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FIBRATIONS ARISING IN THE STUDY OF P-TORSION IN HOMOTOPY

D . Husembller

The purpose of this article is to highlight two significant

results related to odd torsion in the homotopy theory of spheres

and Moore spaces which has come out of the work of Cohen, Moore,

and Neisendorfer and to survey those parts of the proof related

to the existence and properties of certain fibrations . This

article is designed as a supplement to the author's two other

surveys (LN 788 and LN 842) and as a guide to the original papers

(see references to the three authors) including some modification

of their point of view .

This is an expanded version of a lecture given at "Workshop

on Algebraic Topology" held at the Universitat Autonoma de Barcelona,

Spain in March 1982- During this period of 1982 the .author was

a guest of the Max Planck Institut fur Mathematik in Bonn . 'He

would like to express his appreciation for their support .



§l . Modular spheres and related fibrations .

For each integer q we can consider a map of degree q defined

Sm-1 ~-9->

	

Sm-1 and the corresponding cofibre sequence defining

the space Sm(q) namely

Sm-1 __q-!	Sm-1 ->

	

Sm(q) ---f

	

Sm

	

Sm.

(1 .1) Definition . The mod q m-sphere is the space Sm(q) _

Sm-1 vq em which *is the middle term of the above cofibre sequence .

The space Sm(q) is an example of a Moore space Since Hm-1 (Sm(q))

= ?L/q is its only nonvanishing reduced'integral homology group .

The three authors Cohen, Moore, and Neisendorffer, .

use the notation Pm(q) for Sm(q) . Since this space is to be

thought of as a modular sphere,we prefer the notation involving

the letter S, and in this way we avoid confusion with projective

spaces .
m,

	

>Observe that S iq) is defined for m - 2, i .e . there is nú

modular circle and that the suspension S(Sm(q)) = Sm+1(q) so that

Sm(q) is a suspension for m 2 3 and a double suspension for m

	

4 .

With the modular sphere we define the modular homotopy groups .

(1 .2) Definition . The mod q' homotopy groups of a (pointed)

space X is nm(X, 2Z/q) = ESm(q),X] the set of homotopy classes of

maps with the group structure defined from coH-space struture

of the suspension Sm(q) for m Z 3 .

Ás usual the modular homotopy groups are functors from the

category of pointed spaces to groups and further abelian groups

for m 4 . For q odd and m ? 4 the abelian group um(X, ZL/q) is

a 7L/q - module . Since [Sm(2),Sm(2)] = ZL/4 we will consider

only q that are odd, and moreover q is usually an prime power

q = pr where p > 2 .

	

For some considerations the prime p = 3 is

88



special and requires addition arguments . These modifications

are taken up in the article of Neisendorfer, .see [9 ] .

(1 .3) Remark . Given a map f : X ----> Y there is a

canonical fibre sequence

QX ~~

	

W --> Ff -->

	

X

	

fj Y

where Ff is the homotopy fibre of f . Briefly recall f is fachored

X -~ X' --~ Y where X --~ X' is a homotopy equivalence and

X' -~ Y is a fibration . The space X' is the subspace of (x,u)

in X XMap([0,1],Y) such that f(x) = u(0),and Ff is the subspace

of X' consisting of (x,u) with u(1) = *, the base point .

(1 .4) Notations . From two mappings in the cofibre sequence

defining the mod q spheres we have two libre sequences

Sm{q} > Sm q-> Sm	and

	

Fm{q} --> Sm(q) -> Sm .

If u :T -----> X and f :X --j Y are two maps, then the composite

fu is null homotopic if arad only if u factors T ----> Ff ---> X

up to homotopy, and moreover, the factorizationg T --> Ff of f

are in bijective correspondence with the orbits of the action

of the group [T,RY] acting on the set [T,Ff ] . A basic example

of this factorization for us is Sm(q) ->

	

Sm{ q } ---,

	

Sm .

(1_5) Remark . Let h = gf be the composite of f : X -~ Y

and g : Y ---> Z . Then we have a commutative diagram from

the homotopy fibres of the three maps f, g, and h .

homotopy fibre of Fh --> Fg ,

The sequence Ff -a Fh -> Fg is a fibre sequence, i .e . Ff is
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(1 .6) Example . We apply this to the previous factorization

of the map Sm(q) ---> Sm resultinF from pinching the bottom cell

to a point . We obtain a new homotopy fibre Em{q} and a commutative

diagram. of fibrations .

90

Psm

	

EM{q }
~yFm{q}~

composite'1-

	

ySm(q)
is Rq

2sm

	

T

	

Sm{q }

FE 7 Em{q}

41

	

1
Sm_1 -~

	

Fm{q}

S2Sm

S2 n -1--1 nF2n+l {q}

2E~
22 S2n+l

Since um(Sm(q)) = 7L/q in the fibration Fm {q}

	

!> Sm(q) -~ sm,

the homotopy exact sequence yields an isomorphism

7l = Trm(SM) -> nm-1(Fm{q}) .

