (8)
A

(1+2j'IA-A'1)n+y- I 9'I

Which ends the proof of Theorem 2.
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6. Former pointwise regularity conditions and applications

Some "good substitutes" for the Cip condition were introduced already in
1961 by A.P.Calderón and A.Zygmund [CZ2] . They are called the T.P classes .
A function f belongs to T.P(xo ) if there exists a polynomial P of degree less

than u such that

lf(x) - P(x - xo)IPdx)1IP < Cpu,
p
1n
x-xo1<P

for p small enough . Of course, if f belongs to C«(xo ), then f belongs to T.P (x o )
for any p . This weak form of pointwise regularity is preserved under fractional
integration and singular integral transformations . An application of there two
properties is given by the following result . Since Calderón and Zygmund proved
in a former paper ([CZ1]) that the inverse of an elliptic operator is the compo-
sition of a fractional integration and of a singular integral operator, they could
deduce a theorem of pointwise regularity for elliptic operators in term of T.P
classes . A similar approach, has been followed by E . Stein ([St]) for the defi-
nition of the harmonic derivative, which can be regarded as a condition on the
behavior of the wavelet transform near the boundary of its definition domain .
However, the T.P classes are not as closely related to the Cxo spaces as the

C" , "' are, and a result such as Theorem 1 cannot hold, as the following counter-
example shows .

Let f be an even function defined as follows :
f is piecewise linear between 2" and 2n+ 1 , for n E Z
If n is even, f(2n) = 2en

If n is odd, f(2n) = 0 .
Then f belongs to CE(R), and, though it belongs to TP+E , is not better than

CEat0.
We shall now follow the ideas developped in [CZ2] and get a pointwise reg-

ularity result for solutions of partial differential equations .

Theorem 4. Le¡ A be a partial d ferential operator of order m, with smooth
coefcients and elliptic at xo . If Af = g and g belongs lo CxC", -", th enfbelongs
lo C9+m,s' .

xo

The proof of this theorem makes use of the decomposition discovered by
Calderón and Zygmund of the inverse of an elliptic operator as a product of
a fractional integration and a pseudo-differential operator of order 0 . Such an
operator is the sum of a regularizing operator and of an operator belonging to a
class Op(M7) ; so that Theorem 4 is an immediate consequence of the remarks
of Part 1 and of Theorem 3 . The following corollary gives an optimal result of
pointwise Hólder regularity for elliptic operators and follows from Theorems 1
and 4 .
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Corollary 1 . Let A be a partial differential operator of order m, with smooth
coefcienis and elliptic al xo . If Af = g, and if g is a function that belongs
to Cx,,, then there exisis a polynomial P of degree less than s such that, for

Ix - xo1 < 1,

lf(x) - P(x)l <- CIx-xo191ogIx _ xo l
,

This corollary uses the fact that, as Theorem 1 shows, the condition C.',,,-"

is very closely related to Cxo. Hence it could not be a consequence of the
approach through the Tú classes .

7 . The continuous wavelet transform

It should be noticed that the characterizations that were given on the wavelet
coefficients hold not only in the case of an orthonormal basis of wavelets but
also for the continuous wavelet transform . Let us recall at first the definition
and some of the properties of this transform . We shall only consider the case
of functions defined on R. We need to suppose that the analysing wavelet 0 is
even or odd and has enough cancellation and decay.

For a strictly positive number a and a real number b, define

c(a, b) =
J

	

a«t a b)f(t)dt .

Then f can be recovered from its wavelet coefFicients by

f(t) =
J

	

da f c( a, b)« t - b )db.
a>o a

	

a

Notice that we have taken a different normalization than in the orthonormal
case .

This continuous transform seems more adapted to the study of "fractal type"
functions because it is translation invariant and doesn't favour any particular
scale . The same caracterizations as in the preceding parts can be proved for
this transform . The proofs are exactly the same if one defines u j by

u?(t) =

	

aá

2 2~J

	

f c(a,b)O(
t
a

b )db.
12-i

Let us give the caracterization of C",8' as an example .

Proposition 3. A disiribution belongs to C- -" if and only if its wavelet
coefcient,s c(a, b) satisfy the following estímate:

jc(a, b)j < Ca9+"d((a, b), (0, xo»"

where d is the usual euclidean distance .

Acknowledgement. The author expresses his thanks to R . Coifman and
Y . Meyer for many enlightening discussions on the topics studied in this paper.
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