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REMOVABLE SETS FOR HOLOMORPHIC
FUNCTIONS OF SEVERAL COMPLEX VARIABLES

Abstract

EDGAR LEE STOUT *

We show that every closed subset of Cl that has finite (2N-2)-dimensional
measure is a removable set for holomorphic functions, and we obtain a re-
lated result on the ball .

1. Introduction

A colleague has remarked that Everybody knows that a set too small to be a
variety is removable. The present paper is devoted to an explication of certain
cases of this general philosophy, which are motivated by a result of Shiffman
[11], [12], to the effect that a closed subset E of a domain S2 in CN is remova-
ble for holomorphic functions in the sense that if f E O(Q\E), then f extends
holomorphically to an f E O(9) provided A2N-2 (E) = 0, A2N-2 denoting
(2N - 2)-dimensional Hausdorff measure.t Because of the Hartogs phenome-
non, this result is of interest only in the case that the set E is not compact .
Our principal result is an extension of this theorem, in the case that S2 is CN
itself, that replaces the hypothesis that A2N-2 (E) = 0 by the hypothesis that
A2N-2 (E) be finite .

We shall prove the following result .

2 . The main result

1 . Theorem . If E C CN, N >_ 2, is a closed set with A2N-2 (E) < oo, then
E is removable .

This is a global theorem in that the conclusion fails for closed sets in bounded
domains. For example, if 9 is a bounded domain that contains the origin, and
if E = S2 n {ZN = 0}, then A2N-2 (E) < oo, but E is not removable, as the
function f(z) = zñ1 shows .

*Research supported in part by grant DMS-8801032 from the National Science Foundation .
tA veision of the result of Shiffman had been found earlier by Caccioppoli [3] .
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Proof of the Theorem : We give a direct proof in the case of C2 and then
argue by induction .
The proof in C2 depends on a lemma, which is based on work of Alexander

Denote by BN the unit ball in CN and by rBN the set {rz : z E BN} when
r E (0, oo) . The boundary brBN is the sphere in CN of radius r centered at the
origin .

The referee has kindly drawn the author's attention to Théoréme 4, p . 309,
of Sibony's paper [15], which contains this lemma, with the constant 2 rather
than the constant -,/2-7r, as a special case . It would be of interest to what the
best value of the constant is .

2 . Lemma. If Y is a closed subset of brB2 and if the polynomially convex
hull of Y contains the origin, then A 1 (Y) > -,/2-wr .

Proof.. First, let X C bB2 be a compact set with 0 E X, X the polynomially
convex hall of X. According to Theorem 1 of [1], if 7rj : C2 --> C is the
projection given by ri(z l , z2 ) = zi,i = 1,2 then

( 1 )

	

A2 (_1(X)) + A2 (Ir2(X)) > 7r,

whence one of the summands, say the first, in (1) is at least ir/2 .

Let Z denote the polynomially convex hull of the set .7r, (X), Le., the union
of ir, (X) and the bounded components of C\7r 1 (X). The boundary of Z is
the boundary of the unbounded component of the set C\7rl (X), and the set
Z does not disconnect the plane . According to the isoperimetric inequality [2,
§§14.3, 14.61

A1 (bZ) > 2.~í7-r [A2 (Z)] _ .

Every point of bZ is a peak point for the algebra P(Z),* and so for every
point p E bZ, the set 7ri 1 (p) fl X is a peak set for the algebra P(X), which
can be identified with P(X ) . Consequently, the set Sri 1 (p) meets the Silov
boundary for P(X), Le., the set X : We have that r1 (X) D bZ . As rl is a
Lipschitz map with Lipschitz constant one, we must have Al (X) > Al (M).
As A1 (bZ) >_ V/-27r, we have A1 (X) >_ v~-27r .

If now Y C brB2, define T : C2 -> C2 by Tz = r-1z, and set X = TY. If
0 E Y, then 0 E X, so A1 (X) > v"2-7r whence A1 (Y) > -,/2-7rr, and the lemma
is proved.
The theorem, in case N = 2, is proved as follows . Fix a point zo E E; we

prove that if f E O(C 2 \E), then f extends holomorphically into a neighborhood

*We use the customary notation that P(S) denotes the algebra of continuous functions on
the compact set 5 that can be approximated uniformly by holomorphic polynomials .
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of z o . Without loss of generality, we can take zo to be the origin . Let p : C2 -->
[0, oo) be the map p(z) = ~Iz1l = (jzip_+ 1z2 p . According to [2, §13.3 ; 4], we
have

1A 1 (E n p - 1 (z)) dt <_ const.A2 (E) < oc .