Hence up to sign we have a natural map which can be choosen

	

.

so that its composite with Fm{q} > nsm is the suspension

morphism E : Sm-1 -j wm . This leads to the following

commutative diagram where F, is the homotopy fibre of E .

(1.7) Remark . The double suspension of odd spheres

E 2 : S 2n-1 -~

	

92S2n+ ; equal to the composite

S2n-1E.~

	

S2S2n

	

S2E

	

P2S2n+1

will play a basic role in the next sectigns, and its fibre is

denoted C(n) -n)

	

S2n-1 ->

	

22S2n+1 .

	

Looping the previous diagram

for m - 2n+l,and composing with the suspension map,we obtain

C(n) -1, 2E2n+1 {q)
1



42 . Theorem I . The partial inverse of the double suspension mes .

In this section all spaces are localized at an odd prime p,

(2 .1) Remark . It is a basic result which was essentually

known from Serre's thesis [15], [16] that for loops on an even

sphere the suspension map E : S 2n-1 -->

	

PS2n is a homotopy split

monomorphsim and PS 2n has the homotopy type of S 2n-l x PSUn-1 .

Here being localized at an odd prime is essentual . This

reduces the question of odd torsion in even dimensional spheres

to that of odd dimensional spheres, and it leadsto the study of

the double suspension E2 : S 2n - 1 -> í2S2n+1, In (1 .7) we

introduced the fibre C(n) of the map E2 , and we have a commutative

diagram (recall everything is localized at an odd p) .

C(n)

	

>

	

PE2n+1{pr}

S2n-1

	

>

	

PF2n+l{pr}

í22S2n+1 /,

	

92S2n+1

Now we are in a position to being in a basic result of

Cohen, Moore, and Neisendorfer contained in [ 2 ] and [3 ] .
(2 .2) Theorem . There exists a space Y = Y(n,p r ) and a map

Y(n,or) -> nE2n+1{pr thaz_
}suchnthis map product with the previous

diagram followed with loop space multiplication gives a commutative

diagram where the composite of the horizontal arrows in each

case is a homotopy equivalente

C(n) xY(n,pr) -~

	

PE2n+1 {pr ) xnE2n+l {p r}

	

2E2n+l {pr }

JS2n-1 x Y(n,pr ) -'!

	

.F2n+1 {pr } x S2F2n+l{pr} -'~

	

í2F2n+l{pr} .



In the next section we make some remarks about the proof

of this theorem and give some indication of the structure of

the space Y(n,pr ) which plays a basic role in the study of

exponents . Now from (2 .2) we derive the partial inverse property

of the double suspension E 2 localized at an odd prime .

(2 .3) Theorem I . Associated to the double suspension

E2
.

:

	

S2n-1 -,

	

n2S2n+l is a map n

	

:

	

22
S2n+1 -p

	

S2n-1 such

that rE2 = p and E2 u = 22p where p denotes a map of degree p .

The proof of this basic theorem can be derived immediately

from the following diagram which results from the diagram

preceding (2 .2) and the splitting of S 2 n-1off from 2F2n+l {p r }

by

	

(2.2) .

	

S2n-1

	

1

	

)

	

S2n-1

of the odd spheres we have

	

pnnj(~2n+l)(P) = 0 if i > 2n+1

The corollary follows by induction on n using the next

sequence of ábelian p-groups where two morphisms between two

adj a cent groups compose two ways to multipication by p .

nF2n+1 {pr }

92S2n+1
/

	

n2S2n+1

S:-p

The

	

map n is the composite of n2S2n+1 ----p

	

nF2n+1{pr}

	

>

	

S2n-1

The desired properties of composition of this map with E2 can

be seen immediately from this diagram .

The following corollary of the existence of the partial

inverse to E2 was conjectured by Barratt .

(2 .4) Corollary . For the p primary part of the homotopy

2

	

2

	

2

- nj (Sl) (P) E

	

~J+2 (S3) (P)

	

nj+4(SS)(P)

	

" . . ~ nJ+2n(S2n+1)(P)' . .



§3 . Remarks on the solittinF, of loop spaces .

The homotopy of loop spaces n * (2X) is a graded abelian

group with a Lie bracket [a,b] called the Sámelson or Whitehead

product. defined

[ , ] : n i (PX) x n,(PX) 7 ir i+] (QX) .

For a =

	

[u]E -n i (PX) -and b =

	

[v]E ir,(nx)

	

we make the commutator

which is null homotopic on the wedge Si V S`) defining w

Si+j ~ 2X . We define [a,b] = [w] .

