SUMS OF INDEPENDENT RANDOM VARIABLES AND SUMS OF THEIR SQUARES Evarist Gine

Secció de Matemàtiques
Universitat Autonoma de Barcelona

Let $\left\{X_{n j}: j=1, \ldots, k_{n}, n \in N\right\}$ be a triangular array of row-wise independent random variables, $S_{n}=\Sigma_{j} X_{n j}$ the row sums and $T_{n}=\Sigma_{j} x_{n j}^{2}$ the row sums of squares. Raikov (1938) proved that S converges weakly to a Gaussian law if and only if T_{n} converges in probability to a constant. Hall (1978) shows that if S_{n} converges to a Poisson law with parameter λ, then so does T_{n}. In this note we give the exact relation between tightness and convergence of $\left\{L\left(S_{n}\right)\right\},\left\{L\left(T_{n}\right)\right\}$ and $\left\{\min \left(1, x^{2}\right) \Sigma_{j} d L\left(X_{n j}\right)\right\}$ for infinitesimal arrays; these results contain those of Raikov and Hall as particular cases. The tiọhtness relations proved to be useful in some work with M.R.Marcus on the central limit theorem in $C(S)$. I acknowledge Prof. M. Marcus for the correspondence that led to this note (as a byproduct).

The notation will be as follows: $\left\{x_{n j}: j=1, \ldots, k_{n}, n \in N\right\}$ will be a triangular array of row-wise independent random variables ($\left\{x_{n j}\right.$) for short $), S_{n}=\varepsilon_{j} x_{n j}, T_{n}=\varepsilon_{j} X_{n j}^{2}, X_{n j \tau}=X_{n j} I_{\left\{\left|X_{n j}\right| \leq \tau\right\}}, S_{n, \tau}=\varepsilon_{j} X_{n j \tau},(\tau>0)$, and $\left\{X_{n j}\right\}$ will denote independent symmetrizations of $\left\{x_{n j}\right\} .\left\{x_{n j}\right\}$ is infinitesimal if $\lim _{n} \max _{j} P\left\{\left|X_{n j}\right|>\varepsilon\right\}=0$ for all $\varepsilon>0$.

Ne refer to Gnedenko and Kolmogorov (1968, Theorem 25.1) or to Araujo and Giné (1980, Theorem 2.4.7) for the general central limit theorem on the line (CLT).

The following is our main observation. It elaborates on exercise 2.5.3 of Araujo and Gine (1980) and its proof is inspired on their proof of the converse CLT. Theorem 1. Let $\left[X_{n j}\right.$ \} be a triangular array of row-wise independent rv's. Then $\left\{L\left(\varepsilon_{j} x_{n j}^{2}\right)\right\}$ is tight if and only if the family measures

$$
d v_{n}(x)=\min \left(1, x^{2}\right) \Sigma_{j} d L\left(x_{n j}\right)(x)
$$

is uniformly bounded and tight.

Proof. Assume $\left\{L\left(\Sigma_{j} x_{n j}^{2}\right)\right\}$ tight. Then by positivity, so are $\left\{L\left(\Sigma_{j} x_{n j \tau}^{2}\right)\right\}_{n=1}^{\infty}$ and $\left(L\left(x_{n j}^{2}\right)\right)_{n, j}$. The converse Kolmogorov and Lévy inequalities give

$$
E\left(\varepsilon_{j}\left(X_{n j \tau}^{2}-E X_{n j \tau}^{2}\right)\right)^{2} \leq c_{\tau, d} /\left[1-2 P\left\{\left|\Sigma_{j}\left(x_{n j \tau}^{2}\right)^{\sim}\right|>d\right\}\right]
$$

where $c_{T, d}$ is a finite constant for each $\tau, d>0$. The tightness of $\left\{L\left(\Sigma_{j}\left(x_{n j \tau}^{2},{ }^{2}\right) \sim\right.\right.$ therefore implies $\sup _{n} E\left(\Sigma_{j}\left(X_{n j \tau}^{2}-E X_{n j \tau}^{2}\right)\right)^{2}<\infty$, hence the tightness of $\left\{L\left(\Sigma_{j} X_{n j \tau}^{2}-\Sigma_{j} E X_{n j_{T}}^{2}\right)\right\}$ by Chebyshev. $\left\{L\left(\varepsilon_{j} X_{n j \tau}^{2}\right)\right\}$ being tight, we conclude