This implies the existence of tj E (0, oo) with tl < t2 < . . . , tj -; oo, such that

lim A1 (E n btjB 2) = 0.j 00

Fix a value of j large enough that tj > 1 and A1 (E n bt jB2 ) < 1 .
The lemma implies that the origin does not lie in the polynomially convex

hull of the set E n bt j B2 . If <P j denotes the restriction to bt jB2\E of the
function f, then Pj satisfies the tangential Cauchy-Riemann equations and so
([6],[7],[8, Appendix]) continues holomorphically into tj B2\(Enbt;B 2 )^ , which
is a neighborhood of the origin . Denote this extension by (Dj . That o¿j is an
extension of f follows from the fact that f and ¿j agree on an open subset of
btjB 2 .
The theorem is proved now in the two-dimensional case . We next assume it

proved in the N-dimensional case and derive the (N + 1)-dimensional case . To
this end, it is of some importance to notice that the axgument just given works
equally well granted only that A2 (E n {z : Iz1 > 1}) is finite .
We consider in CN+ 1 a closed subset E with A2N (E) < oo .

	

Let f E
O(CN\E) . Fix a point z E CN+1 and denote by CJN+1,N (z) the Grassmannian
of all complex af$ne N-planes in CN+1 that pass through the point z . There
is a natural invariant measure on JCN+1,N (z), which we shall denote by dp(II) .
We assume this mea_sure to be normalized so that it has total mass one . We
have by [12] that if E = E n {jzj > 1}, then

A2N-2
(E n II)du(II) < CNA2N (E) < 00

CJN}1,N

for a fixed constant CN . In particular, for almost every II E_

	

GJN+1,N(z), A2N-2

(E n II) < oo .

	

Thus, for almost every II, fI(II\E) extends holomorphically
through all of II . Denote this extension by fri z . We define

F(z) = fn Z(z).

This gives a well-defined value for F(z), because fn,z(z) is independent of the
choice of II : Two II's, say II, and II2 , in CGN+1,N (z) intersect in an affine
subspace of C of positive dimension on which fnl z and frj2 Z agree . Thus they
agree at z . The function F defined in this way is defined on all of CN+1 , and
it agrees with f on CN+1\E .
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We have to see that F is holomorphic, and for this, it suffices to show that
it is continuous . To do this, let {zn}°°_1 be a sequence in CN that converges
to zo ; we shall show that F(zn ) --+ F(zo ) . Fix a II o E GJN+1,N(zo) with
AIN-2 (no n E) < oo and such that F is holomorphic on II o . For each n, choose
fin E JGN+1,N (Zn) such that AIN-2(IIn n E) < oo, such that F is holomorphic
on IIn, and such that IIn -+ IIo.

If z E CN and II E ON+1,N (z), denote by P,(II) the projectioe space of all
complex lines in II through the point z . We have dimR P ., (II) = 2N- 2. There
are large values of R such that A2N-s (bBN+1 (z, R) n E n IIo) < oo, so if 7r
II o \{z o } -> Pzo(IIo) is the standard projection, then 7r (bBN+1(zo, R)n E n II o )
is a set of measure zero in Pzo . Thus, there is a complex line Ao with zo E Ao C
II o and with Ao n E n bBN+1 (zo , R) = 0 . We may choose An E Pzn (IIn ) so
that An --+ Ao . For large values of n, An n E n bBN+1 (zo , R) = 01 . If we apply
the Cauchy integral formula in An and Ao to represent F(zn ) and F(zo ) as the
Cauchy integral of f over the circle An n bBn+1 (zo , R) and of Ao n bBN+1 (zo, R),
respectively, we find that as n ---> oo, F(zn) -> F(zo ) as desired .

Thus, F is continuous and so necessarily holomorphic .
This completes the proof of the theorem .