SiV Si

	

--~

	

S i x si

	

uvu- 1v- 1

	

nX

-,---W--
Si+,) = Sin S`)

(3 .1) Remark . The Hurewicz morphism ~ : n * (i2X) - H*(2X)

satisfies 0([a,b]) = [¢(a),0(b)] where [ , ] on H* (f2X) :_is .the

Lie bracket (with sign) associated with tbe loop product .on H * (nx) .

(3 .2) Remark . Returning to the decomposition in the thesis

of Serre mentioned in (2 .1), we use the Lie bracket of the

suspension map with itself [E,E] :S 4n-2 ->

	

OS2n which extends

to a map g

	

:

	

PS4n-1 -I

	

os2n .

	

Multiplying this map g with

the suspension map E, we obtain a map

S2n-1 x

	

Os 4n-l

	

-> 2s2n

which is a homology isomorphism with field coefficients for all

characteristics except 2 since [0(E),0(E)] = ¢(E)¢(E) - (-1)0(E)0(E)

= 2m(E)2 in H * ( ns 2n ) . Inverting the prime 2 on the spaces, we

have a map
S2n-l [1/2] x OS 4n-1 [1121 -->

	

OS2n [1/21

which is a homotopy equivalence .

Now assume that all spaces are localized at an. odd prime p .



Using the same idea of generating maps of spaces of the

form Sm {pr },

	

Sm{pr+l ),

	

and

	

(wedges of mod pr spheres)

	

finto

a loop space by looking at its mod pr homotopy as a Lie algebra,

the three authors Cohen, Moore, and Neisendorfer derived the

following decompositions, the verification of which took up the

bulk of the two papers [2] and [3] " These decompositions where

surveyed in Husemoller [ 61, [ 71, and [ 81 .

(3 .3) Theorem . There is a homotopy equivalence

S2n+l {p r } X S2(V 0< k Son+2nk+3 (pr ))

	

->

	

PS2n+2(pr) .

(3 .4) Theorem . The space Y(n,pr ) in theorem (2 .2)

which enters into the following commutative diagram where

the horizontal arrows are homotopy equivalences

n(i) = 4n-l.with n(i) ->+m .

C(n)

	

X Y(n,pr)

	

-
-1

	

OE2n+l {pr }

S2n-1

	

X Y(n,pr)

	

...--~

	

PF2n+1{pr}

has the form up to homotopy Y(n,pr ) _ ~j111
S2pin-1{pr+l} ¿S[i1]

where S[n] is an infinite wedge of mod pr spheres in dimensions



§4 .

	

9k-exponents . Theorem II on the G2-exponent of a mod pr shere .

In this section all spaces are localized at an odd prime p .

(4 .1) Definition . A space X has an nk-exponent n provided

pn.i d is null homotopic and pn-l id is not null homotopic on

the loop space nk X .

Observe that if a k-connected space X has an 2k-exponent n,

then pnn * (X) = O .

(4 .2)

	

Example .

	

In

	

(2.3) we saw that pnn2n+l+j (S2n+1 )	= 0

for j >0 .

	

Since nm(Sm )

	

=

	

a
(p)

	

for a sphere locálized at p,

we can consider S2n+1 <2n+1> the (2n+1) - connected cover where

just the bottom homotopy group is killed .Then pn n * (S 2n+1 <2n+1>)= 0 .

By a result of B . Gray [ 51 there are elements of order pn in

these homotopy groups, and it is the case that S2n+l <2n+1> has
2 2n-exponent n . Neisendorfer and Selick have shown that S2n+l<2n+1>

does not Nave an Gk- exponent for k = 2n-2 .

(4 .3)

	

Proposition .

	

On the H-space Sm{pr } the multiple

pr.i d is null homotopic . For the H-space structure on C(n)

induced from the fact that E2 is an H-space map p.id is null

homotopic .

This proposition and the previous result (4 .2) are proved

in section 5, [ 4 ] .

	

The proof uses essentually the existence

'of the partial inverse of E2 and also the result of Selick [141

that 22S 3 <3> is a homotopy retract of 22S2p+1{p} .

Before stating the second main result, we point out a

negative result of a very simple nature contained in [4 ] as

Proposition 3.5 . This result is a consequence of the fact

that H *(9SX) is the tensor Hopf algebra on the coalgebra H* (X)

when H* (X) is flat over the ground ring .
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(4 .4) Proposition .

	

If Y, is a space with H * (X, 7L/p) 4 0,

then SX does not Nave an n-exponent .

The remainder of this article centers around the following

result .

(4 .5) Theorem II . The mod p r sphere Sm(pr ) has an i2 2-exponent

equal to r+l .