$$
\begin{equation*}
\sup _{n} \sum_{j} E X_{n j \tau}^{2}<\infty \tag{1}
\end{equation*}
$$

for all $\tau>0$. As is well known, Lévy's ineqiality gives that if $\left\{n_{i}\right\}$ are independent symmetric, then

$$
\Sigma_{i=1}^{n} P\left\{\left|\eta_{i}\right|>\delta\right\} \leq-\log \left(1-2 P\left\{\left|\Sigma_{i} \eta_{i}\right|>\delta j\right)\right.
$$

for all $\delta>0$ (as observed by Feller (1971), page 149). Hence, using Fubini we can conclude that there exist $\beta>0$ and $x_{n j} \in \mathbf{R}$ such that

$$
\sup _{n} \sum_{j} p\left\{\left|x_{n j}^{2}-x_{n j}\right|>B\right\}<1 / 2 .
$$

Since $\left\{\dot{L}\left(x_{n j}^{2}\right)_{n, j}\right.$ is tight, there exists $M>0$ such that $\sup _{n, j} P\left\{x_{n j, j}^{2}>M\right\}<1 / 2$, which implies that $\left|x_{n j}\right| \leq M+B$. So, there exists $\tau>0$ such that

$$
\sup _{n} \sum_{j} P\left\{X_{n j}^{2}>\tau\right\}<1 / 2 .
$$

If we apply this to r independent copies of $S_{n}, r \in \mathbb{N}$, we conclude that there exists $\tau_{r}>0$ such that

$$
\sup _{n} r \Sigma_{j} P\left\{X_{n j}^{2}>\tau_{r}\right\}<1 / 2 .
$$

This proves that $\left\{\varepsilon_{j} L\left(X_{n j}\right) \||x| \mid>\tau^{1 / 2}\right\}$ is uniformily bounded and tight, hence by (1), so is $\left\{\min \left(1, x^{2} / t\right) \Sigma_{j} L\left(x_{n j}\right)\right\}$. It is trivial to see that if for some $\tau>0$ these measures are uniformly bounded and tight, the same is true for each $\tau>0$, in particular for $\tau=1$.

Conversely, assume now that $\left\{\nu_{n}\right\}$ is uniformly bounded and tight. Then for all $t, t>0$,

$$
\begin{aligned}
& P\left\{T_{n}>t\right\} \leq P\left\{\Sigma_{j} X_{n j \tau}^{2}>t,\left|X_{n j}\right| \leq \tau, j=1, \ldots, k_{n}\right\} \\
&+\Sigma_{j} P\left\{\left|X_{n j}\right|>t\right\} \leq \Sigma_{j} E X_{n j \tau}^{2} / t+\Sigma_{j} P\left\{\mid X_{n j}>\tau\right\} .
\end{aligned}
$$

Given $\varepsilon>0$ choose $\tau>0$ such that the last sum is not qreater than $\varepsilon / 2$ and then t such that $\Sigma_{\mathrm{j}} \mathrm{EX} \mathrm{X}_{\mathrm{j} \mathrm{T}}^{2} / \mathrm{t}<\varepsilon / 2$. Hence, $\left\{L\left(T_{\mathrm{n}}\right)\right\}$ is tight. Q Since

$$
\begin{align*}
& E\left(X_{n j}-E X_{n j 1}\right)^{2} I_{\left\{\left|X_{n j}\right| \leq 1\right\}}-E X_{n j l}^{2}= \tag{2}\\
& =-\left(1+P\left\{\left|X_{n, j}\right|>1\right\}\right)\left(E X_{n, j 1}\right)^{2},
\end{align*}
$$

the previous theorem together with theorem 2.45 in Araujo and Giné(190), give: Corollary 2. Let $\left\{X_{n j}\right\}$ be an infinitesimat array such that

$$
\begin{equation*}
\sup _{n} \Sigma_{j}\left(E X_{n j 1}\right)^{2}<\infty . \tag{3}
\end{equation*}
$$