3 . Variations on the theme

The first variation is to the effect that there is an analogue of the result for
submanifolds of CN : Leí M be a k-dimensional complex submanifold of CN ,
and leí E C M be a closed subset with A2k-2 (E) < oo. * If f E O(M\E), then
f continues holomorphically into all of M.
In the case that M is an algebraic manifold, we can invoke [10, Th . 10, p .

52] to find a projection 7r : CN -> Ck that exhibits M as an analytic cover over
Ck . Using symmetric functions and applying the result already established in
Ck , we can derive the result on M.

In the case of a general M, there will be no such projection, and, in essence,
it is necessary simply to rewrite the proof given above . The case n = 2 pro-
ceeds as before : Fix zo E E. For certain large values of t, A1 (E n bBN (zo, t))
will be small and bBN (zo , t) n M will be a smooth (2k - 1)-dimensional real
hypersurface that bounds the domain 0(t, zo ) = BN(zo , t) n M. By Lemma
2, the polynomially convex hull of E n bBN(zo t) does not contain zo , and by
the extension theorem given by Laurent-Thiebeaut [6], flb ,~,(t, zo)\E extends
holomorphically into a neighborhood of zo . The rest of the argument in the
two-dimensional case is as before .

For the induction step we replace the affine hyperplanes used in the proof of
the theorem by intersections M n II, II a codimension one affine hyperplane

*Here, as above, we are computing Hausdorff measures with respect to the Euclidean metric
on CN = R2N . Below we shall consider the Hausdorff measures associated to certain other
metrics, but there we shall be quite ezplicit about the metrics involved.
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in CN that is transverse to M. The generic II is transverse to M and so,
generically, m n II is a codimension one submanifold of .M . In a bit more
detail, if z E Nl, then almost every II E `JN,N-1 (z) is transverse to M and,
by [12, Lemma 5] almost every II also satisfies AZk-a (II n E) < oo . Thus, the
induction hypothesis applies to extend f¡(M n II\E) to an fri E C(M n II) .
We define F(z) = fn(z) ; this is well-defined and gives the desired extension of
f throughout .M .
A second variation of the theme is that the hypothesis that A2N-2 (E) be

finite can be replaced by the condition that A2N-2 (E n rBN) not grow too
rapidly as a function of r,,r --+ oo . In fact if E is a closed subset of CZ that
satisfies A2 (En rBN) < ar 2 for all large r, then E is removable provided

2
a < 4f .
That the desired conclusion can be drawn may be seen as follows . Notice first

that A2N-2 (E fl rBN) < ar 2 for large r implies that A2N-2 (E n BN(p, r)) <
ar 2 for large r, no matter what center p is chosen . Next, we have by [2, 4] that

(2)

	

ar 2 >A 2 (E n rBN) >_ -1*

	

A1 (E fl {~z~ = t}) dt .4 fo,rl

Consequently,
A1 (E n {jzj = t}) < v~-27rt

for infinitely many arbitraxily large values of t, and this implies that the origin
is not in the polynomially convex hull of E n {iz1 = t} for such values of t .
Thus, by arguments we have used already, f continues holomorphically into
a neighborhood of the origin . Similarly, it continues holomorphically into a
neighborhood of every point of C2 , and the result is established .
The example E = {(z1 , 0) : z 1 E C} shows that the result just derived cannot

be obtained under the hypothesis that AZ (E n rB 2 ) _< 7rr2 . It seemes probable
that if A2 (E n rB 2) < 7rr2 for all large values of r then E is removable, but
no proof has presented itself. The discrepancy between 4~f here arises in part
from the integral geometric inequality (2) and in part from Lemma 2.

4. A result on the ball
We now turn to a result on the ball that is an analogue in the Bergman

geometry of the result we obtained above for CN .
The Bergman kernel on the ball in CN is given by

t
h(z,

	

W

	

(Z, (»N+!

if ( , ) denotes the Hermitian inner product on CN, and the Bergman metric
is given by

N
ds2 = Y' Tjkdzj ® dzk

j,k-1
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with coefficients Tjk given by

We shall denote by AB the a-dimensional Hausdorff measure computed with
respect to the distance function on BN derived from the Bergman metric . We
shall prove the following analogue of Theorem 1 .

3 .

	

Theorem . If E C
removable.

4. Corollary . If E C BÑ is a subvariety of codimension one, then E has
infinite arca, arca computed with respect to the Bergman metric .

