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Coding theory began as an engineering problem suggest by

the Shannon, Golay and Hamming works and has developed by using

more and more sophisticated mathematical techniques .

	

This sub

ject overlaps with so many other : group theory, number theory,

switching functions, combinatorial geometries, association sche-

mes, etc .
We present in this paper a sumary of some combinatorial

properties of the family of regular codes, recently developed in

(4), based on the coefficients of the dual weight enumerator of

its cosets and the Krawtchouk polynomials .

	

From the Goethals-

va Tilborg's characterization (3) and from the Delsarte's work

(1) cae proof that for every s-weight linear code C(n,k), whose

orthogonal code C1 is regular, cae can define a s-classes associa

tion scheme such that the rocas of its eigenmatrix P are the coef

ficients of the dual weight enumerators of the orthogonal code
and its cosets .

1 .-

	

ASSOCIATION SCHEME AND DESIGN STRUCTURE

An association scheme with n-classes on

of a partition of the set XxX finto n+1 classes

tisfying the following conditions :

2 : Given xEX, the number v i := # {yEX :

a set X consists

r0,r1, . . . . rn

(x,y)er i } depends

sa-

only on
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3 : Given x(

	

,y)Erk,

	

the number pkij a=

	

#{zeX :

	

(x,z)eri and

	

(y,z)er j }
depends only on i,j and k .

( # denote the cardinal of the set )
If we denote by Di the adjacency matrix of the graph (X,r i )

(the second condition asserts that each graph (X,r i ) is regular)
which entries Di (x,y) are equal to 1 if (x,y)cr i and 0 otherwise ;
we observe that the (x,y)-entry in the matrix product D i .D j is

plj
if (x,y)erk .

	

Moreover the diagonal entries are equal to zero un-
less i=j, in which case they are equal to vi . Then we can write :

n
Di .Dj = Dj .Di =

k=O piiDk

	

-1-

where p0j=dij

	

and pi0 pki -d ik'
This shows that the commuting symmetric matrices D O ,D1 , . .,

Dn span a (n+1)-dimensional real algebra called the Bose-Mesner
algebra of the scheme, which is semisimple (rf (1), Th . 2 .1 and
Th . 2 .2) and hence admits a basis of mutually orthogonal idempo-
tent matrices JO,J1, . . .,Jn ; that is J i .Jk =S ik .J i .

	

Respect to
the basis {JO,J1, . . .,Jn}, every Dk can be written as an expression
of the form :
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n
Dk = i~0 p k (i) .J .

	

for k=0,1, . ,n

	

_

	

-2-

where pk(i) are the eigenvelues of Dk , because Dk.J¡ =pk (i) .Ji .
The square matrix P of order n+1 whose (¡,k)-entry is Pk (i),
O,<i,k,<n, is called the eigenmatrix of the scheme .

The matrix Q defined by . Q := IXI .P -1 , whose (¡,k)-entry
will be denoted by qk(i), is called the dual eigenmatrix of the
scheme .

	

Note that from -2- we obtain
n

Jk

	

IXI-1 1 . O gk(1) .Di

	

for k=0,1, . . .,n

	

-3-

For every association scheme defined on a set X which has
P and Q as eigenmatrix and dual eigenmatrix repectively, holds :

Pt =
Ov .Q .~u1

	

-4-

where Av and D u are diagonal matrices having the same order that
P and Q and which diagonal entries are the valences v i and multi
plicities v i ; that is, vi is definéd as 2 : and u i is the dimension

of the subspace Vk which has associated the eigenvalues Pk(0),



pk(1)" ,pk (n) of Dk .

	

Moreover :

p k (0)=vk and qk(0)=uk

	

-5-

being pk(0) the eigenvalue of Dk which is associated to the ei-
genvector

We define now a combinatorial structure, called design ,

over a subset Y of a point set X of an association scheme with

n-classes .
The inner distribution of Y is the (n+1)-tuple a=(a0, . .,an)

which coordinate a . is :
1

theorem 1 (Delsarte)

a . := jY1 -1

	

E

	

E

	

D . (x,y)

	

-
xeY YEY

and the dual distribution of Y is the (n+1)-tuple b_=(b0,b1, . .,bn)
that consists of the inner distribution of Y1 :={xEX :

	

(x1y)=0 V yEY}
where ( .l .) is the scalar product .

A subset Y of a point set X of an association scheme with

n-classes such that their inner and dual distribution satisfy :

s= #{a k ~0 ; k#0}

and

	

-7-

b1=b2= . . .=bT=0

	

and b-r+1 yo

is called a des-ign of degree s and maximum strenght T .