Then, $\left\{L\left(S_{\mathrm{n}}-E S_{\mathrm{n}, \mathrm{T}}\right)\right\}$ is tight if and only if $\left\{L\left(\varepsilon_{j} \mathrm{X}_{\mathrm{nj}}^{2}\right)\right\}$ is.
Remark. Condition (3) is satisfied if:
(a) $\left\{X_{n j}\right\}$ is symmetric, but in this case it is not necessary to assume infinitesimality (use Araujo and Giné (1980). Cor. 2.5.7), and
(b) for $\left\{Z_{n j}=X_{n j}-E X_{n j \tau}\right\}$, any $\tau>0$, if either $\left\{L\left(S_{n}-E S_{n, \tau}\right)\right\}$ or $\left\{L\left(\Sigma_{j}\left(X_{n j}-E X_{n j \tau}\right)^{2}\right)\right\}$ are tight for some $\tau \geq 0$. Let us see it for $\tau=1$:

$$
\begin{aligned}
\left|E Z_{n j 1}\right| & \leq|f| X_{n j}\left|\leq 1 \leq Z_{n j} d P\right|+\left(1+\left|E X_{n j 1}\right|\right) P\left\{\left|X_{n j}\right|>1-\left|E X_{n j 1}\right|\right\} \\
& =\left|E X_{n j 1}\right| P\left\{\left|X_{n j}\right|>1\right\}+\left(1+\left|E X_{n j 1}\right|\right) P\left\{\left|X_{n j}\right|>1-\left|E X_{n j 1}\right|\right\},
\end{aligned}
$$

and since $\max _{j}\left|E X_{n j 1}\right| \rightarrow 0$ as $n \rightarrow \infty$ by infinitesimality, we obtain that $\sup _{n} \Sigma_{j}\left(E Z_{n j 1}\right)^{2}<c \sup _{n} \Sigma_{j} P\left\{\left|X_{n j}\right|>1 / 2\right\}$ and this quantity is finite if either one of the two families of sums are tight, by the previous theorems. So we have:
Corollary 3. Let $\left\{X_{n j}\right\}$ be infinitesimal. Then $\left\{L\left(S_{n}-E S_{n, \delta}\right)\right\}$ is tight if and only if $\left\{L\left(\Sigma_{j}\left(X_{n j}-E X_{n j \delta}\right)^{2}\right)\right\}$ is tight for some (all) $\delta>0$.

Next we examine convergence relations. We will let $T(x)=x^{2}$. Note
that if μ and v are σ-finite Borel measures the equation $v o T=\mu, \nu$ unknown, has a unique symmetric solution and a unique solution supported by $\mathbf{R}_{+}\left(\boldsymbol{R}_{-}\right)$. This solution will be denoted $v=\mu 0 \mathrm{~T}$ and it will be symmetric or supported by \mathbb{R}_{+}depending on the context.
Theorem 4. Let $\left\{X_{n j}\right\}$ be an infinitesimal array.
(a) Assume $\left\{X_{n j}\right\}$ satisfies condition (3) and
(4)

$$
L\left(S_{n}-E S_{n, \delta}\right) \rightarrow w_{w} N\left(0, \sigma^{2}\right) * c_{\delta} \text { Pois } \mu
$$

for some $\sigma^{2} \geq 0$, Lêvy measure μ and $\delta>0$ such that $\mu\{-\delta, \delta\}=0$.
Then,

$$
\begin{equation*}
L\left(\varepsilon_{j} X_{n j}^{2}-\varepsilon_{j} E X_{n j \delta}^{2}\right) \rightarrow_{w} c_{\delta} 2 \operatorname{Pois}\left(\mu 0 T^{-1}\right) \tag{5}
\end{equation*}
$$

