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FIBRATIONS ARISING IN THE STUDY OF P-TORSION IN HOMOTOPY

D. Husemdller

The purpose of thils article is teo highlight two significant
results related to odd torsion in the homotopy theory of spheres
and Moore spaces which has come ocut of the work of Cchen, Moore,
and Neisendorfer and to survey those parts of the proof related
te the existence and propertlies of certaln fibrations. This
article is designed as a supplement to the author's two other
surveys (LN 788 and LN 842} and as a guide to the original papers
{see references to the three authors} including some modification
of their peint of view,

This is an expanded version of a lecture given at "Workshop
on Algebraic Topology" held at the Unlversitat Autonoma de Barcelona,
Spain in March 1982. During this perlod of 1982 the .author was
a guest of the Max Planck Instituf fur Mathematik in Bonn. He

would like to express hils appreciation for their support.
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§1. Modular spheres and related fibraticns.

For each integer g we can consider a map of degree g defined
s™l 2y ™1 ang the corresponding cofibre sequence defining
the space Sm(q) namely

st 8, g™ sMg) — 5" s ST
{1.1) Definition. The mod g m-sphere 1s the space s™(q) =
Sm‘1urq ™ whlchlis the middle term of the above coflibre sequence.
The space Sm(q) is an example of a Moore space since ﬁm_l(sm(q})
= Z/q is 1ts only nonvanishing reduced ilntegral homology group.
The three authors Cohen, Moore, and Nelsendorffer,
use the notation P™(q) for S"(g). Since this space is to be
thought of as a modular sphere,we prefer the notation involving
the letter S8, and in thils way we avold confusion with projective
spaces.
- Observe that 37(q) is defined for m Z 2, i.e. there is no
modular circle and that the suspension $(S™(q)) = Sm+l(q) so that
s™q) is a suspension for m 2 3 and a double suspension for m z g,
With the modular sphere we define the modular homotopy groups.

(1.2} Definition. The mod q‘homotopy groups of a {(pointed)

space X is nm(x, Z/q) = [Sm(q),X} the set of homotopy classes of

maps with the group structure defined from coH-space struture

of the suspension Sm(q) for m & 3.

ﬁq usual the moduiar homotopy groups are functors from the
category of pointed spaces te groups and further abellan groups
for m ¥ 4, For q odd and m £ 4 the abellan group nm()(, Z/q) is
a Z/q - module. Since [S™(2),57(2)}] = Z/8 we will consider
only g that are odd, and moreover q is usually an prime power
G = pr where p ? 2. For some consideratlons the prime p = 3 is
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special and requires additlon arpuments. These modiflcations
are taken up 1n the article of Neisendorf‘er,‘see (91

{1.3) ERemark. Gilven a map f :+ X —>» Y there 15 a
canonlcal flibre segquence

ax Ly v —» Fo— x Ls ¥

T
¥ —» X' —% Y where X —>» X' is a homotopy equivalence and

where F_ is the homotopy filbre of f. Briefly recall f 1s factored

X' —> Y is a fibration. The space X' is the subspace of {(x,u)

in X xMap([0,1]1,Y) such that f(x) = u(0),and F_ 1s the subspace

T
of X' consisting of (x,u) with u{l) = ¥, the base point.

{1.4) Notatlons. From two mappings in the coflbre sequence
defining the mod q spheres we have two fibre sequences

s™q} — 5" 95 s™ and F™q} —» s™q) — s™.

If u :T —% X and f : X —» Y_ar'e two maps, then the composite

fu is null homotopic 1f and only 1f u factorslT — Ff’ —2 X
up to homeotopy, and moreover, the factorlzations T — Ff. of 1
are in bijectlve correspondence with the orbits of the actlon
of the group [T,NY] acting on the set [T,Ff]. A basic example
of this factorizationforus is 8"{q) —s S™q} —>» s™.

{1.5) Remark. Let h = gf be the composite of I : X —>» Y
and g : ¥ —3> 2Z, Then we have a commutative diagram from

the homotopy fibres of the three maps [, g, and h.

b
¥
F \,
h \\’X
f B
F ??5\‘ Z
E
The seguence F‘f —_ F‘h e Fg ls a flbre seguence, 1.e. FI‘ is

homotepy fibre of Fy _————9Fg_
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(1.6) Example. We apply this to the previous factorlzation
of the map Sm(q) —> 5™ presylting from pinching the bottom cell

to a point. We obtaln a new homotepy flbre Em{q} and a commutative

diagram of fibratlons.

as™ Er;{c.]
LT g
composite\\ Z/ “PsT(q)
is Qq \ N

s —— > Sm{q} —_—s §"

m ] m i1}
Since nm(S (q)) = Z/q in the fibration F {q} —> S§(q) —3 &,
the homotopy exact segquence ylelds an lsomorphlsm

- m 1113
z = 7w (s") — 1w _(F'iaD).