Let Ye X be a design of degree s and maximum strenght T

which satisfies T=2s-2 or 2s-1 or 2s .

	

Then we can define an
association scheme with s-classes r~,rY , . . .,rY

rY . = Yxynr j
J

where r j is the j-th class of the association scheme on X which
associated coordinate a . of the inner distribution of Y is non-a
zero . Moreover, the dual eigenmatrix Q= (qk (i)) of the association
scheme (Y,rY) is given by the formula :

1 pk(i .)

	

if k=0,1, . .s-1

k('1 la(.¡jj) if k=s

	

-9
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where a(z) is the annihilator polynomial of Y, that is :

a(z)= ¡ y jUO (1- i), being i . the nonzero coordinates in

the inner distribution of Y ; and 0s-1(z) k=0-1 Pk(z), being
pk(z) the Krawtchouk polynomial (see -18-) of degree k in the

variable z .

Remark : this theorem corresponds to theorem 5 .25 and corolary

5 .26 of Delsarte's work (1), and it is a crucial result for our
theorem S .

In the particular case where X is an additive finite a-

belian group, useful in coding theory, the (n+1)-classes F O ,r l , . .

rn are invariant under translations ; that is :

(x,Y)Eri ==> (x+z,y+z)Er i NZEX

	

-10-

Thus we have a partition of X into n+1 classes XO,X1, . . .,Xn de-
fined by

(x,y)Er i

	

G==>

	

+

	

(y-x)EXi

	

for i=0,1, . .,n

	

-11-

In the other way, let S denote the square matrix of or-

der IXi with Xy(x) its entries indexed by the elements x,ycX

(X y is the associated character to. y .on X) .

	

The orthogonality

relat 'Lons satisfied by them can be expressed by the matrix equa-

tion
~ .S=SA=IXI .I -12-

where ~ is the conjugate transpose of S .

	

They follow from

X (x)=X (-x) and from the relations E X (x)_¡1Xlif y=0

	

that
y

	

y

	

XEX Y

	

0 otherwise
the columns of S are the eigenvectors of all the matrices in

the Bose-Mesner algebra of the association scheme (rf . (1),(2)),

hence we can write a new partition of X into n+1 classes Xó,Xí, . .

.,Xñ where Xi is the set of indices zcX for which the correspon

ding column of S is in the i-th eigenspace Vi .

	

In this way, we
have :

X'={O) and JX!l=ui

	

-13-

From these partition of X we can define a new partition

ró,rj, . . .,rñ on XxX as follows :

(x,y)Eri c=5 +(Y-x)EXi

	

- 1

resulting that the n+1 classes ri form an association scheme on
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X, called the dual scheme from the constructed one by the classes

ri (rf(2)) .

The respective eigenmatrices and parameters satisfy (rf .

(1) th 2 .8) :

P=Q' and Q=P'

vk=u'k and uk=vk
-15-

Let X=(FG,+)

	

be the set of all

	

the n-tuples x_=(x 1 , . . . ,xn)

from a Galois field F
q

of order q=pr for a prime number p .

	

We
make X a metric space by definning the Hamming distance dH(x,Y-)
betwen two n-tuples to be the number of coordinates in which
they aré different .

For

	

i=0,1, . . . . n we define

	

ri by the set of all

	

pairs

	

of
n-tuples at distance i, that is :

P i = {(x,y)cXxX : dH(x,y) = i)

	

-16-

which constitutes an association scheme, called the Hamming sche-
me .

	

This one is a self-dual association scheme (P=Q) and its
eigenmatrix elements are given by :

Pk (i) = gk(i) = pk(i)

Pk(i) =	En	(-1)j(q - 1 ) k-j (i) (k-~)
j=o

for two orefix numbers : n and q .
From the expressions -5-,-17- and -18- we can write the

parameters of a Hamming scheme by

-17-

where Pk (i) denotes the Krawtchouk polynomial of degree k in the
variable i, which is defined in (5) by

-18-

yk=vk=(k)(q - 1) k	-19-

Remark : For the design structure defined by -7- over a subset Y

of the point set X of a Hamming scheme ; that is, Y can be consi
dered as a linear code, the inner and dual distribution coincide
with the enumerator weight coefficients (A0,A1, . . .,An) of Y and
the enumerator weight coefficients

	

(BO ,B1, . . .,Bn) of its dual
code Y 1- respectively .