The corollary follows from the theorem, for codimnension-one subvarieties
of the ball are not removable : If V is such a variety, then as we can solve the
second Cousin problem on BN, there is f E O(BN) with V as its zero set . The
reciprocal of f shows V not to be removable .
As we shall see below, there is a straightforward calculation that shows that

if V C BN is a k-dimensional variety, then AB(V) is infinite .
Proof of the Theorem : The proof follows the general lines of the proof in the

case of CN, but certain integral-geometric details require attention . We start
with the case that N = 2.

Let distB(z, w) denote the Bergman distance between the points z,w E B2 .

Fix a point zo E B2 , and define p : B2 --> (0, oo) by p(z) = distB(z, z o ) . The
triangle inequality in the Bergman distance yields that p is a Lipschitz function :

As p satisfies a Lipschitz condition and A2 (E) < oo, we have that

oo > AB (E) > const .

	

AB (E f1 {z E B2 : p(z) = t}) dt .

This yields a sequence {t l }°_° 1 with tj -+ oo and with

and this implies that

2

Tjk

	

ázazk In K(z, z)

= N( 1 - (z, z))-2 {(1 - (z, z)) Sjk + zkzj}

N is closed set with AB-2 (E) < oo, then E is

I p(z) - p(z% C

	

distB(z, z') .

AB (E n {z E B2 : p(z) = tj }) --> 0,

A1 (E (1 {z E B2 : p(z) = tj }) -> 0.



(NB . As before, A1 denotes the 1-dimensional Hausdorff measure computed
with respect to the Euclidean metric.)

Let D(t, zo) = {z E B2 : p(z, zo ) = t} . This is a ball in the Bergman metric,
and its boundary is smooth .
Granted that f E O(B2 \E), we know that fibD(tj, zo )\E continues holo-

morphically into a neighborhood of zo , at least when j is large, so the result in
the two-dimensional case is obtained as before .
To make the induction step work as before, we need two facts . First, we

need to know that if E C BN+1 satisfies AB (E) < oo, then for almost every
II E J9N+1,N, A2-2 (n n E) < oc where we denote by E the set E n {z
distB(z, 0) > 1} . (A2-2 (II n E) denotes the Hausdorff measure computed
with respect to the Bergman metric on BN+1 .) The second point we need is
that the finiteness of the quantity AB-2 (II n E) implies the finiteness of the
(2N-2)-dimensional Hausdorff measure of the set IInE computed with respect
to the Bergman metric on the N-dimensional ball II n BN+1 .
The latter point is straightforward though, for the metric induced on II n

BN+1 from the Bergman metric on BN+1 differs only by a constant factor from
the Bergman metric on the N-ball II n BN+1 .

That AB (E) < oo implies AB-2 (II n E) < oo for almost all II's is an
analogue in the Bergman metric of the result of Shiffman used above. We
prove the following integral-geometric fact .

5 . Lemma.

	

There is a constant cN such that if S C BN\{z : distB (z,0) <
1}, then

The proof of this lemma follows precisely the lines of the proof of Shiffman's
Lemma 5 in [12] once we have the following estimate .

6 . Lemma.

	

There is a constant kN such that for small 6 > 0 if T C BN\{z
distB(0, z) < 1} and T has diameter less ¡han 6 in ¡he Bergman distante, then

p({II E GN,N-1 : II n T :~ 0}) < kNO.

For the conveniente of the reader, we recall the argument in [12] that proves
Lemma 5 . Denote by á(E) the diameter of the subset E of BN computed with
respect to the Bergman distante . If EC BN, then

fo*,N-1
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CNAB-2(S) >-~

	

AB-4 (S n II)dp(II) .

52N-4 (E n II)dp(II) < 52N-4 (E)p{II : II n E qÉ 0} .

If E C BN\{z :

	

distB (z, 0) < 1}, and if 6(E) is small, then Lemma 6 implies
the estimate

p({II : II n E 7~ 0}) < const .6 2 (E),



352

	

E . L . STOUT

so, for such an E, we have

Here

1* S2N-4 (E n II)dp(II) < const.S2N-2 (E) .