Hence up to sign we have a natural map which can be choosen
so that its composite with Fm{q} —> 0™ 1s the suspension
Sm—l

morphism E : — 9s™. This leads to the follewing

commutatlve diagram wher'e'F‘F is the homotopy fibre of E.

m
. Fgp -—v ET{q} i

9 d

sm—l — Fm{q}
E\‘ i
as™

(I'.7) Remark. The double suspension of odd spheres
g2 . §°M1 5 925%™ cqual to the composite
SEn—l E QS2n QE 5 n252n+l

2
will play a basle role in the next sections, and 1ts flbre 1s
denoted C(n) —> SE‘n——l — 9252n+1' Looplng the previous diagram
for m = 2n+l,and composing with the suspension map,we obtaln

cn) —> 982" q}

4 !

S2n—1 9F2n+1{q}

£ 2l2n+1
a°g2nt
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§2. Theorem I. The partial inverse of the double suspension mAPp .

In this sectlon all spaces are localized at an odd prime p,
(2.1} Remark. It 1s a basle result which was essentually

known from Serre's thesis [15], [16] that for loops on an even

2n-1 2n

sphere the suspenslon map E : S — {13 is 2 homotopy split

2n-1, oolin-1

monomorphsim and 952n has the homotepy type of S
Here being localized at an odd prime is essentual. This

reduces the question of odd torsion in even dimensional spheres

to that of odd dimensional spheres, and it leadgto the study of

the double suspension E° : s°071 __y 2520+l

In (1.7) we
introduced the fibre C(n) of the map Ez, and we have a commutative

diagram (recall everything is loealized at an odd p).

¢(n) - QE2n+l{pr'}
SEn-l > nF2n+1{pr}
Q252n+1 5 Q282n+1
2. r )

L]

P

Now we are in a positlon to bring in z basile result of
Cohen, Moore, and Nelsendorfer contained in [2 ] and [3 ].

(2.2) Theorem. There e;ists a space Y = Y(n,pr) and a map

Y(n,p¥) —» geottl

{pr}sﬁgﬁkﬁhis map product with the previous
dlagram followed with loop spa%e multiplication gives a commutatlve
dlagram where the composite of the horizontal arrows in each
case is a homotopy equlvalence

cin) xy{n,pr) - ﬂE2n+1{pr} an2n+1{pr}___§ nE2nlf{pr}
) | !

2n-1 XY(n,pr} 3 9F2n+1{pr} an2”+1{pr} s QF2n+l{pr}_

S
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In the next sectlon we make some remarks about the proofl
_of this thecrem and give some 1ndicatlon of the structure of
the space Y(n,pr) which plays a baslic role in the study of
exponents. HNow from (2.2) we derive the partial lnverse property
of the double suspenslon E2 localized at an odd prime.
(2.3) Theorem I, Asscciated to the double suspension

% : 2Nl a2s?ntl 45 5 map 1 : p?g?Ml 5 52771 guen

that nE2 = p and Ezn = 92

p where p denotes a map of degree p.
The proof of this basie theorem can be derived immedilately

from the following diagram which results from the diagram

preceding (2.2) and the splitting of SQn"loff from 9F2n+1(pr}
by (2.2). SEn-l 1 > SEn—l‘
-““uﬁ - T
apeMtlpT)
QQSEnfl . > Q282n+1
er
The map 7 1s the composite of g2g2ntl — nF2n+1{pr} —s g2n-d

‘The desired propertles of composition of this map with E2 can

be seen lmmedlately from thls diagram.
The followlng corollary of the existence of the partial
inverse to E2 was conjectured by Barratt.

(2.4) Corollary. ¥For the p primary part of the homotopy
of the cdd spheres we have pnﬂj{52n+l)(p) = 0 1f 1 > 2n+l.
The corollary follbws by induction on n using the next

sequence of abelian p-groups where two morphlsms between two

ad) a cent groups compose two ways to multiplcation by p.

4 2 2
_ 1 B 3 E 5 E 2n+l
0= M8y &2 M2 (py 2 Sy o 2 Mgean’S T ey
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§3. PRemarks on the splitting of loop spaces.

The homotopy of loop spaces 7,(9X) is a praded abelian
group with a Lle bracket [a,b] calied the Samelson or Whitehead
product defined
{2X) —

[, ] : ﬁi(QX)xw (ax).