2 .-

	

REGULAR CODES

A linear code C(n,k) . over F q , is a k-dimensional sub-

space of the n-dimensional vectorial space that consists on all
the n-tuples with the elements of Fq : V={u=(ul,u2, . . .,un) : u icFq }.
The orthogonal code CL(n,n-k) is the (n-k)-dimensional subspace
of V consisting on all the n-tuples veV which inner product with

every codeword of C is zero .
The weight enumerator of a code C is the polynomial in

the variable z :

where w(u) denotes the weight of the codeword u, that is the

Cl. Between the weight enumerator of a linear code and the one of
its orthogonal code, there exist the following relation :
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n
AC (z)=

	

E zw(u)=
i .0 A i .z l	-20-

uEC

number of nonzero coordinates ui , and Ai is the number of code-

words of weight i .

	

n
Let BC(z)=ACL(z)= EO B j .z 3 be the weight enumerator of

j=

BC( z ) = I C I -1 ( 1+ (q -1 )Z) nAC(1+ 1- z Z)

	

-21-

called the MacWilliams identity ; or equivanlently :

Ac(Z)=1C11-1
jEO Bj,(1-Z)j(1+(q-1)z)n-i

	

-22-

where the right hand is called the dual form of the weight enu -
merator of C, (rf .(S)) .

In order to generalize expression -22- for the weight
enumerator of any coset Cj

:=C+uj
of C, we write

n
AC .(z)= i=0 Ai (C j ) .z l	-23-

where A.(C .) denotes the number of vectors of weight i into the
)i

coset Cj , for j=0,1 ; . .,gn_k-1 .

Remark : V=C0VC 1U . . .UC n-k

	

is the partition given by the equi-
q -1

valence relation RC={(u,v)cVxV : u-veC}, and the leader u j is a
minimum weight vector into C j .

	

Obviously, C 0 =C itself .

Taking the complex algebra of all the polynomials in
the variables Xq .j for gicFq and 1,j,<n, denoted by A, we can

i



define the two following applications :

and

where X a denotes a character defined on the additive group (V,+) .
From definitions of f and g, and from the characters

properties, we can write (rf . (4)) :

lemma 2
For any coset C j of a linear code C(n,k) the following

identity holds :

E g(u) = ¡C¡ E XU .(b) .f(b)

	

-26-
l ECj

	

bcC' -J

Identifying XO , i =1

	

and Xa

	

,i=z

	

if ai~0,

	

into

	

-24-

	

and
-25- ; the duality of the MacWilliims identity -21- and our
lemma 2 proves (rf(4)) :

theorem 3
The weight enumerator of any coset Cj

:=C+uj
of a linear

code C(n,k) can be written under the dual form :

=¡C1¡-1

	

hEn
Bh(Cj)(1-z)h(1+(q-1)z)n-h

	

-27-
J

where the coefficients Bh(C
J
.) are defined as :

B

	

( C . )=

	

E

	

Xu . (v)

	

-28-
h

	

J

	

vecl -J
w(v)=h

Remarks : When the coset C
J
. is the code itself, this theorem is

equivalent to MacWilliams identity -22- because we have, from
the properties of characters : Bh(C)=B

h
.

The coefficients Bh (Ci ) are easily obtained if C is a
regular code, through the Krawtchouk polynomials .

Let "s" be the number of distinct nonzero weights in
the orthogonal code C1 of a given code C ; s is usually called
external distance of C . A linear code C is named r-regular,
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f : V > A

-
a=(al, . . .,an) > f(a)= IIn Xa

i'ii=1
-24-

g : V > A
a=(a l , . . ., an) > g(a)= E X a (b) .f(b) -25-

bEV -



0,<r,<s, if and only if the weight enumerators of their cosets C)

which have minimum weight i-,r, depends only on i . When r=s, C

is called completely regular .
Goethals-van Tilborg give the characterization of the

regular codes as a function of the minimum weight d and the ex-
ternal distance s of the code (rf .(3) th .7) as follows :

theorem 4
For every coset C)

:=C+uJ
having minimum weight i, i-~<r<t,

of a r-regular t-error correcting code (d>.2t+1), we have :

where P i (h) is the Krawtchouk polynomial of degree i in the va-

riable h (rf.-18-) and Bh is the number of the n-tuples of

weight h into C1 .

proof :

1) if s<d42s-1, then C is (d-s)-regular
2) if

	

d>2s-1, then C is completely regular

Bh (C
j
) = «n)(q-1)i)-1 .Pi(h) .Bh

	

-30-

By the duality of -27- we can write :

n

	

n
hEBh .zh= ICI-1mEnAm(Cj)(1-z)m(1+(q-1)z)n-m

and since Am(C
j
)

	

depends only on i, we have for ibr :

C .