Now given S as in Lemma 6, assume AB-2 (S) < oo . Fix a small e > 0, and
choose a covering of S by a sequence {Sn}°°_-1 of sets with 5(Sn ) < e and

57 a2N-2 (Sn) <
2N-2

(S) + e .
n

AB2 (S) = inf {~ b2N-2 (Qn) : S C UQn and ó(Qn) < E} .
n

We have then that

*

	

AB-4 (S n II)dp(II) < ~*

	

57AB-4 (Sn n II)dp(II)
roN,N-1

	

CJN,N-1 n

C

	

f
*N N- 1

AB
-4

(Sn n II)dp(II)
n iJ,

< const . 1: 1*

	

62N-4 (Sn n II)dp(II)
n 4N,N-1

< const . 5~ 52N-2 (S.)
n

const .(AB-2 (S) + e) .

As this is true for all E and as AB-2 (S) = lim AB-2 (S), we have the desired
E

inequality .
Lemma 6 is a consequence of the corresponding Hermitian result . The Ber-

gman diameter of a set is not smaller than the Euclidean diameter . Thus, if
T has small Bergman diameter d and is included in BN\{z : distB(0, z) < 1},
then T is contained in a Euclidean ball B of Euclidean diameter 2d . As d is
small, B can be choose to lie in {z : ~ z1 > 1 - d} . Everything follows from the
estimate :

(
p ({lI : II n B(po , R) :~0}) :5const .

	

_R l 2 ,

¡poi
which is established in the next section .

It is worth noting that our Theorem 3 implies Shiffman's result that for
domains in CN , closed sets of vanishing (2N - 2)-dimensional measure are
removable . Shiffman's result is local, and if A2N-2 (E) = 0, then for every
p E E and every ball BN (p, r) centered at p, the set E n BN (p, r) has zero
(2N-2)-dimensional measure with respect to the Bergman metric on BN (p, r) .
Thus, E is locally removable and so removable.



In the analysis above, we need to know the measure of the set of (N - 1)-
dimensional subspaces of CN that meet a ball . In (4) we stated an estimate
that sufilces ; in this section, we shall evaluate this volume precisely. We shall,
in fact, work in a slightly more general context . (It seems probable that the
result obtained here exists somewhere in the published literature, but we know
no reference.)
We are denoting by GN,k the Grassmannian of all k-dimensional complex

subspaces of C N . (Thus, the elements óf GN,k pass . through the origin) . The
manifold GN,k is a homogeneous space of the unitary group U(N) : If g E
U(N) and II E GN,k, then g - II = g(II) E GN,k . There is a unique measure /lk
on GN,k with Mk(GN,k) = 1 that is invariant under the action of U(N). If we
denote by II o the element

of GN,k and if 7r : U(N) -> GN k is the map given by 7rg = g - IIo, then pk can
be calculated by

if v denotes the normalized Haar measure on U(N) .
Our problem, precisely formulated, is the following : To determine

or, equivalently, to determine

REMOVABLE SINGULARITIES

	

353

5 . An integral-geometric computation

{ZECN :zk+1= ' =zN=0}

hk(E) = v(7r-1(E»

/-¿k ({II E GN,k : II fl BN(zo, R) 7~ O}) 1

v ({g E U(N) : g(IIo) f1 BN(zo, R) :~ 0}) .

Here, zo E CN and R > 0.

	

If IR¡ > zo , then 0 E BN(zo, R), so the measure
in question is one . In general, the answer will be a function of zo and R.
The problem is plainly invariant under the action of U(N), so without loss of
generality, we may suppose that zo = p = (p,0,. . . , 0) with p = izo¡ .
We have that g(II0) f1 BN (p, R)

	

0 if and only if the distance d(p,g (II o )) is
less than R.

We denote by {e1 , . . . , eN} the standard orthonormal basis for CN .

	

Then
{e l , . . . , ek } is an orthonormal basis for II o and {ek+1, . . . , eN } is an ortho-
normal basis for the orthogonal complement, IIó , of IIo . Consequently, if (, )
denotes the standard Hermitian inner product on Cn then

N

d(p,g(IIo» _ ( 1: j(p,g(ej»I2)Z
j=k+1
N

_ ( E j(g-lp,ej)I 2 ) 2 .
j-k+1
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We identify U(N) with the group of unitary NxN matrices U =

	

N.
If under this identification g corresponds to U, then

so

If we set

then we have to determine v(£(k ; c)) . For c > 1, £(k ; c) = U(N) ; in general it
is an open set .