3 Ti4j
For a = [ule ni(QX) -and b = [v]€ nJ(QX) we make the commutator
which is null homotopic on the wedge S"L\»’S'j defining w :

si*d & ax. We define [a,b] = [wl.

-1 -1
siv S'j — SixS‘j uvu v » X
/
si*J - sin )
{2.1) PRemark. The Hurewlcz morphism ¢ : Te(NX) —  H (20

satisfies ¢{[a,b]} = [¢(a),d(b)] where [ , ] on H,{(0X)_ 1is the
Lle bracket (with sign) associated with the toap product .on H,(0X),
(3.2) Remark. Returning to the decomposition in the thesis

of Serre mentloned in (2.1}, we use the Lie bracket of the

Yn-2 2n

suspension map with 1itself [E,E] :5 —> Q8 which extends

n-1 2n

to a2 map g : Q8 —3 05 Multliplylng this map g with

the suspension map E, we obtain a map

gen-1 qun—l — qgn
which 1s a homology i1somorphism with field coefficients for all
characteristics except 2 since [¢(:E),¢(E)] = ¢(E)¢(E) - (-1)¢-(E)¢_(E)
= 2¢(E)2 in H,(ﬂszn)- Inverting the prime 2 on the spaces, we
have a map

in-1ry,57 5 as2r1/2)

s2n 111727 x a8
which 1s a homotopy equivalence.

Now assume that all spaces are localized at an odd prime p.
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Using the same 1dea of generating maps of spaces of the
form ST {pT1, Sm{pr+l}, and ({wedges of mod pT spheres) into
a loop space by looking at 1ts med pr homotopy as a Lle algebra,
the three authors Cohen, Moore, and ﬁeisendorfer derived theg
following decompositions, the verification of which took up the
buik of the two papers {2] and [3]. These decompositlons where
surveyed in Husemocller [ €1, [ 7], and [ 81].

(3.3) Theorem. There 1s a homotopy equlvalence

82n+1{pr} N Q(V()él{ Shn+2nk+3(pr)) ™ 932n+2(pr)-

(3.4} Thecorem. The space Y{n,pr) in theorem (2.2)
which enters into the following commutative dlagram where
the horizontal arrows are homotopy eqguivalences

c(n) x Y(n,p¥) s ar?"tipTy

d i

S2n—1 x Y(n,pr) ~ QF2n+1{pr}
) : o1
has the form up to homotopy Y(n,prj = lilgi S2p n—l{pr+1} *125{n]
T

where S[n] 1s an infinlte wedge of mod p  spheres 1n dimensilons

n(1) £ 4n-1 with n{i) —p +=.
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§h. Qk—exponents. Theorem II on the ng-exnonent of & mod p’ sphere.

In this section all spaces are locallzed at an cdd prime p.
{4.1) Definition. A space X has an Qk—expcnent n provided

n-1

pn.id s nuill homotopic and p .1d 15 not null homotopic on

the loop space Qkx.
Observe that 1f a k-connected space X has an Qk—exponent n,
then p'n,(X) = 0.

n 2n+l, _
(4.2) Example. In (2.3) we saw that p n2n+1+3(s } o=

for J >0. Since ﬂm(Sm} = Z(p) for a sphere lochlized at p,

we c¢an consider 82n+1<2n+1> the (2n+l1) -~ connected cover where

2n+l

Juét the bottom homotopy group is killed. Then pnﬂ,(S <2n+l>») = 0.

By a result of B. Gray [ 5] there are elements of order p° in

these homotopy groups, and it 1Is the case that Szn+1<2n41> has

Q2n—exponent n. Neisendorfer and Selick have shown that 82n+1<2n+1>
does not have an nk— exponent for k 2 on-2.

(¥.3) Proposition. On the H-space ST{p~} the multiple
pr.id is null homotopie. For the H-~space structure on C(n)
induced from the fact that E2 1s an H-space map p.ld is null
homotoplc. |

This propesition and the previous result (¥.2) are proved
in section 5, { 4 ]. The proof uses essentually the exlstence

‘of the partlal inverse of E° and also the result of Selick [14]

that Q2S3c3> 1s a homotopy retract of Q2S2p+1{p}-

Before stating the second main result, we point out a
negative result of a very simple nature contained in [ 4 ] as
Proposition 3.5. This result 1s a consegusnce of the fact
that Hy(0SX) is the tensor Hopf algebra on the cozlgebra H,{X)
when H,(X) is flat over the ground ring.
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{4.4) Propeosition. If X is a space with B, (X, Z/p) % O,
then SX does not have an {-exponent.

The remainder of this article centers around the following
result.

(4.5} Theorem II. The mod pr sphere Sm(pr) has an Qz-exponent

equal to r+l.