	

(mE o An,(Cj)(1-z)m(1+(q-1)z)n-m)
J

w(11j) = i

°

	

(i)(q- 1) i
mEo
n
Am(Cj)(1-z)m(1+(q-1)z)n

(i)(q-1) 1(hEn Bh(Cj) .zh)ICI

By the character property : uEV

	

Xv(u) = Pi(w(v))

w(u)=i

m

-29-

-31-

-32-

where P i (w(v)) is the Krawtchouk polynomial of - degree-i in the va-

riable w(v) ; we can write , in the other way :



E

	

~C~ hEn Bh (C .) .zh = E

	

ICI hEn( E
Xu

C,

	

i

	

C.

	

VECl J
>

	

> wZv)=h
W(u~)al

	

w(u j ) = i

a

	

C

	

E

	

zw (Z)

	

E

	

X

	

u
1 vecl UFV v(-)

W U
,= i _

I C IvECizw(1) Pi(W(v.))

zh

n

ICIh, Bh .Pi (h) .zh	-33 .-

From -31-, the equality between -32- and -33- holds and so -30- is

proved . ##

Remark : The particular case when s,<t+1 is very interesting sin-

ce the coefficients Bh(Cj ) can be found for every coset of a

regular code . (If i.;t, following the above theorem, and if

i=t+1 following the next corolary) .

corola : (rf.(4))
a)

	

With the same

M-1
E.
j=0

b)

	

With the same assumptions

En

h=0

Bh (Cj )

Bh(Cj) =

I IClI=qn-k

3 .-

	

REGULAR CODES AND ASSOCIATION SCHEME S

matrix has not a linear dependence
C(n,k) be a linear projective
weights w 1 ,w 21 . . . 1 ws and such
thogonal code d' satisfies :
gular (rf-29-), then we can
the additive group associated to code C .

assumptions of the theorem 3 we have :

0 if hY0
_

	

-34-

M=qn-k if h=0

of the theorem 4 we have :

if 0<ii<r
-35-

if i=0

A linear code is said to be projective if its generator
between any two columns . Let

code with "s" distinct nonzero
that the mínimum weight in the or

d'>,2s-1 ;

	

that is CL is completely re-

define two dual association scheme on
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Let X=(C,+) be the additive group associated to the pro-

jective code C(n,k), that is, the set of all the codewords with

the componentwise modulo q addition .

	

We define the partition r 0 ,

r 1 , . . . ,r s

	

by :

r0={(x,x)cXxX)

	

and

	

Fi={(x,y)EXXX : w(x-y)=Wi }

	

-36-

which constitutes an association scheme with s-classes on X where

vi=1Xi1= Aw,

	

for Osi,s beinj Xi a class of the partition induced
1

by r i on X . (rf .(1) and (2)) .
In the other way, we can consider C=V/ C .L as a quotient

of additives groups and consequently the decomposition of V into
N=qk cosets of C1,

	

that

	

is C= Y 0VY 1 u . . .UYN where Y 0 =C l and Y
j
=C 1+1.

j
for j#0 .

	

Since CLis a completely regular code all its cosets, ^
having the same minimum weight at most s, have the same weight enu-
merator .

	

Moreover, Since d'>,2s-1, C 1-is a (s-1)-error correcting
code and each codeword of C with weight at most s-1 belong to dis
tinct cosets Y j of C1-.

	

In this way, we can write a new partition

r!,r', . . .,rs over X as follows :

ró= {(Y,,Yj)F-Cxú) and ri= {(Yj ,Yk )ECxC : 1vH (Yj -Yk)=i) -37-

where WH(Y .�Yk) denotes the minimum weight in the coset Yj-Yk :=

Ci+(v
j
-vk ) . This partition defines an association scheme with

s-classes on C, this one considered as the set of all the cosets
Y i of C1, and constitutes the dual scheme of the one defined by s -1
-36- .