For the computation of v(£(k ; c)) we need to recall the explicit form of the
measure v . An invariant volume form on U(N) is the form 52 given by

where

and

g-,P, ej) = Palj,

N

d(P,g(no)) = ( E p'¡alj~2)= .
j=k+1

N
£(k ; c) _ {g E U(N) : Y7 jalj 12 < c},

j=1

Q=(

	

/ \

	

waj n wij) n

	

l \

	

wkk
1<i<j<N 1<k<N

wáj

N

k=0
&kjdakj .

The forms w¡j are left-invariant on U(N) . For the construction of S2, see
In particular, one finds there the evaluation

N=1 (27ri) j+1
j=o 70

U(N)

N
w'(z) = E(_1)j-lzidz1 ^ . . . A [j] n . . . n dzN

j=1

[9] .

We shall denote this value by v(N) . It follows then that the normalized Haar
measure v on U(N) is the measure derived from the form v(N)-1 9 .

Introduce the forms w'(z) and w(z) on CN by

w(z) = dz1 h . . . A dzN .

If T : CN -> CN is a linear transformation, then T*w (z) = (det T)w(z) and
T*w'(z) = (det T)w . Consequently, the form w(z) = w' (z) n w (x) is unitarily
invariant .



and

whence

1<j<N

1<j<N
they coincide on the whole U(N) : On U(N),
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We define a map 17 : U(N) -> SIN-1 by rlg = g1 where by 1 we mean the
north pole 1= (1, 0 . . . . 0) . The fiber 17 -1 (1) is the subgroup of U(N) isomorphic
to U(N - 1) that consists of the matrices of the form

0 a22 . . . a2N

0

	

aN2

	

. . .

	

aNN J

The form w is invariant under the action of U(N) on S2N-1, and it follows that
r/*w is a left-invariant form on U(N).
At the identify of U(N), we have

77 *w = dca2 1 A . . . A daN1 A dix ll A dá21 A . . . A d«N1,

N

	

N
(

	

l \

	

(wjj ACJ1j)Aw11 = ~

	

l \

	

(Y7, ók1 dakj) A(1:41dakj)} Ada11
á<j<N

	

1<j<N k=1

	

k=1

_ (

	

l \

	

(dalj A dalj)) A da11
1<j<N

For a unitary matrix A, we have Ar A = 1, Le .,

N

Y7 arkarj = bjk
r=1

N
árkdarj + 1: arjdárk .

r=1 r=1

Thus, wkj = -wjk . In particular, at the identity, da l j = -d&j1 . This implies
that at the identity

(

	

l \

	

(w1j A CJ1j )) A w11 = -( l \ dixjlAdaj1)Ada11
1<j<N

We see then that for a suitable choice of constant EN = fl, at the identity of
U(N),77*w and EN(

	

n

	

(wij AW1j)) A w11 coincide . As each is left invariant,

77 *w - EN(

	

l \

	

(w1j A W1j)) Aw11 .
1<j<N
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We now proceed to the computation of v(£(k ; c)) .

	

For this purpose, it is
convenient to notice that if £'(k ; c) = {q E U(N) : ENk+l Iajl I2 < c} then
v(V (k ; c)) = v(£(k ; c)) . Under the projection 97, £'(k ; c) goes onto the subset

1:(k ; e) = {z E SIN-1 : Izk+1
12 -{- . . . .+ IZNI

2 < c}

of SIN-1 . It follows from Fubini's theorem-see [14] for a version suitable for
our purpoes-that

{

	

l \

	

Wij AWij n

	

l \

	

wrr} w.

E'(k ;c)

	

E(k;c) ~l-t(z) 2<i<j<-N

	

2<r<N

Each of the fibers 17-1 (z) is a coset of the subgroup 77 -1 (1) of U(N), and

v(N - 1) .

t1 _t (z)

S2=fv(N-1) 1 w .

