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Let {Xni
:i= 1, ._kn , n e YO be a triangular array of row-wise inde-

pendent random variables, Sn=
EJXnj

the row sums and Tn= Ej x2j the row sums

of squares . Raikov (1938) proved that S converges weakly to a Gaussian law

if and only if Tn converges in probability to a constant . Hall (1978) shows

that if Sn converges to a Poisson law with parameter a, then so does Tn .

In this note we give the exact relation between tightness and convergente

of {L(Sn)},{L(Tn )} and {min(1,x2 )E jdL(X ni )} for infinitesimal

	

arrays ; the-

se results contain those of Raikov and Hall as particular cases . The tight-

ness relations proved to be useful in some work with M .P .Marcus on the cen-

tral limit theorem in C(S) . I acknowledge Prof . M.Marcus for the correspon-

dence that led to this note (as a byproduct) .

The notation will

	

be as follows :

	

{X nj :

	

j =1_ .,k n ,

	

n e fi} will

	

be

a triangular array of row-wise independent random variables ({Xnj } for

short), S n =E .X n , T =E .X2 , X

	

= X I

	

< T}' Sn,T-EjxnjT' (T>0),
J

	

j

	

n

	

J

	

nj

	

ni ,	ni

	

{IXni j_
and {Xnj } will denote independent symmetrizations of {Xnj } .{X nj ) is infini -

tesimal if limn maxj P{IXni 1 > E} =0 for all E>0 .

IJe refer to Gnedenko and Kolmogorov (1968, Theorem 25 .1) or to Araujo

and Giné (1980, Theorem 2 .4 .7) for the general central limit theorem on

the line(CLT) .
The followina is our main observation . It elaborates on exercise

2 .5 .3 of Araujo and Giné (1980) and its proof is inspired on their proof

of the converse CLT .

rheorem 1 . Let {Xnj } be a triangular array of row-wise independent rv's .

Then {L(Ei xni )} is tight if and only if the family measures

is uniformly bounded and tight .

dvn (x)= min(l,x 2 )Ej dL(Xnj )(x)
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Proof . Assume {L(E~X2~)} tight . Then by positivity, so are {L(EiX2iT)}n-1

and {L(Xni
)}n,J .

The converse Kolmogorov and Lévy inequalities give

where cT d is a finite constant for each T, d > 0 . The tightness of

{L(Ei(X2jT)-)} therefore implies sup nE(Ej (X2~ T -
c

_

	

< hence

ness of {L(E .X2 -E .EX2 )} by Chebyshev . {L(E .X2 )} being tight, we con-
,1 niT J ni T	~ niT

elude

(1)

	

supnE~EX2jT

for al] T >O . As is well

independent symmetric, then

for al] d > 0(as

we can conclude

Since

which

E(E
i
(X2jT-EX2iT )) 2

If we

there exists Tr > 0 such that

This proves that

	

{E
i
L(Xnj)lIxlI> T1/2}

ce by (1, ),

	

so is

	

{min(1,x 2/T)E
i
L(Xni )}

some T> 0 these measures are uniformly

for each T >O, in particular for -r= 1 .

Conversely, assume now that (vn }

for al l

	

T,

	

t > 0,
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< CT,d/(1-2P{IEi(X2iT)-j'>d}1

known, Lévy's ineqiality gives that

En=1P{In i I > d} <

	

-log(1-2P{IE i ni l > 6»

observed by Feller (1971), page 149) . Hence,

that there exist B> 0 and xni e IR

	

such that

supnEjP{IX2J-xni1 >S} < 1/2 .

{L(X2

	

is tight, there exists M> 0 such that sup_ ;P{X? ;> M}< 1/2,
r1J . f1,J

	

_

	

11,J
11J

implies that Ixni ¡ < M+S . So, there exists T > 0 such that

supn EiP{X2i
> T} < 1/2 .

if {n i } are

using Fubini

apply this to r independent copies of Sn , r e1N, we conclude that

supnrE j P{X2i
> Tr} < 1/2 .

P{Tn >t}<

	

P{E
i
X2iT >t,

	

IXnil < T, J=1, . . .,kn }

the tight-

is uniformly bounded and tight, hen-

It is trivial to see that if for

bounded and tight, the same is true

is uniformly bounded and tight . Then

+EiP{ I XnJ l > T} <

	

EjEX2iT/t+EiP{
I Xn .l

> T}

	

.



Given e > 0 choose T > 0 such that the last sum is not greater than

e/2 and then t such that E j EX 2 /t <e/2 . Hence, {L(Tn )} is tight .0

Since

(2)

	

E(Xni-EXnj1)
2 1{IXnJI <l}-EX

2njl =

the previous theorem together with theorem 2 .45 in Araujo and Giné(1980~give :

Corollary 2 . Let {Xnj } be an infinitesimal array such that

(3)

	

supn Ej (EX ni1 ) 2 < m.

=-(1+p{IXn
.i1 > l})(EXnJl)2,

Then, {L(Sn-ESn,T)} is tight if and only if {L(Ej X2 j )} is .