The fact that p2r+l . id is null homotopic on 22Sm(pr ) was

shown by Cohen, Moore, and Neisendorfer in [ 4] . The fact that

r+l is the exponent was shown by Neisendorfer [11],

The idea of the proof is to show that gSm(p r) decomposes

as a sequential lim ) of finite products of spaces where pr+l .id

is null homotopic on each factor . For even dimension m = 2n+2

we have by (3 .3) a homotopy equivalence

PS2n+2(pr) J S2n+1
(p

r } x n(\/
05-k

S4n+2nk+3(pr))_

By (4 .3) the multiple p r .i d is null homotopic on S2n+1 {pr} .

The other factor is a wedge of odd dimensional mod pr spheres .

Recall at this point the following result of Neisendorfer [9 ] .

(4 .6) Proposition . There is a homotopy equivalence

between Sm(pr)^
Sn(pr) ahd Sm+n(pr)V Sm+n-1 (pr ) .

This together with the classical Hilton-Milnor theorem

OS (x VY)

	

=

	

PSX x Os ( VOck X,k^ Y)

2sx x

	

Os(Y v (X^Y) v (X A XI\Y)v . . .

	

)

shows that the second term in the aboye decomposition of PS 2n+2 (p r )

n(1) r
itself decomposes as lim, of finite products of OS

	

(p )

where n(i) --~

	

+ °~ .

(4 .7) Remark . Any wedge Vi Sm(i) (Pr ) where m(i) -~ +

or is finite in number has an n 2-exponent of r+l .



This means that the burden of the proof of (4 .5) Theorem II

rests on findinF. a good decomposition of OS 2n+1(pr) for an odd

dimensional mod pr sphere S2n+1(pr) . Unfortunately this loop

space does not lend itself to the direct analysis that we

find for PS 2n+2 (p r ) .

The idea is to use the second factor of Y(n,pr ) given in

(3 .4),namely OS[n],and deloop the three maps from PS[n] coming

in the diagram given in (3 .4)

OS[n] --a	í2E2n+1{pr) -a

	

OF2n+1{pr)
--->

	

sis2n+1 (pr)
yielding three fibre sequences

PE 2n+1 {p r} -

l
S[n]

Of the three fibrations with base spaces v2n+1 {pr } ~ U2n+l {p r } ~

and T2n+l{pr}the first two split immediately .from (3 .4) . By a

careful study of the homological properties of the third

fibration where H * (PS[n]) > H* (OS2n+1 (pr)) is injective over

7Z/p, one deduces the following, see [4, proposition 1 .4] .

(4 .8) Proposition . The loops on an odd dimensional mod

2n+1os 2n+1(pr)

V2n+l {pr}

U 2n+1 {p r}

T{pr}

E2n+1 {pr }

sphere OS2n+1(pr) is homotopically equivalent to the product
T2n+1{pr} XOS[n] .

Combining this with remarks

above, we see that the following

(4 .9) Proposition . For

same homotopy type as lim-,, of
T2n(j)+1{pr}

where m(i), n(j)

m(i), n(j) ---> +- .

This reduces the proof of (4 .5)

pr

related to (4 .6) and (4 .7)

results .

m = 3 the loop space OSm(p r ) has the

finite products of S2m(i)+1{pr} and

= n for m = 2n+1 or 2n+2 and

to the study of T2n+l{pr} .
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45 . The 2-exponent of T2n+l{pr} .

In view of (4 .9) the spaces Sn(pr ) will have an Sk+l-exponent

if and only if the spaces T2m+1{pr) have an 2k-exponent . Now

we give the argument that p2r+1 . id is null homotopic on PT2n+1 {pr } .

which is in [4] .

(5 .1) Theorem . On the space QT2n+l {p r } the multiple

p2r+l .id is null homotopic .

Proof . For this apply the construction (1 .5) to the composite

OE 2n+1 {p r } ->

	

QS2n+1(pr) .

QV2n+1 {p r )
11

PT2n+1 {pr }
\."6
~i PS[n7

the fibration . This proves the theorem .

We obtain the diagram

122 S 2n+1 {p r }	> PE2n+l {pr } -~ gS2n+1(pr)

Since V2n+1{pr} has the same homotopy type as c(n) x 11111
s?pin-1{pr+1}~

we deduce that pr+l . id is null homotopic on PV2n+1{pr} the fibre

of the vertical fibration in the diagram . Since p r .i d is null

homotopic on 92S2n+l {pr }, the base of this fibration, it follows

that p2r+l . id is null homótopic on the total space QT2n+1{pr} of

The result of Neisendorfer that pr+l .id is null homotopic

on gT2n+1{pr) i s much deeper and involves returning to .an analysis

of T2n+1{pr} similar to what is used to prove theorem (3 .4) .
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