E'(k ;c)

	

E(k ;c)

It remains for us to evaluate the integral on the right . Let us call it I(k ; c) . It
will be convenient to introduce the notation that for z E CN, z' = (zl, . . . , zk),
z" = (zk+1, . . . , ZN) . By Stokes's theorem we have

1 dw

®N n{Iz- l 2 <c}
f w

UNn{1z,, 12=c}

Call the first of these integrals I', the second I" . If YN = 2(NI - N), then

I' = N Idz 1 A . . . A dZN A di, A . . . A díN

aNn{IZ1 , 1 2<c}

_ (-1)-YN N1 dz 1 n dzl n . . . A dzN n dzN
BÑn {I z i112< c }

_ (-J)tiNN

	

1

	

{
J

dz l n . . . ndzk} dzk+1 n . . . n dzN

{IZ � 1 2 <C} {1Z , 1 2 <1-IZ"1 2 }

_ ( -1)7NN (2ki) k

	

(1 - Izril2)kdzk+1 A . . . AdxN

{IZ
� 12<C}

(2i)N~k f
_ ( -J)S2k-1

	

(1 - p2)kp2N-2k-1 d/!
kl

	

o



where S2k_ 1 denotes the area of the unit sphere in R2k so that S2k_ 1 = ~k-1), .

If we expand (1 _ p2)k with the binomial theorem and integrate term-by-term,
we reach

This leads to the expression

and

j=r+1

so we reach

II, = c(_1)N-1
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yN
(2i)N7rk

k

	

CN k+
I = (_1 )

	

N

	

E(_1)r (k)
k!

r=k+1

j=l

+ (-1) N-1 ZNdz1 A . . . A dzN-1 Aw(z) .
N-

r-o

	

r

	

2(N - k + r)

For I" we compute as follows : On the path of integration, I', for the integral
I", we have Izk+1 12 + - - - + IzNI2 = c, so there

z rdz r + z rdzr = 0 .

Off the set where zN 7~ 0, we can solve this for dzN :

-1

	

N
z r dz r + E z rdzr ) .

r=k+1 r=k+1

N-1
(_1)j-1 z;dz1 A . . . A [7] A . . . A dZN_1 A (zÑ 1

	

1:

	

zrdzr ) A w(z)r=
k+1

(_1)j-1+N-j-lzjdz1 A . . . A dzj_ l A (zÑ1 zjdzj ) A dzj+1

A . . . A dZN_ 1 Aw(z) + (-1)N-1ZNdz1 A . . . A dzN- 1 A w(z)
N

N1( 5~ zjzj)dzl A . . . A dzN- 1 Aw (z)
j=r+1

c 1 N_1+7N-1
Nz-l dz1 A dz1 A

	

A dzN-1 AdzN-1 A .dzN

The path of integration in I" is specified by
IZI12

= IzlI 2 + - . . +IzkI2 < 1-c

Iz" I 2 = Izk+1 12
+ - . . + IzNI2 = c,

+7N_1(1 dz1 A dzl A . . . A dzk A dzk )

llz , l , <1-cl

(~ zN1 dzk+1 A dzk+l A . . . A dzN-1 A dzN-1 A dzN) .

l~zmlz=~1
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The value of the first integral on the right is

	

2k;

	

(1-c)k . The second integral
is evaluated as follows

íN1 dzk+1 n dzk+1 n . . . n dZN_ 1 n dZN_ 1 n dzN

¡_

	

~

	

{

	

J z1V 1 dzN

	

}dzk+l ndzk+ln . . .ndzN_1ndzN_1

IXk+1!+ . . .+IZN_1I2<C IZIVI2-C-!Xk+lI2_" ._IZN_1I2

For every choice of c, the inner integral has the value -27ri . and

Thus,

Thus,

v(£(k ; c)) _

dzk+1 n dzk+1

	

n . . . n dzN- 1 A dZ-N_ 1
IXk+1 I 2 +' . . +IXN_1I 2 <C

27ri N -1- k

(N-1- k)!

In = (-1)N+1'N_1

	

(27r2) N

	

(1 - e)keN_k
k

I
.(N-1-k)!

The quantity we are interested in is v(£(k; c)), which is given by

v(£(k; c)) = v(N) -1

	

1

	

Q

E'(k ;c)
= fv(N)_1v(N - 1)[P(k; c) - P' (k ; c)] .

f N!

	

-~21ir( 21

and this gives us what we needed .

1
7NN

(2i)N~k

	

k

	

1 r¡k

	

cN-k+r
k!