	

In this case, ui_jxi1-(i)(q-1)1 for 0<i,<s-1 and ;:s=gk-k 0 uk
Using the theorem 1 . we can show an important combinatorial

result, explained in the following :

theorem 5 :

For every linear projective code C(n,k) with "s" distinct

nonzero weights such that the minimum weight d' of the orthogonal

code satisfies : 2s-1,<d'S2s+1 ; we can define an association scheme

with s-classes on C such that the rows of its eigenmatrix P coin-

cide with the coefficients of the dual weight enumerators of C i

and of its cosets .
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proof :

According with definition -7- and remark of page 5 ; this
code C is a design of degree "s" and maximum strenght T=d'-1, which
satisfies the assumptions of theorem 1 .

	

Then (C,I' C) is an asso
ciation scheme whose dual eigenmatrix Q is obtained by -9- .

From -29- we claim that CL is completely regular and

	

mo-

reover that is a (s-1)-error correcting code (d'>2t+1 being t=s-1
the capacity of error correctinn) .

	

In this way, we can apply the
theorem 4 for every coset of C L having minimum weight ¡,<t and -34-
for them which minimum weight is t+1 .

If we arrange those results in a (s+1)x(s+1) matri.x
se entries (i,wi) are the coefficients Bw . (C +v~), where this

set . has minimum weight i, i=0,1, . .,s and w0 =0 ; we can write :

B = C-1 .Qt .A

where A and C are diagonal matrices whose entries are,
aii =Aw . (the coefficients of the weight enumerator

1

J(i)(q - 1)
1 for 0=its-1

and c . .=

	

(the number of cosets of C11 l qn_(n-k) - sr1 c

	

nimum weight i)
J = 0 JJ

example 1 :

AG(z)=1+253z 7 +506z8+1288z 11 +1288z 12+506z 15 +253z 16 +z 23

from which we know ¡t is completely regular and that its
code has three nonzero weights :

AGL (z)=1+506z 8 +1288z 12 +253z16

B who-
co-

-38-

respective-
of C= (Cl.

)
L

)

with mi-

From definitions -36- and -37- we assure that the right

hand in -38- coincide with the transpose of the right hand in -4- .

Then, B=P and this proof is end . ##

For the perfect binar¡ Golay code with a weight enumera-

tor (rf .(5)) :

orthogonal

we can obtain easily all the coefficients Bh (G
j

) of the dual weight

enumerator of all the cosets
Gj

:=G+u
.
through .theorem 4 and from the

three-term recurrence of the Krawtchouk polynomial (rf.(4)), and we
have the next table where B is the central piece :
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8o

Consequently, let C be this three weight linear code .
which orthogonal code is the binary Golay code with minimum
weight d'=7 .

	

By theorem 5, we can define an association scheme
with 3-classes on C whose eigenmatrix P is :

remark :

	

We refer to the reader to exemple 6 .1 in (1) where this
eigenmatrix is constructed in a different way .

example .2 :
In the same work (1) Delsarte gives an association sche-

ma, with two classes, on the orthogonal code at the ternary Golay
code G 3 (11,6), where the corresponding eigenmatrix P is given by :

(1 132 110
P= 1 24 -25

1 -3 2
Applying the inverse reasoning to example 1, we can ob-

tain from theorem 5, since the ternary Golay code is perfect

(rf.(5)), that is completely regular (rf .(3)) ; that the two non

zero weights of the ternary Golay code are w 1 =6 and w2 =9 .

	

Those
results are obtaineds from -30- and from the Krawtchouk polynomials

P 1 (x) = 22 - 3x and P 2 (x)=220- 129x+2x2	(rf.(5))

	

(e .g .

	

B
w1

=132 ; and

24 (11 .P 1 (w 1 ) .132 in second column of P, then w1 =6) .
j ) .2

In this way, our theorem 3 permits give the dual weight
enumerator for the ternary Golay code and for its 243 cosets :

i

0

Bo (Gj )

1

B8 (Gj)

506

B12(Gj)

1288

B16 (
.)

253

N° of cosets with
minimum weight i

1
1 1 154 -56 -99 23
2 1 26 -56 29 253
3 1 -6 8 -3 1771

1 506 1288 253
1 154 -56 -99
1 26 -56 29
1 -6 8 3



AG	(z)

	

243(

	

(1+2z) 11 +132(1-z)6 (1+2z) 5 +110(1-z) 9 (1+2 z) 2	)
3

For w(u .)=1 ; there are ( 1 ~) .2=22 cosets with the same mi-
nimum weight, we have :

AG +uj (z) 243( (1+2z)11+24(1-z)6(1+2z)5-25(1-z)9(1+2z)2
3 -

And for w(11j )=2 ; there are
me minimum weight, we have :
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