In particular, if condition (3) is replaced by the stronger condition

$$
\begin{equation*}
\lim _{n} \sum_{j} E X_{n j \delta}^{2}=a<\infty, \tag{6}
\end{equation*}
$$

then

$$
\begin{equation*}
L\left(\Sigma_{j} x_{n j}^{2}\right)-{ }_{w}^{\delta}{ }_{\mathrm{a}} \mathrm{c}_{\delta} 2 \operatorname{Pois}\left(\mu \mathrm{O} T^{-1}\right) \tag{7}
\end{equation*}
$$

(b) Conversely if the $X_{n j}$ are non-neqative (symmetric) and

$$
\begin{equation*}
\lim _{\delta \downarrow 0} \overline{\lim }_{n} \Sigma_{j}\left(E_{n j \delta}\right)^{2}=0 \tag{8}
\end{equation*}
$$

then, the fact that

$$
\begin{equation*}
L\left(\varepsilon_{j} x_{n j}^{2}\right) \rightarrow_{w} \delta_{a}^{*} c_{\delta} 2 \text { Pois } \mu \tag{9}
\end{equation*}
$$

for some Lévy measure μ and δ such that $\mu\left\{-\delta^{2}, \delta^{2}\right\}=0$, implies

$$
\begin{equation*}
L\left(S_{n}-E S_{n, \delta}\right) \rightarrow w\left(0, \sigma^{2}\right) * C_{\delta} \operatorname{Pois}(\mu 0 T) \tag{10}
\end{equation*}
$$

where $\sigma^{2}=a-f_{0}^{\delta^{2}} x d \mu(x)$. ($\mu \mathrm{OT}$ is symmetric if the $X_{n, j}$ are symmetric and with support in \mathbf{R}_{+}if the $X_{n j}$ are non-negative). Also, $\Sigma_{j} E X_{n j \delta^{-r a}}^{2}$.
(b') If in (9) $u=0$, then (b) is true without the variables $X_{n j}$ being nonnegative or symmetric.
Proof. (a) By the CLT, $\left.\left.\Sigma_{j} L\left(X_{n j}\right)\right|_{\{|x|>\delta\}^{*+}} w^{H}\right|_{\{|x|>\delta\}}$ if $w\{-\delta, \delta\}=0$. Then if $\mu\left\{-\delta{ }^{1 / 2}, \delta{ }^{1 / 2}\right\}=0,\left.\left.\sum_{j} L\left(X_{n j}^{2}\right)\right|_{\{|x|>\delta\}} \rightarrow W^{\mu 0} T^{-1}\right|_{\{|x|>\delta\}}$. On the other hand,

$$
\begin{aligned}
& 1 i m_{\delta+0} \overline{7 i m}_{n}{ }_{j} E\left[X_{n j}^{4} I_{\left.\left.\left\{X_{n j} \leq \delta\right\}^{-\left(E x_{n j}^{2}\right.} I_{\left\{X_{n j} \leq \delta\right\}}^{2}\right)^{2}\right]}\right. \\
& \leq \lim _{\delta \downarrow 0} \overline{\lim }_{n} \varepsilon_{j}\left(\delta-\varepsilon\left(X_{n j}^{2}\right)_{\delta}\right) E\left(X_{n j}^{2}\right)_{\delta}=0
\end{aligned}
$$

because by condition (3) and the CLT, $\sup _{n^{\Sigma}} \sum_{j} E X_{n j l}^{2}<\infty$ (see (2)). Hence (5) follows from the CLT.
(b) Assume now that (8) and (9) hold. Then (3) holds and therefore Corollary 3 gives that $\left\{L\left(S_{n}-E S_{n, \delta}\right)\right\}$ is tight. But obviously all the subsequential limits have the same Lévy measure $\mu \circ \mathrm{T}$, hence $\left.\left.\varepsilon_{j} L\left(X_{n j}\right)\right|_{\{|x|>\delta\}} \rightarrow{ }^{\mu 0} T\right|_{\{|x|>\delta\}}$
if $\mu_{0} T\{-\delta, \delta\}=0$. Now, the CLT and (9) give $1 i_{n_{n}} \Sigma_{j} E X_{n j \delta}^{2}=a$, and therefore, condition (8) implies