	

lr) 2(N - k +. r)

(-1)N+7w-1 k1( (27rziN
k)!(1

- e)keN-k

In the preceding section, we needed the special case of this in which k = N-1
and c is small . we see that in this case,

v(£(N - 1 ;
c))

_

	

N!
~(-J)yN (N7rw1)!2

+ 0 (c2) - (_ 1)N+7N_1 (NN1)!c
+ O(C2)J

= 0(c),



The results on removable singularities we have obtained above are surely not
the end of the story . The two results are of the general form : S2 is a domain
in an N-dimensional complex manifold, ds2 is a Hermitian metric on P and
A9N -2 denotes the (2N - 2)-dimensional measure derived from ds2 . In two
special cases, we have that a closed set E in 2 is removable provided A2N-2 (E)
is finite . One may pose the question : What conditions on the metric ds2 suffice
for us to draw this conclusion? In particular, is it sufficient for ds2 to be a
complete Kil,hler metric? Do the metrics of Carathéodory or Kobayashi play a
róle here?
Another problem that arises is to stablish a projective version of the result

valid for meromorphic functions . Consider the Fubini-Study metric on the
complex projective space PN . With respect to this metric, the volumes of the
subvaxieties of PN form a countable set ; the volume of a variety in PN is, to
within a normalizing constant, its degree . If E is a compact subset of pN that
has (2N - 2)-dimensional measure (with respect to the Fubini-Study metric)
less than the smallest of the volumes of codimension-one hypersurfaces in PN,
does it follow that E is removable for meromorphic functions in the evident
sense that it F is a function meromorphic on PN\E, then F extends through
E to be meromorphic on the whole on pN?

Another question that is suggested by what we have done is the following:
If D is a pseudoconvex domain in CN , must bD have dimension at least 2N --
2? The removable singularity theorem of Shiffman implies that the Hausdorff
dimension or metric dimension is at least 2N - 2, and our Theorem 1 implies
that bD must have infinite (2N-2)-dimensional measure . The present question
understands dimension in the sense of the topological theory of dimension for
which one may consult [5] .

with

The Bergman area of varieties .
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6. Concluding remarks

We now take up a matter to which we adverted above, the fact that subva-
rieties of the ball have infinite area in the Bergman metric .
Given a domain D in CN , the Bergman metric on D is given by

ds2 =

Appendix

Tiidz; ® dzj

__ 92
T'j

	

áz;áz ;
log K(z, z)
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if K denotes the Bergman kernel function . The associated fundamental form
is the (1,1)-form w given by

w = ~Tj;dzi A dzj = ab log K(z, z),
s7

and if V C D is a k-dimensional variety, then the Bergman volume of V is
given by the integral (2i) fVwk .

We fix a bounded domain Vo C V with bVo smooth enough that Stokes's
theorem holds on it.*Then

We have

wk = 1

	

d {(a log K(z, z)) n (aa log K(z, z)k-1
Vo Vo

a log K(z, z) n (aa log K(z, z))
k-1 .

6Vo

ab log K = I' aDK - aK n áK
K2

As the exterior product of a 1-form with itself is zero, we find that

with cN = Ñ,

á log K n (ab log K)k-1 =

	

K-kDK n (aDK)k- 1 .

6 Vo

	

6 Vo

IfV,={zED :K(z,z)<r},thenwefind

lJ

	

wk = r-k
J

	

DK n (aDK)k-1
bVR bV

= r-k 1 (abK)k .
V

In the case of the ball, where K is given by (3), a computation shows that

aK n (aaK(z, z))k-1 =

	

cN(N +
1)k

	

(E zj dzj ) n (y~ dzj A dzj )k-1 .
(1 - (z z))k(N+2) j-1

If Wr = {z E V : Iz1 < r}, then on bWr , K(z, z) = CN(1 - r2 ) - (N+ 1 ), so

wk = (N -}- 1) k (1 - r2 )-k 1 r(~ dzi n dzi) k
aw,

	

w
= (2i ) k(N + 1)k(1 - r2)-kA2k(Wr),

where, as before, A2k denotes the 2k-dimensional Hausdorff measure computed
with respect to the Euclidean metric .
We have reached the result that if V C BN is a k-dimensional variety, then

A2 (V n rBN) = (i
ra)kk

A2k(V nrBN) .

In particular, V has infinite volume in the Bergman metric .

*A discussion of a version of Stokes's theorem sufficient for our present needs is given in [13] .
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