Zr+l

The fact that p .1d 4s null homotoplc on Qgsm(pr) was

shown by Cohen, Moore, and Neisendorfer in [ #]. The fact that
r+l is the exponent was shown by Neisendorfer [113.

The idea of the proof is to show that aS"(p’) decomposes

as a sequéntial 11m! of finite products of spaces where pr+1.id

is null homotopiec on each factor. For even dimension m = 2n+2
we have by (3.3} a homotopy equivalence

QSEn%2(pr) s S2n+l{pr} N Q{\/Oék Sﬁn+2nk+3(pr)).

By {(4.3) the multiple pF.1d is null homotopié on 82n+1{pr}.

The other factor is a wedge of odd dimensional mod pr spheres.
Recall at this point the following result of Neisendorfer [ 9 ],
(4,6} Proposition. There is a homotopy equivalence

petween 8™(pT) A SP(p7) and STV S™PTI(pT),
This together with the classical Hilton-Milnor theorem
2S(XVY) = asx x as(V g, X"FAY)

08X ¢ QS(YV {(XAYIV{XAXAYIV ... )

shows that the second term in the above decomposition of 932n+2(pr)

itself decomposes as lim! of finite products of an(i)(pr)

where n{(i}) — +=,

{4.7} Bemark. Any wedge \/ Sm(i)(pr} where m{i} = + 2

1
or 15 finite in number has an 92—exponent of r+l.
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This means that the burden of the proof of (4.5) Theorem I1I

2n+l

rests on finding a good decomposltion of 0S8 (pr) for an odd

dimensional mod pr sphere S Unfortunately thils loop

space does not lend itself to the direct analysls that we
find for 0s%7%2(p%).
The idea 1s to use the second factor of Y(n,p ) glven in

{3.4), namely 0S[nl,and deloop the three maps from NS[n] coming

in the diagram given in (3.4)

asin] —> a2ttty —s arf™ Ty — astttipT)
¥ieiding three fibre sequences
RE2n+1{pr} 5 V2n+l{pr} E2n+l{pr]
2sfn)] — nFEZTl{pr} — Uen:}{pr} —» S[n] —> §2n+1{9r]
/ \:
0s2nHlpTy oy 2Pl s2ntl(pTy

Of the three fibrations with base spaces V2n+l{pr}, U2n+1{pr},

2n+1{p

and T T}the first two split immediately.from (3.4). By a

careful study of the homologlcal propertles of the third

n+1(pr)) 1s injective over

ribration where H,(RS5[n]) —» H, (RS2
Z/p, one deduces the followlng, see [4, proposition 1.4].
I (4.8) Proposition. The loops on an cdd dimensional mod pF
sphere QS2n+l(pr) is homotoplecally equlvalent tc the product
721 (pT) x asin).
Combining this with remarks related to (4.6) and (4.7)
above, Wwe see that the following results.
(4.9) Proposition. For m = 3 the loop space 25"{p")} has the

2m(1)+1

same homotopy type as lim, of finite products of 8 {p"} and

2n(j}
+1
penld {pT} where m{1), n{j) = n for m = ?2n+l or 2n+2 and
m{i), n{J) —» +=,
Thls reduces the proof of (4.5) to the study of T2n+1{pr}_
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§5, The R-exponent of T2n+1{pr}.
In view of {4.9) the spaces Sn(pr) wlll have an Qk+lfexponent

2m+l{p

if and only if the spaces T r} have an Qk—exponent. Now

we give the argument that p2r+1.id is null homotopic on QT2n+l{pr}.

which 1s in [4].

(5.1} Theorem. 0On the space QT2n+1{pr} the multiple

p?T*1 {4 15 null homotopic.

Proof. For thils apply the construction (1.5} to the composite

2n+1{pr} QS2n+1

2n+l ., r
{r")
J P

QT2n+1{pr}\\\“
u// T 0s(n]

2252t pTy —— 5 0E

aS(n] — 4GE (pr). We obtain the dlagram

av

2n+
2n+l{ n l(pr)

p’} —> @S
Since V2n+1{pr} has the same homotopy type as c(n)xTEéisszhlwr+1L
we deduce that p™*l.1d is null homotopic on avoi*l{pT} tne fibre
of the vertical fibration in the diagram. Since pr.id 1s null
homotoplic on 9282n+1{pr}, the base of this fibration, it follows
that p2r+l.id 1s null homotopic on the total space QT2n+1{pr} of
the fibration. Thils proves the theorem.

The result of Nelsendorfer that pr+1.1d is null homotople

on QT2n+1{pr} is much deeper and involves returning to.an analysls

of T2n+l{pr} similar to what 1s used to prove theorem (3.4).
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