$$
\begin{aligned}
& \left.=1 i m_{\tau+0, \mu\left\{\tau^{2}\right\}=0} 1 i m_{n} \Sigma_{j} E X_{n j \tau}^{2}=\right\} i m_{\tau \downarrow 0, \mu\left\{\tau^{2}\right\}=0}\left\{a-\int_{T}^{\delta^{2}} x d \mu(x)\right] \\
& =a-\int_{0}^{\delta^{2}} x d \mu(x) \text {. }
\end{aligned}
$$

So, (10) follows by the CLT . (b') also follows from the CLT, Gaussian convergence, and from (ii) with $\mu=0$.
Remarks.(1) Condition (8) is satisfied in the symmetric case and also for $z_{n j}=x_{n j}-E x_{n j 1}$ in general (from remark (b) after Corollary 3 we obtain that if $\left\{L\left(\Sigma_{j} x_{n j}^{2}\right)\right\}$ or $\left\{L\left(\Sigma_{j} z_{n j}^{2}\right)\right\}$ are shift tight, then $\overline{T i m}_{n} \Sigma_{j} E\left|z_{n j \delta}\right|^{2} \leq$
$\leq \overline{\operatorname{Tim}}_{n} \Sigma_{j}\left(P\left\{\left|X_{n j}\right|>\delta\right\}\right)^{2} \leq \overline{\operatorname{Tim}}_{n}$ miax ${ }_{j} P\left\{\left|X_{n j}\right|>\delta\right\} \quad \Sigma_{j}\left(P\left\{\left|X_{n j}\right|>\delta\right\}=0\right)$.
(2) Let us finally remark that if both $\left\{L\left(S_{n}\right)\right\}$ and $\left\{L\left(\Sigma_{j} X_{n j}^{2}\right)\right\}$ converge, then the p-th moment of $\left|S_{n}\right|$ converges if and only if the ($\rho / 2$)-th moment of $\varepsilon_{j} X_{n j}^{2}$ does:both conditions are equivalent to

$$
\left.\lim _{t-\infty \infty} \sup _{n} \sum_{j} E\left|X_{n j}\right|^{p} I_{i \mid x_{n j}} \mid>t\right\}=0
$$

(de Acosta and Gine (1978)). With this remark, Theorem 5 contains the result in Hall (1978) as a particular case (the cases $u=0$ and $\mu=\lambda \delta_{1}$).
(3) It is also clear from the foregoing that the power 2 is basic only if $1 \mathrm{im} \mathrm{n}_{\mathrm{j}} \mathrm{EX} \mathrm{X}_{\mathrm{nj} \delta}^{2} \neq 0$ and the Lévy measure μ (or $\mu \mathrm{O} \mathrm{T}^{-1}$) gives positive mass to intervals arbitrarily near to zero. Otherwise the previous results hold for $\Sigma_{j}\left|X_{n j}\right|$, for any $p>0$ (as observed by Hall (1978) in the particular case $\mu=\lambda \delta_{1}$).

REFERENCES

1.- de Acosta , A. and Giné, E. (1979). Convergence of moments and related functionals in the general central limit theorem in Banach spaces.
Z. Wahrscheinl ichkeitstheorie verw. Gebiete 48, 211-231.
2.- Araujo, A. and Giné, E. (1980). The central limit theorem. Wiley, New York.
3.- Feller, W. (1979). An introduction to Probability Theory and its applications. Wiley, New York.
4.- Gnedenko, B.V. and Kolmogorov, A.N. (1954). Limit distributions for sums of independent random variables. Addison-iesley, Reading, Mass.
5. - Hall, P. (1978). On the duality between the behaviour of sums of independent random variables and the sums of their squares. Math. Proc. Cambridge. Phil. Soc. 84, 117-121.
6.- Raikov, D.A. (1938). On a connection between the central limit theorem in the theory of probability and the law of lame numbers. Izvestya Akad. Nank. SSSR (Ser. Mat.)