Remark . Condition (3) is satisfied if :

(a) {Xnj } is symmetric, but in this case it is not necessary to assume in-

finitesimality (use Araujo and Giné (1980) . Cor . 2 .5 .7), and

(b)

	

for {Zni= Xnj-EXnjT}, any T > 0,

	

if either {L(Sn-ES n,T )} or

{L(E i (Xni -EXnjT ) )} are tight for some

	

T>0 . Let us see it for T = 1

1 EZnj1l < l1'IXni1 <1ZnidPi +(1+ [EXnj1l)P{IX njl > 1-IEXnjll}

= ¡EXnjllp{IXnjl> 1} +(1 +¡EXnjll)P{IXnjl > 1-IEXnjll},

and since max j IEXnjl l->0 as n- by infinitesimality, we obtain that

supnE j (EZnil ) 2 < c supnE J P{IXni 1 > 1/2} and this quantity is finite if either

one of the two families of sums are tight, by the previous theorems . So we

have :

	

-

Corollary 3 .

	

Let {Xni* } be infinitesimal .

	

Then

	

{L(S n-ES n,d )}

	

is tight if and

only if {L(E i (X ni-EX njd ) 2 )} is tight for some (all) d > 0 .

Next we examine convergente relations . We will let T(x) = x2 . Note

that if p and v are a-finite Borel measures the equation voT = P, v unknown,

has a unique symmetric solution and a unique solution supported by

R+(R- ) . This solution will be denoted v = poT and it will

	

be symmetric or

supportéd by R+ depending on the context .

Theorem 4 . Let {Xnj } be an infinitesimal array .
(a) Assume {Xnj } satisfies condition (3) and

(4)

	

L(S n -ESn,a )-wN(O,a2 )*c 6Poisp
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for some o2 > 0, Lévy measure ).+ and 6 > 0 such that p{-6,0= 0.
Then,

(5)

	

L(E
i
X2i -E

i
EXñja

)->
wc62 Pois(poT-1 )

In particular, if condition (3) is replaced b.y the stronger condition

(6)

	

l imnEj EX2ja = a < ~,

then

(7)

	

L(EjX2,j)->w6a*cal Pois(poT-1)

(b) Conversely if the Xni are non-negative (symmetric) and

(8)

	

limayOlimnE
i
(EXnja ) 2 = 0,

then, the fact that

(9)

	

L(Ej X2 )_w6a*ca2 Poisp

for some Lévy measure p and a such that p{-62 ,6 2 }= 0, implies

( 10 ) .

	

L(Sn-ES n,a )-wN(O,o2 )*c 6 Pois(poT),
9

where o~ =a-fn

	

xdp(x) .

	

(poT is symmetric if the Xn	are symmetric and with,,
support in ht+	ifthe Xn , are non-negative) . Also, E~EX2~ a ->a .

(b')

	

If in

	

(9)

	

ji= 0,

	

then

	

(b)

	

is true without the variables Xni

	

being non-

negative or symmetric .

Proof .

	

(a)

	

By the CLT

	

,

	

Ei
L(Xnj ) I{Ixi >8}->wpI{Ix1 >61

	

if w{-M}= 0 .

Then if p{-6 1/ 2 ,6 112 }= 0, E .L(X2 )1

	

poT-1 ~

	

On the otherJ

	

ni {~x~ >6}-w

	

{ix1 >0*

hand,

because by condition (3) and the CLT

	

, supnzj EX2	< - (see (2)) . Hence
(5) follows from the CLT .

	

nil

(b) Assume now that (8) and (9) hold . Then (3) holds °and therefore Corollary

3 gives that {L(Sn-ESn,a )} is tight . But obviously al] the subsequential

limits have the same Lévy measure poT,

	

hence E
i
L(Xnj)j { , x , >6},wpoTj{jxj>6}
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lim64-0limnEj E[Xni
I{X2J <6} -(EXni

I {X2i < 6})2l

1¡may01¡mnE~(¿- E(XnJ ) 6 )E(XnJ ) 6
= 0



if poT{-8,8}= 0 . Now, the CLT

	

and (9) give limn z j EX2	=a, and therefore,

condition (8) implies

limTyO {lim}nEj(EXnjT)2)= limTy,0 {lim}nEjEXniT

2
= 1 imT+0,p{T 2 } = 0l imn Ei EXnjT = 1 im

TyO,u{-r 2 } = 0 [a-f
1?

xdp(x)]l
2

=a-f0 xdu(x) . .

So, (10) follows by the CLT .

	

(b') also follows from the CLT, Gaussian

convergence, and from (ii) with p =0 .

Remarks41) Condition (8) is satisfied in the symmetric case and also for

Znj
= X nj -EX nj1 in general (from remark (b) after Corollary 3 we obtain that

if {L(Ej Xnj )} or {L(E j7ñj )} are shift tight, then limnEj EIZnjd l 2 <

<

	

limn zj (P{1 Xnj 1 > 6})` < limnmaxj P{lXnj1
>8} , Ej(P{1Xnj1

> 8}= 0) .

(2) Let us finally remark that if both {L(Sn )} and {L(Ei Xni )} converge,

then the p-th moment of IS n 1 converges if and only if the (p/2)-th moment

of Ei Xni does :both conditions are equivalent to

1imt~sapnziE1XniiPI{IXnj
1
>t}=0

(de Acosta and Giné (1978)) . With this remark, Theorem 5 contains the result

in Hall (1978) as a particular case (the cases p = 0 and p = x81) .

(3) It is also clear from the foregoing that the power 2 is basic only if

limnEj EX2j	0and the Lévy measure u (or poT-1 ) gives positive mass to

intervals arbitrarily near to zero . 0therwise the previous results hold

for EjlXnj1

	

,

	

for any p > 0 (as observed by Hall

	

(1978)

	

in the particular

case p=x81 ) .
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